/***************************************************************************** * encoder.c: top-level encoder functions ***************************************************************************** * Copyright (C) 2003-2021 x264 project * * Authors: Laurent Aimar * Loren Merritt * Fiona Glaser * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at licensing@x264.com. *****************************************************************************/ #include "common/common.h" #include "set.h" #include "analyse.h" #include "ratecontrol.h" #include "macroblock.h" #include "me.h" #if HAVE_INTEL_DISPATCHER #include "extras/intel_dispatcher.h" #endif //#define DEBUG_MB_TYPE #define bs_write_ue bs_write_ue_big // forward declaration needed for template usage void x264_nal_encode( x264_t *h, uint8_t *dst, x264_nal_t *nal ); void x264_macroblock_cache_load_progressive( x264_t *h, int i_mb_x, int i_mb_y ); static int encoder_frame_end( x264_t *h, x264_t *thread_current, x264_nal_t **pp_nal, int *pi_nal, x264_picture_t *pic_out ); /**************************************************************************** * ******************************* x264 libs ********************************** * ****************************************************************************/ static double calc_psnr( double sqe, double size ) { double mse = sqe / (PIXEL_MAX*PIXEL_MAX * size); if( mse <= 0.0000000001 ) /* Max 100dB */ return 100; return -10.0 * log10( mse ); } static double calc_ssim_db( double ssim ) { double inv_ssim = 1 - ssim; if( inv_ssim <= 0.0000000001 ) /* Max 100dB */ return 100; return -10.0 * log10( inv_ssim ); } static int threadpool_wait_all( x264_t *h ) { for( int i = 0; i < h->param.i_threads; i++ ) if( h->thread[i]->b_thread_active ) { h->thread[i]->b_thread_active = 0; if( (intptr_t)x264_threadpool_wait( h->threadpool, h->thread[i] ) < 0 ) return -1; } return 0; } static void frame_dump( x264_t *h ) { FILE *f = x264_fopen( h->param.psz_dump_yuv, "r+b" ); if( !f ) return; /* Wait for the threads to finish deblocking */ if( h->param.b_sliced_threads ) threadpool_wait_all( h ); /* Write the frame in display order */ int frame_size = FRAME_SIZE( h->param.i_height * h->param.i_width * SIZEOF_PIXEL ); if( !fseek( f, (int64_t)h->fdec->i_frame * frame_size, SEEK_SET ) ) { for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ ) for( int y = 0; y < h->param.i_height; y++ ) fwrite( &h->fdec->plane[p][y*h->fdec->i_stride[p]], SIZEOF_PIXEL, h->param.i_width, f ); if( CHROMA_FORMAT == CHROMA_420 || CHROMA_FORMAT == CHROMA_422 ) { int cw = h->param.i_width>>1; int ch = h->param.i_height>>CHROMA_V_SHIFT; pixel *planeu = x264_malloc( 2 * (cw*ch*SIZEOF_PIXEL + 32) ); if( planeu ) { pixel *planev = planeu + cw*ch + 32/SIZEOF_PIXEL; h->mc.plane_copy_deinterleave( planeu, cw, planev, cw, h->fdec->plane[1], h->fdec->i_stride[1], cw, ch ); fwrite( planeu, 1, cw*ch*SIZEOF_PIXEL, f ); fwrite( planev, 1, cw*ch*SIZEOF_PIXEL, f ); x264_free( planeu ); } } } fclose( f ); } /* Fill "default" values */ static