*> \brief \b ZSTT22 * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * * Definition: * =========== * * SUBROUTINE ZSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK, * LDWORK, RWORK, RESULT ) * * .. Scalar Arguments .. * INTEGER KBAND, LDU, LDWORK, M, N * .. * .. Array Arguments .. * DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), RWORK( * ), * $ SD( * ), SE( * ) * COMPLEX*16 U( LDU, * ), WORK( LDWORK, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> ZSTT22 checks a set of M eigenvalues and eigenvectors, *> *> A U = U S *> *> where A is Hermitian tridiagonal, the columns of U are unitary, *> and S is diagonal (if KBAND=0) or Hermitian tridiagonal (if KBAND=1). *> Two tests are performed: *> *> RESULT(1) = | U* A U - S | / ( |A| m ulp ) *> *> RESULT(2) = | I - U*U | / ( m ulp ) *> \endverbatim * * Arguments: * ========== * *> \param[in] N *> \verbatim *> N is INTEGER *> The size of the matrix. If it is zero, ZSTT22 does nothing. *> It must be at least zero. *> \endverbatim *> *> \param[in] M *> \verbatim *> M is INTEGER *> The number of eigenpairs to check. If it is zero, ZSTT22 *> does nothing. It must be at least zero. *> \endverbatim *> *> \param[in] KBAND *> \verbatim *> KBAND is INTEGER *> The bandwidth of the matrix S. It may only be zero or one. *> If zero, then S is diagonal, and SE is not referenced. If *> one, then S is Hermitian tri-diagonal. *> \endverbatim *> *> \param[in] AD *> \verbatim *> AD is DOUBLE PRECISION array, dimension (N) *> The diagonal of the original (unfactored) matrix A. A is *> assumed to be Hermitian tridiagonal. *> \endverbatim *> *> \param[in] AE *> \verbatim *> AE is DOUBLE PRECISION array, dimension (N) *> The off-diagonal of the original (unfactored) matrix A. A *> is assumed to be Hermitian tridiagonal. AE(1) is ignored, *> AE(2) is the (1,2) and (2,1) element, etc. *> \endverbatim *> *> \param[in] SD *> \verbatim *> SD is DOUBLE PRECISION array, dimension (N) *> The diagonal of the (Hermitian tri-) diagonal matrix S. *> \endverbatim *> *> \param[in] SE *> \verbatim *> SE is DOUBLE PRECISION array, dimension (N) *> The off-diagonal of the (Hermitian tri-) diagonal matrix S. *> Not referenced if KBSND=0. If KBAND=1, then AE(1) is *> ignored, SE(2) is the (1,2) and (2,1) element, etc. *> \endverbatim *> *> \param[in] U *> \verbatim *> U is DOUBLE PRECISION array, dimension (LDU, N) *> The unitary matrix in the decomposition. *> \endverbatim *> *> \param[in] LDU *> \verbatim *> LDU is INTEGER *> The leading dimension of U. LDU must be at least N. *> \endverbatim *> *> \param[out] WORK *> \verbatim *> WORK is COMPLEX*16 array, dimension (LDWORK, M+1) *> \endverbatim *> *> \param[in] LDWORK *> \verbatim *> LDWORK is INTEGER *> The leading dimension of WORK. LDWORK must be at least *> max(1,M). *> \endverbatim *> *> \param[out] RWORK *> \verbatim *> RWORK is DOUBLE PRECISION array, dimension (N) *> \endverbatim *> *> \param[out] RESULT *> \verbatim *> RESULT is DOUBLE PRECISION array, dimension (2) *> The values computed by the two tests described above. The *> values are currently limited to 1/ulp, to avoid overflow. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \date November 2011 * *> \ingroup complex16_eig * * ===================================================================== SUBROUTINE ZSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK, $ LDWORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.4.0) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2011 * * .. Scalar Arguments .. INTEGER KBAND, LDU, LDWORK, M, N * .. * .. Array Arguments .. DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), RWORK( * ), $ SD( * ), SE( * ) COMPLEX*16 U( LDU, * ), WORK( LDWORK, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, J, K DOUBLE PRECISION ANORM, ULP, UNFL, WNORM COMPLEX*16 AUKJ * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY EXTERNAL DLAMCH, ZLANGE, ZLANSY * .. * .. External Subroutines .. EXTERNAL ZGEMM * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO RESULT( 2 ) = ZERO IF( N.LE.0 .OR. M.LE.0 ) $ RETURN * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' ) * * Do Test 1 * * Compute the 1-norm of A. * IF( N.GT.1 ) THEN ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) ) DO 10 J = 2, N - 1 ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+ $ ABS( AE( J-1 ) ) ) 10 CONTINUE ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) ) ELSE ANORM = ABS( AD( 1 ) ) END IF ANORM = MAX( ANORM, UNFL ) * * Norm of U*AU - S * DO 40 I = 1, M DO 30 J = 1, M WORK( I, J ) = CZERO DO 20 K = 1, N AUKJ = AD( K )*U( K, J ) IF( K.NE.N ) $ AUKJ = AUKJ + AE( K )*U( K+1, J ) IF( K.NE.1 ) $ AUKJ = AUKJ + AE( K-1 )*U( K-1, J ) WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ 20 CONTINUE 30 CONTINUE WORK( I, I ) = WORK( I, I ) - SD( I ) IF( KBAND.EQ.1 ) THEN IF( I.NE.1 ) $ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 ) IF( I.NE.N ) $ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I ) END IF 40 CONTINUE * WNORM = ZLANSY( '1', 'L', M, WORK, M, RWORK ) * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP ) END IF END IF * * Do Test 2 * * Compute U*U - I * CALL ZGEMM( 'T', 'N', M, M, N, CONE, U, LDU, U, LDU, CZERO, WORK, $ M ) * DO 50 J = 1, M WORK( J, J ) = WORK( J, J ) - ONE 50 CONTINUE * RESULT( 2 ) = MIN( DBLE( M ), ZLANGE( '1', M, M, WORK, M, $ RWORK ) ) / ( M*ULP ) * RETURN * * End of ZSTT22 * END