/*++ Copyright (c) 2012 Microsoft Corporation Module Name: f2n.h Abstract: Template for wrapping a float-like API as a numeral-like API. The basic idea is to have the rounding mode as an implicit argument. Author: Leonardo de Moura (leonardo) 2012-07-30. Revision History: --*/ #pragma once #include "util/mpf.h" template class f2n { public: typedef typename fmanager::numeral numeral; struct exception {}; private: fmanager & m_manager; mpf_rounding_mode m_mode; unsigned m_ebits; unsigned m_sbits; numeral m_tmp1; numeral m_one; void check(numeral const & n) { if (!m().is_regular(n)) throw exception(); } public: static bool field() { return true; } static bool precise() { return false; } f2n(fmanager & m, unsigned ebits = 11, unsigned sbits = 53):m_manager(m), m_mode(MPF_ROUND_TOWARD_POSITIVE), m_ebits(ebits), m_sbits(sbits) { m_manager.set(m_one, ebits, sbits, 1); } f2n(f2n && other) : m_manager(other.m_manager), m_mode(other.m_mode), m_ebits(other.m_ebits), m_sbits(other.m_sbits), m_tmp1(std::move(other.m_tmp1)), m_one(std::move(other.m_one)) {} ~f2n() { m().del(m_tmp1); m().del(m_one); } void set_rounding_mode(mpf_rounding_mode m) { m_mode = m; } mpf_rounding_mode rounding_mode() const { return m_mode; } void round_to_plus_inf() { m_mode = MPF_ROUND_TOWARD_POSITIVE; } void round_to_minus_inf() { m_mode = MPF_ROUND_TOWARD_NEGATIVE; } void set_rounding(bool to_plus_inf) { if (to_plus_inf) round_to_plus_inf(); else round_to_minus_inf(); } unsigned ebits() const { return m_ebits; } unsigned sbits() const { return m_sbits; } fmanager & m() const { return m_manager; } double to_double(numeral & x) const { return m().to_double(x); } void del(numeral & x) { m().del(x); } void abs(numeral & o) { m().abs(o); } void abs(numeral const & x, numeral & o) { m().abs(x, o); } void neg(numeral & o) { m().neg(o); } void neg(numeral const & x, numeral & o) { m().neg(x, o); } bool is_zero(numeral const & x) { return m().is_zero(x); } bool is_neg(numeral const & x) { return m().is_neg(x) && !m().is_zero(x); /* it is not clear whether actual hardware returns true for is_neg(0-) */ } bool is_pos(numeral const & x) { return m().is_pos(x) && !m().is_zero(x); } bool is_nonneg(numeral const & x) { return !is_neg(x); } bool is_nonpos(numeral const & x) { return !is_pos(x); } void set(numeral & o, int value) { m().set(o, m_ebits, m_sbits, value); check(o); } void set(numeral & o, int n, int d) { m().set(o, m_ebits, m_sbits, m_mode, n, d); check(o); } void set(numeral & o, double x) { m().set(o, m_ebits, m_sbits, x); check(o); } void set(numeral & o, unsigned value) { m().set(o, m_ebits, m_sbits, (double)value); check(o); } void set(numeral & o, numeral const & x) { m().set(o, x); check(o); } void set(numeral & o, mpq const & x) { m().set(o, m_ebits, m_sbits, m_mode, x); check(o); } void reset(numeral & o) { m().reset(o, m_ebits, m_sbits); } static void swap(numeral & x, numeral & y) { x.swap(y); } void add(numeral const & x, numeral const & y, numeral & o) { m().add(m_mode, x, y, o); check(o); } void sub(numeral const & x, numeral const & y, numeral & o) { m().sub(m_mode, x, y, o); check(o); } void mul(numeral const & x, numeral const & y, numeral & o) { m().mul(m_mode, x, y, o); check(o); } void div(numeral const & x, numeral const & y, numeral & o) { m().div(m_mode, x, y, o); check(o); } void inv(numeral & o) { numeral a; set(a, 1); div(a, o, o); del(a); check(o); } void inv(numeral const & x, numeral & o) { set(o, x); inv(o); } void inc(numeral & x) { add(x, m_one, x); } void dec(numeral & x) { sub(x, m_one, x); } void power(numeral const & a, unsigned p, numeral & b) { unsigned mask = 1; numeral power; set(power, a); set(b, 1); while (mask <= p) { if (mask & p) mul(b, power, b); mul(power, power, power); mask = mask << 1; } del(power); check(b); } // Store the floor of a into b. Return true if a is an integer. // Throws an exception if the result cannot be computed precisely. void floor(numeral const & a, numeral & b) { SASSERT(m().is_regular(a)); // Claim: If a is a regular float, then floor(a) is an integer that can be precisely represented. // Justification: (for the case a is nonnegative) // If 0 <= a > 2^sbits(), then a is an integer, and floor(a) == a // If 0 <= a <= 2^sbits(), then floor(a) is representable since every integer less than 2^sbit m().round_to_integral(MPF_ROUND_TOWARD_NEGATIVE, a, m_tmp1); SASSERT(m().is_regular(m_tmp1)); if (m().le(m_tmp1, a)) { m().set(b, m_tmp1); } else { // the rounding mode doesn't matter for the following operation. m().sub(MPF_ROUND_TOWARD_NEGATIVE, m_tmp1, m_one, b); } SASSERT(m().is_regular(b)); } void ceil(numeral const & a, numeral & b) { SASSERT(m().is_regular(a)); // See comment in floor m().round_to_integral(MPF_ROUND_TOWARD_POSITIVE, a, m_tmp1); SASSERT(m().is_regular(m_tmp1)); if (m().ge(m_tmp1, a)) { m().set(b, m_tmp1); } else { // the rounding mode doesn't matter for the following operation. m().add(MPF_ROUND_TOWARD_NEGATIVE, m_tmp1, m_one, b); } SASSERT(m().is_regular(b)); } unsigned prev_power_of_two(numeral const & a) { return m().prev_power_of_two(a); } bool eq(numeral const & x, numeral const & y) { return m().eq(x, y); } bool lt(numeral const & x, numeral const & y) { return m().lt(x, y); } bool le(numeral const & x, numeral const & y) { return m().le(x, y); } bool gt(numeral const & x, numeral const & y) { return m().gt(x, y); } bool ge(numeral const & x, numeral const & y) { return m().ge(x, y); } bool is_int(numeral const & x) { return m().is_int(x); } bool is_one(numeral const & x) { return m().is_one(x); } bool is_minus_one(numeral const & x) { numeral & _x = const_cast(x); m().neg(_x); bool r = m().is_one(_x); m().neg(_x); return r; } std::string to_string(numeral const & a) { return m().to_string(a); } std::string to_rational_string(numeral const & a) { return m().to_rational_string(a); } void display(std::ostream & out, numeral const & a) { out << to_string(a); } void display_decimal(std::ostream & out, numeral const & a, unsigned k) { m().display_decimal(out, a, k); } void display_smt2(std::ostream & out, numeral const & a, bool decimal) { m().display_smt2(out, a, decimal); } };