void slice_header_init( x264_t *h, x264_slice_header_t *sh, x264_sps_t *sps, x264_pps_t *pps, int i_idr_pic_id, int i_frame, int i_qp ) { x264_param_t *param = &h->param; /* First we fill all fields */ sh->sps = sps; sh->pps = pps; sh->i_first_mb = 0; sh->i_last_mb = h->mb.i_mb_count - 1; sh->i_pps_id = pps->i_id; sh->i_frame_num = i_frame; sh->b_mbaff = PARAM_INTERLACED; sh->b_field_pic = 0; /* no field support for now */ sh->b_bottom_field = 0; /* not yet used */ sh->i_idr_pic_id = i_idr_pic_id; /* poc stuff, fixed later */ sh->i_poc = 0; sh->i_delta_poc_bottom = 0; sh->i_delta_poc[0] = 0; sh->i_delta_poc[1] = 0; sh->i_redundant_pic_cnt = 0; h->mb.b_direct_auto_write = h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO && h->param.i_bframe && ( h->param.rc.b_stat_write || !h->param.rc.b_stat_read ); if( !h->mb.b_direct_auto_read && sh->i_type == SLICE_TYPE_B ) { if( h->fref[1][0]->i_poc_l0ref0 == h->fref[0][0]->i_poc ) { if( h->mb.b_direct_auto_write ) sh->b_direct_spatial_mv_pred = ( h->stat.i_direct_score[1] > h->stat.i_direct_score[0] ); else sh->b_direct_spatial_mv_pred = ( param->analyse.i_direct_mv_pred == X264_DIRECT_PRED_SPATIAL ); } else { h->mb.b_direct_auto_write = 0; sh->b_direct_spatial_mv_pred = 1; } } /* else b_direct_spatial_mv_pred was read from the 2pass statsfile */ sh->b_num_ref_idx_override = 0; sh->i_num_ref_idx_l0_active = 1; sh->i_num_ref_idx_l1_active = 1; sh->b_ref_pic_list_reordering[0] = h->b_ref_reorder[0]; sh->b_ref_pic_list_reordering[1] = h->b_ref_reorder[1]; /* If the ref list isn't in the default order, construct reordering header */ for( int list = 0; list < 2; list++ ) { if( sh->b_ref_pic_list_reordering[list] ) { int pred_frame_num = i_frame; for( int i = 0; i < h->i_ref[list]; i++ ) { int diff = h->fref[list][i]->i_frame_num - pred_frame_num; sh->ref_pic_list_order[list][i].idc = ( diff > 0 ); sh->ref_pic_list_order[list][i].arg = (abs(diff) - 1) & ((1 << sps->i_log2_max_frame_num) - 1); pred_frame_num = h->fref[list][i]->i_frame_num; } } } sh->i_cabac_init_idc = param->i_cabac_init_idc; sh->i_qp = SPEC_QP(i_qp); sh->i_qp_delta = sh->i_qp - pps->i_pic_init_qp; sh->b_sp_for_swidth = 0; sh->i_qs_delta = 0; int deblock_thresh = i_qp + 2 * X264_MIN(param->i_deblocking_filter_alphac0, param->i_deblocking_filter_beta); /* If effective qp <= 15, deblocking would have no effect anyway */ if( param->b_deblocking_filter && (h->mb.b_variable_qp || 15 < deblock_thresh ) ) sh->i_disable_deblocking_filter_idc = param->b_sliced_threads ? 2 : 0; else sh->i_disable_deblocking_filter_idc = 1; sh->i_alpha_c0_offset = param->i_deblocking_filter_alphac0 << 1; sh->i_beta_offset = param->i_deblocking_filter_beta << 1; } static void slice_header_write( bs_t *s, x264_slice_header_t *sh, int i_nal_ref_idc ) { if( sh->b_mbaff ) { int first_x = sh->i_first_mb % sh->sps->i_mb_width; int first_y = sh->i_first_mb / sh->sps->i_mb_width; assert( (first_y&1) == 0 ); bs_write_ue( s, (2*first_x + sh->sps->i_mb_width*(first_y&~1) + (first_y&1)) >> 1 ); } else