accPolyC14 = (_accPolyC14); accPolyC13 = (_accPolyC13); accPolyC12 = (_accPolyC12); accPolyC11 = (_accPolyC11); accPolyC10 = (_accPolyC10); accPolyC9h = (_accPolyC9h); accPolyC9l = (_accPolyC9l); AccPolyC9hl = accPolyC9h + accPolyC9l; #MAPLE accPolyC8h = (_accPolyC8h); accPolyC8l = (_accPolyC8l); AccPolyC8hl = accPolyC8h + accPolyC8l; #MAPLE accPolyC7h = (_accPolyC7h); accPolyC7l = (_accPolyC7l); AccPolyC7hl = accPolyC7h + accPolyC7l; #MAPLE accPolyC6h = (_accPolyC6h); accPolyC6l = (_accPolyC6l); AccPolyC6hl = accPolyC6h + accPolyC6l; #MAPLE accPolyC5h = (_accPolyC5h); accPolyC5l = (_accPolyC5l); AccPolyC5hl = accPolyC5h + accPolyC5l; #MAPLE accPolyC4h = (_accPolyC4h); accPolyC4l = (_accPolyC4l); AccPolyC4hl = accPolyC4h + accPolyC4l; #MAPLE accPolyC3h = (_accPolyC3h); accPolyC3l = (_accPolyC3l); AccPolyC3hl = accPolyC3h + accPolyC3l; #MAPLE E = 0; #MAPLE zh = (Z); zl = Z - zh; #MAPLE highPoly = accPolyC10 + zh * (accPolyC11 + zh * (accPolyC12 + zh * (accPolyC13 + zh * accPolyC14))); T1hl = zh * highPoly; #MAPLE T2 = AccPolyC9hl + T1hl; #MAPLE T3 = Z * T2hl; #MAPLE T4 = AccPolyC8hl + T3hl; #MAPLE T5 = Z * T4hl; #MAPLE T6 = AccPolyC7hl + T5hl; #MAPLE T7 = Z * T6hl; #MAPLE T8 = AccPolyC6hl + T7hl; #MAPLE T9 = Z * T8hl; #MAPLE T10 = AccPolyC5hl + T9hl; #MAPLE T11 = Z * T10hl; #MAPLE T12 = AccPolyC4hl + T11hl; #MAPLE T13 = Z * T12hl; #MAPLE T14 = AccPolyC3hl + T13hl; #MAPLE ZSquare = Z * Z; #MAPLE ZCube = Z * ZSquarehml; #MAPLE HigherPolyMultZ = T14hl * ZCubehml; #MAPLE ZSquareHalfhml = -0.5 * ZSquarehml; #MAPLE PolyWithSquare = ZSquareHalfhml + HigherPolyMultZhml; #MAPLE Poly = Z + PolyWithSquarehml; #MAPLE #We can simplify the proof in this case since we know that adding a triple double which is #equal to 0 exactly is exact. Loghml = Polyhml; #MAPLE #Mathematical definition of the logarithm MHighPoly = accPolyC10 + Z * (accPolyC11 + Z * (accPolyC12 + Z * (accPolyC13 + Z * accPolyC14))); #MAPLE MT1 = Z * MHighPoly; #MAPLE MT2 = AccPolyC9hl + MT1; #MAPLE MT3 = Z * MT2; #MAPLE MT4 = AccPolyC8hl + MT3; #MAPLE MT5 = Z * MT4; #MAPLE MT6 = AccPolyC7hl + MT5; #MAPLE MT7 = Z * MT6; #MAPLE MT8 = AccPolyC6hl + MT7; #MAPLE MT9 = Z * MT8; #MAPLE MT10 = AccPolyC5hl + MT9; #MAPLE MT11 = Z * MT10; #MAPLE MT12 = AccPolyC4hl + MT11; #MAPLE MT13 = Z * MT12; #MAPLE MT14 = AccPolyC3hl + MT13; #MAPLE MZSquare = Z * Z; #MAPLE MZCube = Z * MZSquare; #MAPLE MHigherPolyMultZ = MT14 * MZCube; #MAPLE MZSquareHalf = -0.5 * MZSquare; #MAPLE MPolyWithSquare = MZSquareHalf + MHigherPolyMultZ; #MAPLE MPoly = Z + MPolyWithSquare; #MAPLE #We apply the same simplification here MLog = MLog1pZ; #MAPLE #Useful additional definitions epsilon1 = (highPoly - MHighPoly) / MHighPoly; #MAPLE epsilon2 = (T1hl - MT1) / MT1; #MAPLE epsilon3 = (T2hl - MT2) / MT2; #MAPLE epsilon4 = (T3hl - MT3) / MT3; #MAPLE epsilon5 = (T4hl - MT4) / MT4; #MAPLE epsilon6 = (T5hl - MT5) / MT5; #MAPLE epsilon7 = (T6hl - MT6) / MT6; #MAPLE epsilon8 = (T7hl - MT7) / MT7; #MAPLE epsilon9 = (T8hl - MT8) / MT8; #MAPLE epsilon10 = (T9hl - MT9) / MT9; #MAPLE epsilon11 = (T10hl - MT10) / MT10; #MAPLE