/* * Copyright 2015 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/base/bitbuffer.h" #include #include #include "webrtc/base/checks.h" namespace { // Returns the lowest (right-most) |bit_count| bits in |byte|. uint8_t LowestBits(uint8_t byte, size_t bit_count) { RTC_DCHECK_LE(bit_count, 8u); return byte & ((1 << bit_count) - 1); } // Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the // lowest bits (to the right). uint8_t HighestBits(uint8_t byte, size_t bit_count) { RTC_DCHECK_LE(bit_count, 8u); uint8_t shift = 8 - static_cast(bit_count); uint8_t mask = 0xFF << shift; return (byte & mask) >> shift; } // Returns the highest byte of |val| in a uint8_t. uint8_t HighestByte(uint64_t val) { return static_cast(val >> 56); } // Returns the result of writing partial data from |source|, of // |source_bit_count| size in the highest bits, to |target| at // |target_bit_offset| from the highest bit. uint8_t WritePartialByte(uint8_t source, size_t source_bit_count, uint8_t target, size_t target_bit_offset) { RTC_DCHECK(target_bit_offset < 8); RTC_DCHECK(source_bit_count < 9); RTC_DCHECK(source_bit_count <= (8 - target_bit_offset)); // Generate a mask for just the bits we're going to overwrite, so: uint8_t mask = // The number of bits we want, in the most significant bits... static_cast(0xFF << (8 - source_bit_count)) // ...shifted over to the target offset from the most signficant bit. >> target_bit_offset; // We want the target, with the bits we'll overwrite masked off, or'ed with // the bits from the source we want. return (target & ~mask) | (source >> target_bit_offset); } // Counts the number of bits used in the binary representation of val. size_t CountBits(uint64_t val) { size_t bit_count = 0; while (val != 0) { bit_count++; val >>= 1; } return bit_count; } } // namespace namespace rtc { BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count) : bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() { RTC_DCHECK(static_cast(byte_count_) <= std::numeric_limits::max()); } uint64_t BitBuffer::RemainingBitCount() const { return (static_cast(byte_count_) - byte_offset_) * 8 - bit_offset_; } bool BitBuffer::ReadUInt8(uint8_t* val) { uint32_t bit_val; if (!ReadBits(&bit_val, sizeof(uint8_t) * 8)) { return false; } RTC_DCHECK(bit_val <= std::numeric_limits::max()); *val = static_cast(bit_val); return true; } bool BitBuffer::ReadUInt16(uint16_t* val) { uint32_t bit_val; if (!ReadBits(&bit_val, sizeof(uint16_t) * 8)) { return false; } RTC_DCHECK(bit_val <= std::numeric_limits::max()); *val = static_cast(bit_val); return true; } bool BitBuffer::ReadUInt32(uint32_t* val) { return ReadBits(val, sizeof(uint32_t) * 8); } bool BitBuffer::PeekBits(uint32_t* val, size_t bit_count) { if (!val || bit_count > RemainingBitCount() || bit_count > 32) { return false; } const uint8_t* bytes = bytes_ + byte_offset_; size_t remaining_bits_in_current_byte = 8 - bit_offset_; uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte); // If we're reading fewer bits than what's left in the current byte, just // return the portion of this byte that we need. if (bit_count < remaining_bits_in_current_byte) { *val = HighestBits(bits, bit_offset_ + bit_count); return true; } // Otherwise, subtract what we've read from the bit count and read as many // full bytes as we can into bits. bit_count -= remaining_bits_in_current_byte; while (bit_count >= 8) { bits = (bits << 8) | *bytes++; bit_count -= 8; } // Whatever we have left is smaller than a byte, so grab just the bits we need // and shift them into the lowest bits. if (bit_count > 0) { bits <<= bit_count; bits |= HighestBits(*bytes, bit_count); } *val = bits; return true; } bool BitBuffer::ReadBits(uint32_t* val, size_t bit_count) { return PeekBits(val, bit_count) && ConsumeBits(bit_count); } bool BitBuffer::ConsumeBytes(size_t byte_count) { return ConsumeBits(byte_count * 8); } bool BitBuffer::ConsumeBits(size_t bit_count) { if (bit_count > RemainingBitCount()) { return false; } byte_offset_ += (bit_offset_ + bit_count) / 8; bit_offset_ = (bit_offset_ + bit_count) % 8; return true; } bool