/* ** Copyright (c) 2003, 2006 Gerald I. Evenden */ /* ** Permission is hereby granted, free of charge, to any person obtaining ** a copy of this software and associated documentation files (the ** "Software"), to deal in the Software without restriction, including ** without limitation the rights to use, copy, modify, merge, publish, ** distribute, sublicense, and/or sell copies of the Software, and to ** permit persons to whom the Software is furnished to do so, subject to ** the following conditions: ** ** The above copyright notice and this permission notice shall be ** included in all copies or substantial portions of the Software. ** ** THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, ** EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF ** MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. ** IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY ** CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, ** TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE ** SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #define PJ_LIB__ #include PROJ_HEAD(omerc, "Oblique Mercator") "\n\tCyl, Sph&Ell no_rot\n\t" "alpha= [gamma=] [no_off] lonc= or\n\t lon_1= lat_1= lon_2= lat_2="; struct pj_opaque { double A, B, E, AB, ArB, BrA, rB, singam, cosgam, sinrot, cosrot; double v_pole_n, v_pole_s, u_0; int no_rot; }; #define TOL 1.e-7 #define EPS 1.e-10 static XY e_forward (LP lp, PJ *P) { /* Ellipsoidal, forward */ XY xy = {0.0,0.0}; struct pj_opaque *Q = P->opaque; double S, T, U, V, W, temp, u, v; if (fabs(fabs(lp.phi) - M_HALFPI) > EPS) { W = Q->E / pow(pj_tsfn(lp.phi, sin(lp.phi), P->e), Q->B); temp = 1. / W; S = .5 * (W - temp); T = .5 * (W + temp); V = sin(Q->B * lp.lam); U = (S * Q->singam - V * Q->cosgam) / T; if (fabs(fabs(U) - 1.0) < EPS) F_ERROR; v = 0.5 * Q->ArB * log((1. - U)/(1. + U)); temp = cos(Q->B * lp.lam); if(fabs(temp) < TOL) { u = Q->A * lp.lam; } else { u = Q->ArB * atan2((S * Q->cosgam + V * Q->singam), temp); } } else { v = lp.phi > 0 ? Q->v_pole_n : Q->v_pole_s; u = Q->ArB * lp.phi; } if (Q->no_rot) { xy.x = u; xy.y = v; } else { u -= Q->u_0; xy.x = v * Q->cosrot + u * Q->sinrot; xy.y = u * Q->cosrot - v * Q->sinrot; } return xy; } static LP e_inverse (XY xy, PJ *P) { /* Ellipsoidal, inverse */ LP lp = {0.0,0.0}; struct pj_opaque *Q = P->opaque; double u, v, Qp, Sp, Tp, Vp, Up; if (Q->no_rot) { v = xy.y; u = xy.x; } else { v = xy.x * Q->cosrot - xy.y * Q->sinrot; u = xy.y * Q->cosrot + xy.x * Q->sinrot + Q->u_0; } Qp = exp(- Q->BrA * v); Sp = .5 * (Qp - 1. / Qp); Tp = .5 * (Qp + 1. / Qp); Vp = sin(Q->BrA * u); Up = (Vp * Q->cosgam + Sp * Q->singam) / Tp; if (fabs(fabs(Up) - 1.) < EPS) { lp.lam = 0.; lp.phi = Up < 0. ? -M_HALFPI : M_HALFPI; } else { lp.phi = Q->E / sqrt((1. + Up) / (1. - Up)); if ((lp.phi = pj_phi2(P->ctx, pow(lp.phi, 1. / Q->B), P->e)) == HUGE_VAL) I_ERROR; lp.lam = - Q->rB * atan2((Sp * Q->cosgam - Vp * Q->singam), cos(Q->BrA * u)); } return lp; } static void *freeup_new (PJ *P) { /* Destructor */ if (0==P) return 0; if (0==P->opaque) return pj_dealloc (P); pj_dealloc (P->opaque); return pj_dealloc(P); } static void freeup (PJ *P) { freeup_new (P); return; } PJ *PROJECTION(omerc) { double con, com, cosph0, D, F, H, L, sinph0, p, J, gamma=0, gamma0, lamc=0, lam1=0, lam2=0, phi1=0, phi2=0, alpha_c=0; int alp, gam, no_off = 0; struct pj_opaque *Q = pj_calloc (1, sizeof (struct pj_opaque)); if (0==Q) return freeup_new (P); P->opaque = Q; Q->no_rot = pj_param(P->ctx, P->params, "tno_rot").i; if ((alp = pj_param(P->ctx, P->params, "talpha").i) != 0) alpha_c = pj_param(P->ctx, P->params, "ralpha").f; if ((gam = pj_param(P->ctx, P->params, "tgamma").i) != 0) gamma = pj_param(P->ctx, P->params, "rgamma").f; if (alp || gam) { lamc = pj_param(P->ctx, P->params, "rlonc").f; no_off = /* For libproj4 compatability */ pj_param(P->ctx, P->params, "tno_off").i /* for backward compatibility */ || pj_param(P->ctx, P->params, "tno_uoff").i; if( no_off ) { /* Mark the parameter as used, so that the pj_get_def() return them */ pj_param(P->ctx, P->params, "sno_uoff"); pj_param(P->ctx, P->params, "sno_off"); } } else { lam1 = pj_param(P->ctx, P->params, "rlon_1").f; phi1 = pj_param(P->ctx, P->params, "rlat_1").f; lam2 = pj_param(P->ctx, P->params, "rlon_2").f; phi2 = pj_param(P->ctx, P->params, "rlat_2").f; if (fabs(phi1 - phi2) <= TOL || (con = fabs(phi1)) <= TOL || fabs(con - M_HALFPI) <= TOL || fabs(fabs(P->phi0) - M_HALFPI) <= TOL || fabs(fabs(phi2) - M_HALFPI) <= TOL) E_ERROR(-33); } com = sqrt(P->one_es); if (fabs(P->phi0) > EPS) { sinph0 = sin(P->phi0); cosph0 = cos(P->phi0); con = 1. - P->es * sinph0 * sinph0; Q->B = cosph0 * cosph0; Q->B = sqrt(1. + P->es * Q->B * Q->B / P->one_es); Q->A = Q->B * P->k0 * com / con; D = Q->B * com / (cosph0 * sqrt(con)); if ((F = D * D - 1.) <= 0.) F = 0.; else { F = sqrt(F); if (P->phi0 < 0.) F = -F; } Q->E = F += D; Q->E *= pow(pj_tsfn(P->phi0, sinph0, P->e), Q->B); } else { Q->B = 1. / com; Q->A = P->k0; Q->E = D = F = 1.; } if (alp || gam) { if (alp) { gamma0 = asin(sin(alpha_c) / D); if (!gam) gamma = alpha_c; } else alpha_c = asin(D*sin(gamma0 = gamma)); if ((con = fabs(alpha_c)) <= TOL || fabs(con - M_PI) <= TOL || fabs(fabs(P->phi0) - M_HALFPI) <= TOL) E_ERROR(-32); P->lam0 = lamc - asin(.5 * (F - 1. / F) * tan(gamma0)) / Q->B; } else { H = pow(pj_tsfn(phi1, sin(phi1), P->e), Q->B); L = pow(pj_tsfn(phi2, sin(phi2), P->e), Q->B); F = Q->E / H; p = (L - H) / (L + H); J = Q->E * Q->E; J = (J - L * H) / (J + L * H); if ((con = lam1 - lam2) < -M_PI) lam2 -= M_TWOPI; else if (con > M_PI) lam2 += M_TWOPI; P->lam0 = adjlon(.5 * (lam1 + lam2) - atan( J * tan(.5 * Q->B * (lam1 - lam2)) / p) / Q->B); gamma0 = atan(2. * sin(Q->B * adjlon(lam1 - P->lam0)) / (F - 1. / F)); gamma = alpha_c = asin(D * sin(gamma0)); } Q->singam = sin(gamma0); Q->cosgam = cos(gamma0); Q->sinrot = sin(gamma); Q->cosrot = cos(gamma); Q->BrA = 1. / (Q->ArB = Q->A * (Q->rB = 1. / Q->B)); Q->AB = Q->A * Q->B; if (no_off) Q->u_0 = 0; else { Q->u_0 = fabs(Q->ArB * atan2(sqrt(D * D - 1.), cos(alpha_c))); if (P->phi0 < 0.) Q->u_0 = - Q->u_0; } F = 0.5 * gamma0; Q->v_pole_n = Q->ArB * log(tan(M_FORTPI - F)); Q->v_pole_s = Q->ArB * log(tan(M_FORTPI + F)); P->inv = e_inverse; P->fwd = e_forward; return P; } #ifndef PJ_SELFTEST int pj_omerc_selftest (void) {return 0;} #else int pj_omerc_selftest (void) { double tolerance_lp = 1e-10; double tolerance_xy = 1e-7; char e_args[] = {"+proj=omerc +ellps=GRS80 +lat_1=0.5 +lat_2=2"}; LP fwd_in[] = { { 2, 1}, { 2,-1}, {-2, 1}, {-2,-1} }; XY e_fwd_expect[] = { { 222650.796885261341, 110642.229314983808}, { 222650.796885261341, -110642.229314983808}, {-222650.796885261545, 110642.229314983808}, {-222650.796885261545, -110642.229314983808}, }; XY inv_in[] = { { 200, 100}, { 200,-100}, {-200, 100}, {-200,-100} }; LP e_inv_expect[] = { { 0.00179663056816996357, 0.000904369474808157338}, { 0.00179663056816996357, -0.000904369474820879583}, {-0.0017966305681604536, 0.000904369474808157338}, {-0.0017966305681604536, -0.000904369474820879583}, }; return pj_generic_selftest (e_args, 0, tolerance_xy, tolerance_lp, 4, 4, fwd_in, e_fwd_expect, 0, inv_in, e_inv_expect, 0); } #endif