%% BEGIN poster1.tex %% %% Sample for poster.tex/poster.sty. %% Run with LaTeX, with or without the NFSS. %% You might have problems with missing fonts. %% %% See below if using A4 paper. \documentstyle{article} \input poster % Input here in case poster.sty not installed. \mag\magstep5 % Magnification of 1.2^5 (roughly 2.5) % Use "true" dimensions below for magnified values. \begin{document} %% Add paperwidth=210mm,paperheight=297mm if using A4 paper: \begin{Poster}[vcenter=true,hcenter=true] \setlength{\fboxsep}{.8truein}% \setlength{\fboxrule}{.1truein}% \fbox{\begin{minipage}{11.1truein} \begin{center} \bf ON SOME \boldmath$\Pi$-HEDRAL SURFACES IN QUASI-QUASI SPACE \end{center} \begin{center} CLAUDE HOPPER, Omnius University \end{center} There is at present a school of mathematicians which holds that the explosive growth of jargon within mathematics is a deplorable trend. It is our purpose in this note to continue the work of Redheffer~\cite{redheffer} in showing how terminology itself can lead to results of great elegance. I first consolidate some results of Baker~\cite{baker} and McLelland~\cite{mclelland}. We define a class of connected snarfs as follows: $S_\alpha=\Omega(\gamma_\beta)$. Then if $B=(\otimes,\rightarrow,\theta)$ is a Boolean left subideal, we have: $$ \nabla S_\alpha=\int\int\int_{E(\Omega)} B(\gamma_{\beta_0},\gamma_{\beta_0})\,d\sigma d\phi d\rho -\frac{19}{51}\Omega. $$ Rearranging, transposing, and collecting terms, we have: $\Omega=\Omega_0$. The significance of this is obvious, for if $\{S_\alpha\}$ be a class of connected snarfs, our result shows that its union is an utterly disjoint subset of a $\pi$-hedral surface in quasi-quasi space. We next use a result of Spyrpt~\cite{spyrpt} to derive a property of wild cells in door topologies. Let $\xi$ be the null operator on a door topology, $\Box$, which is a super-linear space. Let $\{P_\gamma\}$ be the collection of all nonvoid, closed, convex, bounded, compact, circled, symmetric, connected, central, $Z$-directed, meager sets in $\Box$. Then $P=\cup P_\gamma$ is perfect. Moreover, if $P\neq\phi$, then $P$ is superb. \smallskip {\it Proof.} The proof uses a lemma due to Sriniswamiramanathan~\cite{srinis}. This states that any unbounded fantastic set it closed. Hence we have $$ \Rightarrow P\sim\xi(P_\gamma)-\textstyle\frac{1}{3}. $$ After some manipulation we obtain $$ \textstyle\frac{1}{3}=\frac{1}{3} $$ I have reason to believe~\cite{russell} that this implies $P$ is perfect. If $P\neq\phi$, $P$ is superb. Moreover, if $\Box$ is a $T_2$ space, $P$ is simply superb. This completes the proof. Our final result is a generalization of a theorem of Tz, and encompasses some comments on the work of Beaman~\cite{beaman} on the Jolly function. Let $\Omega$ be any $\pi$-hedral surface in a semi-quasi space. Define a nonnegative, nonnegatively homogeneous subadditive linear functional $f$ on $X\supset\Omega$ such that $f$ violently suppresses $\Omega$. Then $f$ is the Jolly function. \smallskip {\it Proof.} Suppose $f$ is not the Jolly function. Then $\{\Lambda,\mbox{@},\xi\}\cap\{\Delta,\Omega,\Rightarrow\}$ is void. Hence $f$ is morbid. This is a contradiction, of course. Therefore, $f$ is the Jolly function. Moreover, if $\Omega$ is a circled husk, and $\Delta$ is a pointed spear, then $f$ is uproarious. \small \begin{center} \bf References \end{center} \def\thebibliography#1{% \list {\bf\arabic{enumi}.}{\settowidth\labelwidth{\bf #1.}\leftmargin\labelwidth \advance\leftmargin\labelsep \usecounter{enumi}} \def\newblock{\hskip .11em plus .33em minus .07em} \sloppy\clubpenalty4000\widowpenalty4000 \sfcode`\.=1000\relax} \begin{thebibliography}{9} \bibitem{redheffer} R. M. Redheffer, A real-life application of mathematical symbolism, this {\it Magazine}, 38 (1965) 103--4. \bibitem{baker} J. A. Baker, Locally pulsating manifolds, East Overshoe Math. J., 19 (1962) 5280--1. \bibitem{mclelland} J. McLelland, De-ringed pistons in cylindric algebras, Vereinigtermathematischerzeitung f\"ur Zilch, 10 (1962) 333--7. \bibitem{spyrpt} Mrowclaw Spyrpt, A matrix is a matrix is a matrix, Mat. Zburp., 91 (1959) 28--35. \bibitem{srinis} Rajagopalachari Sriniswamiramanathan, Some expansions on the Flausgloten Theorem on locally congested lutches, J. Math. Soc., North Bombay, 13 (1964) 72--6. \bibitem{russell} A. N. Whitehead and B. Russell, Principia Mathematica, Cambridge University Press, 1925. \bibitem{beaman} J. Beaman, Morbidity of the Jolly function, Mathematica Absurdica, 117 (1965) 338--9. \end{thebibliography} \end{minipage}}% \end{Poster} \end{document} %% END poster1.tex