BitBuffer::ReadExponentialGolomb(uint32_t* val) { if (!val) { return false; } // Store off the current byte/bit offset, in case we want to restore them due // to a failed parse. size_t original_byte_offset = byte_offset_; size_t original_bit_offset = bit_offset_; // Count the number of leading 0 bits by peeking/consuming them one at a time. size_t zero_bit_count = 0; uint32_t peeked_bit; while (PeekBits(&peeked_bit, 1) && peeked_bit == 0) { zero_bit_count++; ConsumeBits(1); } // We should either be at the end of the stream, or the next bit should be 1. RTC_DCHECK(!PeekBits(&peeked_bit, 1) || peeked_bit == 1); // The bit count of the value is the number of zeros + 1. Make sure that many // bits fits in a uint32_t and that we have enough bits left for it, and then // read the value. size_t value_bit_count = zero_bit_count + 1; if (value_bit_count > 32 || !ReadBits(val, value_bit_count)) { RTC_CHECK(Seek(original_byte_offset, original_bit_offset)); return false; } *val -= 1; return true; } bool BitBuffer::ReadSignedExponentialGolomb(int32_t* val) { uint32_t unsigned_val; if (!ReadExponentialGolomb(&unsigned_val)) { return false; } if ((unsigned_val & 1) == 0) { *val = -static_cast(unsigned_val / 2); } else { *val = (unsigned_val + 1) / 2; } return true; } void BitBuffer::GetCurrentOffset( size_t* out_byte_offset, size_t* out_bit_offset) { RTC_CHECK(out_byte_offset != NULL); RTC_CHECK(out_bit_offset != NULL); *out_byte_offset = byte_offset_; *out_bit_offset = bit_offset_; } bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) { if (byte_offset > byte_count_ || bit_offset > 7 || (byte_offset == byte_count_ && bit_offset > 0)) { return false; } byte_offset_ = byte_offset; bit_offset_ = bit_offset; return true; } BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count) : BitBuffer(bytes, byte_count), writable_bytes_(bytes) { } bool BitBufferWriter::WriteUInt8(uint8_t val) { return WriteBits(val, sizeof(uint8_t) * 8); } bool BitBufferWriter::WriteUInt16(uint16_t val) { return WriteBits(val, sizeof(uint16_t) * 8); } bool BitBufferWriter::WriteUInt32(uint32_t val) { return WriteBits(val, sizeof(uint32_t) * 8); } bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) { if (bit_count > RemainingBitCount()) { return false; } size_t total_bits = bit_count; // For simplicity, push the bits we want to read from val to the highest bits. val <<= (sizeof(uint64_t) * 8 - bit_count); uint8_t* bytes = writable_bytes_ + byte_offset_; // The first byte is relatively special; the bit offset to write to may put us // in the middle of the byte, and the total bit count to write may require we // save the bits at the end of the byte. size_t remaining_bits_in_current_byte = 8 - bit_offset_; size_t bits_in_first_byte = std::min(bit_count, remaining_bits_in_current_byte); *bytes = WritePartialByte( HighestByte(val), bits_in_first_byte, *bytes, bit_offset_); if (bit_count <= remaining_bits_in_current_byte) { // Nothing left to write, so quit early. return ConsumeBits(total_bits); } // Subtract what we've written from the bit count, shift it off the value, and // write the remaining full bytes. val <<= bits_in_first_byte; bytes++; bit_count -= bits_in_first_byte; while (bit_count >= 8) { *bytes++ = HighestByte(val); val <<= 8; bit_count -= 8; } // Last byte may also be partial, so write the remaining bits from the top of // val. if (bit_count > 0) { *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0); } // All done! Consume the bits we've written. return ConsumeBits(total_bits); } bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) { // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t // when encoded, so don't support writing it either. if (val == std::numeric_limits::max()) { return false; } uint64_t val_to_encode = static_cast(val) + 1; // We need to write CountBits(val+1) 0s and then val+1. Since val (as a // uint64_t) has leading zeros, we can just write the total golomb encoded // size worth of bits, knowing the value will appear last. return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1); } } // namespace rtc