epsilon12 = (T11hl - MT11) / MT11; #MAPLE epsilon13 = (T12hl - MT12) / MT12; #MAPLE epsilon14 = (T13hl - MT13) / MT13; #MAPLE epsilon15 = (T14hl - MT14) / MT14; #MAPLE epsilon16 = (ZCubehml - MZCube) / MZCube; #MAPLE epsilon17 = (HigherPolyMultZhml - MHigherPolyMultZ) / MHigherPolyMultZ; #MAPLE epsilon18 = (ZSquareHalfhml - MZSquareHalf) / MZSquareHalf; #MAPLE epsilon19 = (PolyWithSquarehml - MPolyWithSquare) / MPolyWithSquare; #MAPLE epsilon20 = (Polyhml - MLog1pZ) / MLog1pZ; #MAPLE epsilon21 = (PolyWithSquare - MPolyWithSquare) / MPolyWithSquare; #MAPLE epsilon22 = (Polyhml - MPoly) / MPoly; #MAPLE epsilon23 = (Poly - MPoly) / MPoly; #MAPLE aux1 = -0.5 * Z + MZSquare * MT14; #MAPLE #End additional definitions { ( (T2hl - T2) / T2 in [-1b-103,1b-103] /\ (T3hl - T3) / T3 in [-1b-102,1b-102] /\ (T4hl - T4) / T4 in [-1b-103,1b-103] /\ (T5hl - T5) / T5 in [-1b-102,1b-102] /\ (T6hl - T6) / T6 in [-1b-103,1b-103] /\ (T7hl - T7) / T7 in [-1b-102,1b-102] /\ (T8hl - T8) / T8 in [-1b-103,1b-103] /\ (T9hl - T9) / T9 in [-1b-102,1b-102] /\ (T10hl - T10) / T10 in [-1b-103,1b-103] /\ (T11hl - T11) / T11 in [-1b-102,1b-102] /\ (T12hl - T12) / T12 in [-1b-103,1b-103] /\ (T13hl - T13) / T13 in [-1b-102,1b-102] /\ (T14hl - T14) / T14 in [-1b-103,1b-103] /\ (ZSquarehml - ZSquare) / ZSquare in [-1b-149,1b-149] /\ (ZCubehml - ZCube) / ZCube in [-1b-144,1b-144] /\ (HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ in [-1b-141,1b-141] /\ (PolyWithSquarehml - PolyWithSquare) / PolyWithSquare in [-1b-137,1b-137] /\ (Polyhml - Poly) / Poly in [-1b-134,1b-134] /\ (MPoly - MLog1pZ) / MLog1pZ in [-_epsilonApproxAccurate,_epsilonApproxAccurate] /\ Z in [1b-900,_zmax] /\ ((logh + logm + logl) - Loghml) / Loghml in [-1b-159,1b-159] -> ((logh + logm + logl) - MLog) / MLog in [-5735b-132,5735b-132] ) /\ ( (T2hl - T2) / T2 in [-1b-103,1b-103] /\ (T3hl - T3) / T3 in [-1b-102,1b-102] /\ (T4hl - T4) / T4 in [-1b-103,1b-103] /\ (T5hl - T5) / T5 in [-1b-102,1b-102] /\ (T6hl - T6) / T6 in [-1b-103,1b-103] /\ (T7hl - T7) / T7 in [-1b-102,1b-102] /\ (T8hl - T8) / T8 in [-1b-103,1b-103] /\ (T9hl - T9) / T9 in [-1b-102,1b-102] /\ (T10hl - T10) / T10 in [-1b-103,1b-103] /\ (T11hl - T11) / T11 in [-1b-102,1b-102] /\ (T12hl - T12) / T12 in [-1b-103,1b-103] /\ (T13hl - T13) / T13 in [-1b-102,1b-102] /\ (T14hl - T14) / T14 in [-1b-103,1b-103] /\ (ZSquarehml - ZSquare) / ZSquare in [-1b-149,1b-149] /\ (ZCubehml - ZCube) / ZCube in [-1b-144,1b-144] /\ (HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ in [-1b-141,1b-141] /\ (PolyWithSquarehml - PolyWithSquare) / PolyWithSquare in [-1b-137,1b-137] /\ (Polyhml - Poly) / Poly in [-1b-134,1b-134] /\ (MPoly - MLog1pZ) / MLog1pZ in [-_epsilonApproxAccurate,_epsilonApproxAccurate] /\ Z in [_zmin,-1b-900] /\ ((logh + logm + logl) - Loghml) / Loghml in [-1b-159,1b-159] -> ((logh + logm + logl) - MLog) / MLog in [-5735b-132,5735b-132] ) } ((logh + logm + logl) - MLog) / MLog -> ((Loghml - MLog) / MLog) + ((((logh + logm + logl) - Loghml) / Loghml) * (((Loghml - MLog) / MLog) + 1)); T2hl -> (T2 * ((T2hl - T2) / T2)) + T2; T3hl -> (T3 * ((T3hl - T3) / T3)) + T3; T4hl -> (T4 * ((T4hl - T4) / T4)) + T4; T5hl -> (T5 * ((T5hl - T5) / T5)) + T5; T6hl -> (T6 * ((T6hl - T6) / T6)) + T6; T7hl -> (T7 * ((T7hl - T7) / T7)) + T7; T8hl -> (T8 * ((T8hl - T8) / T8)) + T8; T9hl -> (T9 * ((T9hl - T9) / T9)) + T9; T10hl -> (T10 * ((T10hl - T10) / T10)) + T10; T11hl -> (T11 * ((T11hl - T11) / T11)) + T11; T12hl -> (T12 * ((T12hl - T12) / T12)) + T12; T13hl -> (T13 * ((T13hl - T13) / T13)) + T13; T14hl -> (T14 * ((T14hl - T14) / T14)) + T14; ZSquarehml -> (ZSquare * ((ZSquarehml - ZSquare) / ZSquare)) + ZSquare; ZCubehml -> (ZCube * ((ZCubehml - ZCube) / ZCube)) + ZCube; HigherPolyMultZhml -> (HigherPolyMultZ * ((HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ)) + HigherPolyMultZ; PolyWithSquarehml -> (PolyWithSquare * ((PolyWithSquarehml - PolyWithSquare) / PolyWithSquare)) + PolyWithSquare; Polyhml -> (Poly * ((Polyhml - Poly) / Poly)) + Poly; epsilon2 -> epsilon1 + (((zh - Z) / Z) * (epsilon1 + 1)); epsilon3 -> ((epsilon2 * MT1) / (AccPolyC9hl + MT1)) + (((AccPolyC9hl + T1hl) / (AccPolyC9hl + MT1)) * ((T2hl - T2) / T2)); epsilon4 -> epsilon3 + (((T3hl - T3) / T3) * (epsilon3 + 1)); epsilon5 -> ((epsilon4 * MT3) / (AccPolyC8hl + MT3)) + (((AccPolyC8hl + T3hl) / (AccPolyC8hl + MT3)) * ((T4hl - T4) / T4)); epsilon6 -> epsilon5 + (((T5hl - T5) / T5) * (epsilon5 + 1)); epsilon7 -> ((epsilon6 * MT5) / (AccPolyC7hl + MT5)) + (((AccPolyC7hl + T5hl) / (AccPolyC7hl + MT5)) * ((T6hl - T6) / T6)); epsilon8 -> epsilon7 + (((T7hl - T7) / T7) * (epsilon7 + 1)); epsilon9 -> ((epsilon8 * MT7) / (AccPolyC6hl + MT7)) + (((AccPolyC6hl + T7hl) / (AccPolyC6hl + MT7)) * ((T8hl - T8) / T8)); epsilon10 -> epsilon9 + (((T9hl - T9) / T9) * (epsilon9 + 1)); epsilon11 -> ((epsilon10 * MT9) / (AccPolyC5hl + MT9)) + (((AccPolyC5hl + T9hl) / (AccPolyC5hl + MT9)) * ((T10hl - T10) / T10)); epsilon12 -> epsilon11 + (((T11hl - T11) / T11) * (epsilon11 + 1)); epsilon13 -> ((epsilon12 * MT11) / (AccPolyC4hl + MT11)) + (((AccPolyC4hl + T11hl) / (AccPolyC4hl + MT11)) * ((T12hl - T12) / T12)); epsilon14 -> epsilon13 + (((T13hl - T13) / T13) * (epsilon13 + 1)); epsilon15 -> ((epsilon14 * MT13) / (AccPolyC3hl + MT13)) + (((AccPolyC3hl + T13hl) / (AccPolyC3hl + MT13)) * ((T14hl - T14) / T14)); epsilon16 -> ((ZSquarehml - MZSquare) / MZSquare) + (((ZCubehml - ZCube) / ZCube) * (((ZSquarehml - MZSquare) / MZSquare) + 1)); epsilon17 -> epsilon15 + epsilon16 + epsilon15 * epsilon16 + ((HigherPolyMultZhml - HigherPolyMultZ) / HigherPolyMultZ) * (1 + epsilon15 + epsilon16 + epsilon15 * epsilon16); epsilon18 -> (ZSquarehml - MZSquare) / MZSquare; epsilon19 -> epsilon21 + (1 + epsilon21) * ((PolyWithSquarehml - PolyWithSquare) / PolyWithSquare); epsilon20 -> (((Polyhml - MPoly) / MPoly) + ((MPoly - MLog1pZ) / MLog1pZ)) + (((Polyhml - MPoly) / MPoly) * ((MPoly - MLog1pZ) / MLog1pZ)); epsilon21 -> ((-0.5 * epsilon18) + (Z * MT14 * epsilon17)) / (-0.5 + (Z * MT14)); epsilon22 -> epsilon23 + (((Polyhml - Poly) / Poly) * (1+ epsilon23)); epsilon23 -> epsilon19 * (aux1 / (1 + aux1));