# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. library(mxnet) data <- mx.symbol.Variable('data') label <- mx.symbol.Variable('label') conv1 <- mx.symbol.Convolution(data = data, kernel = c(5, 5), num_filter = 32) pool1 <- mx.symbol.Pooling(data = conv1, pool_type = "max", kernel = c(2, 2), stride = c(1, 1)) relu1 <- mx.symbol.Activation(data = pool1, act_type = "relu") conv2 <- mx.symbol.Convolution(data = relu1, kernel = c(5, 5), num_filter = 32) pool2 <- mx.symbol.Pooling(data = conv2, pool_type = "avg", kernel = c(2, 2), stride = c(1, 1)) relu2 <- mx.symbol.Activation(data = pool2, act_type = "relu") flatten <- mx.symbol.Flatten(data = relu2) fc1 <- mx.symbol.FullyConnected(data = flatten, num_hidden = 120) fc21 <- mx.symbol.FullyConnected(data = fc1, num_hidden = 10) fc22 <- mx.symbol.FullyConnected(data = fc1, num_hidden = 10) fc23 <- mx.symbol.FullyConnected(data = fc1, num_hidden = 10) fc24 <- mx.symbol.FullyConnected(data = fc1, num_hidden = 10) fc2 <- mx.symbol.Concat(c(fc21, fc22, fc23, fc24), dim = 0, num.args = 4) label <- mx.symbol.transpose(data = label) label <- mx.symbol.Reshape(data = label, target_shape = c(0)) captcha_net <- mx.symbol.SoftmaxOutput(data = fc2, label = label, name = "softmax") mx.metric.acc2 <- mx.metric.custom("accuracy", function(label, pred) { ypred <- max.col(t(data.matrix(pred))) - 1 ypred <- matrix(ypred, nrow = nrow(label), ncol = ncol(label), byrow = TRUE) return(sum(colSums(data.matrix(label) == ypred) == 4) / ncol(label)) }) data.shape <- c(80, 30, 3) batch_size <- 40 train <- mx.io.ImageRecordIter( path.imgrec = "captcha_train.rec", path.imglist = "captcha_train.lst", batch.size = batch_size, label.width = 4, data.shape = data.shape, mean.img = "mean.bin" ) val <- mx.io.ImageRecordIter( path.imgrec = "captcha_test.rec", path.imglist = "captcha_test.lst", batch.size = batch_size, label.width = 4, data.shape = data.shape, mean.img = "mean.bin" ) mx.set.seed(42) model <- mx.model.FeedForward.create( X = train, eval.data = val, ctx = mx.gpu(), symbol = captcha_net, eval.metric = mx.metric.acc2, num.round = 10, learning.rate = 0.0001, momentum = 0.9, wd = 0.00001, batch.end.callback = mx.callback.log.train.metric(50), initializer = mx.init.Xavier(factor_type = "in", magnitude = 2.34), optimizer = "sgd", clip_gradient = 10 )