bs_write_ue( s, sh->i_first_mb ); bs_write_ue( s, sh->i_type + 5 ); /* same type things */ bs_write_ue( s, sh->i_pps_id ); bs_write( s, sh->sps->i_log2_max_frame_num, sh->i_frame_num & ((1<sps->i_log2_max_frame_num)-1) ); if( !sh->sps->b_frame_mbs_only ) { bs_write1( s, sh->b_field_pic ); if( sh->b_field_pic ) bs_write1( s, sh->b_bottom_field ); } if( sh->i_idr_pic_id >= 0 ) /* NAL IDR */ bs_write_ue( s, sh->i_idr_pic_id ); if( sh->sps->i_poc_type == 0 ) { bs_write( s, sh->sps->i_log2_max_poc_lsb, sh->i_poc & ((1<sps->i_log2_max_poc_lsb)-1) ); if( sh->pps->b_pic_order && !sh->b_field_pic ) bs_write_se( s, sh->i_delta_poc_bottom ); } if( sh->pps->b_redundant_pic_cnt ) bs_write_ue( s, sh->i_redundant_pic_cnt ); if( sh->i_type == SLICE_TYPE_B ) bs_write1( s, sh->b_direct_spatial_mv_pred ); if( sh->i_type == SLICE_TYPE_P || sh->i_type == SLICE_TYPE_B ) { bs_write1( s, sh->b_num_ref_idx_override ); if( sh->b_num_ref_idx_override ) { bs_write_ue( s, sh->i_num_ref_idx_l0_active - 1 ); if( sh->i_type == SLICE_TYPE_B ) bs_write_ue( s, sh->i_num_ref_idx_l1_active - 1 ); } } /* ref pic list reordering */ if( sh->i_type != SLICE_TYPE_I ) { bs_write1( s, sh->b_ref_pic_list_reordering[0] ); if( sh->b_ref_pic_list_reordering[0] ) { for( int i = 0; i < sh->i_num_ref_idx_l0_active; i++ ) { bs_write_ue( s, sh->ref_pic_list_order[0][i].idc ); bs_write_ue( s, sh->ref_pic_list_order[0][i].arg ); } bs_write_ue( s, 3 ); } } if( sh->i_type == SLICE_TYPE_B ) { bs_write1( s, sh->b_ref_pic_list_reordering[1] ); if( sh->b_ref_pic_list_reordering[1] ) { for( int i = 0; i < sh->i_num_ref_idx_l1_active; i++ ) { bs_write_ue( s, sh->ref_pic_list_order[1][i].idc ); bs_write_ue( s, sh->ref_pic_list_order[1][i].arg ); } bs_write_ue( s, 3 ); } } sh->b_weighted_pred = 0; if( sh->pps->b_weighted_pred && sh->i_type == SLICE_TYPE_P ) { sh->b_weighted_pred = sh->weight[0][0].weightfn || sh->weight[0][1].weightfn || sh->weight[0][2].weightfn; /* pred_weight_table() */ bs_write_ue( s, sh->weight[0][0].i_denom ); /* luma_log2_weight_denom */ if( sh->sps->i_chroma_format_idc ) bs_write_ue( s, sh->weight[0][1].i_denom ); /* chroma_log2_weight_denom */ for( int i = 0; i < sh->i_num_ref_idx_l0_active; i++ ) { int luma_weight_l0_flag = !!sh->weight[i][0].weightfn; bs_write1( s, luma_weight_l0_flag ); if( luma_weight_l0_flag ) { bs_write_se( s, sh->weight[i][0].i_scale ); bs_write_se( s, sh->weight[i][0].i_offset ); } if( sh->sps->i_chroma_format_idc ) { int chroma_weight_l0_flag = sh->weight[i][1].weightfn || sh->weight[i][2].weightfn; bs_write1( s, chroma_weight_l0_flag ); if( chroma_weight_l0_flag ) { for( int j = 1; j < 3; j++ ) { bs_write_se( s, sh->weight[i][j].i_scale ); bs_write_se( s, sh->weight[i][j].i_offset ); } } } } } else if( sh->pps->b_weighted_bipred == 1 && sh->i_type == SLICE_TYPE_B ) { /* TODO */ } if( i_nal_ref_idc != 0 ) { if( sh->i_idr_pic_id >= 0 ) { bs_write1( s, 0 ); /* no output of prior pics flag */ bs_write1( s, 0 ); /* long term reference flag */ } else { bs_write1( s, sh->i_mmco_command_count > 0 ); /* adaptive_ref_pic_marking_mode_flag */ if( sh->i_mmco_command_count > 0 ) { for( int i = 0; i < sh->i_mmco_command_count; i++ ) { bs_write_ue( s, 1 ); /* mark short term ref as unused */ bs_write_ue( s, sh->mmco[i].i_difference_of_pic_nums - 1 ); } bs_write_ue( s, 0 ); /* end command list */ } } } if( sh->pps->b_cabac && sh->i_type != SLICE_TYPE_I ) bs_write_ue( s, sh->i_cabac_init_idc ); bs_write_se( s, sh->i_qp_delta ); /* slice qp delta */ if( sh->pps->b_deblocking_filter_control ) { bs_write_ue( s, sh->i_disable_deblocking_filter_idc ); if( sh->i_disable_deblocking_filter_idc != 1 ) { bs_write_se( s, sh->i_alpha_c0_offset >> 1 ); bs_write_se( s, sh->i_beta_offset >> 1 ); } } } /* If we are within a reasonable distance of the end of the memory allocated for the bitstream, */ /* reallocate, adding an arbitrary amount of space. */ static int bitstream_check_buffer_internal( x264_t *h, int size, int b_cabac, int i_nal ) { if( (b_cabac && (h->cabac.p_end - h->cabac.p < size)) || (h->out.bs.p_end - h->out.bs.p < size) ) { if( size > INT_MAX - h->out.i_bitstream ) return -1; int buf_size = h->out.i_bitstream + size; uint8_t *buf = x264_malloc( buf_size ); if( !buf ) return -1; int aligned_size = h->out.i_bitstream & ~15; h->mc.memcpy_aligned( buf, h->out.p_bitstream, aligned_size ); memcpy( buf + aligned_size, h->out.p_bitstream + aligned_size, h->out.i_bitstream - aligned_size ); intptr_t delta = buf - h->out.p_bitstream; h->out.bs.p_start += delta; h->out.bs.p += delta; h->out.bs.p_end = buf + buf_size; h->cabac.p_start += delta; h->cabac.p += delta; h->cabac.p_end = buf + buf_size; for( int i = 0; i <= i_nal; i++ ) h->out.nal[i].p_payload += delta; x264_free( h->out.p_bitstream ); h->out.p_bitstream = buf; h->out.i_bitstream = buf_size; } return 0; } static int bitstream_check_buffer( x264_t *h ) { int max_row_size = (2500 << SLICE_MBAFF) * h->mb.i_mb_width; return bitstream_check_buffer_internal( h, max_row_size, h->param.b_cabac, h->out.i_nal ); } static int bitstream_check_buffer_filler( x264_t *h, int filler ) { filler += 32; // add padding for safety return bitstream_check_buffer_internal( h, filler, 0, -1 ); } #if HAVE_THREAD static void encoder_thread_init( x264_t *h ) { if( h->param.i_sync_lookahead ) x264_lower_thread_priority( 10 ); } #endif /**************************************************************************** * **************************************************************************** ****************************** External API********************************* **************************************************************************** * ****************************************************************************/ static int validate_parameters( x264_t *h, int b_open ) { if( !h->param.pf_log ) { x264_log_internal( X264_LOG_ERROR, "pf_log not set! did you forget to call x264_param_default?\n" ); return -1; } #if HAVE_MMX if( b_open ) { uint32_t cpuflags = x264_cpu_detect(); int fail = 0; #ifdef __SSE__ if( !(cpuflags & X264_CPU_SSE) ) { x264_log( h, X264_LOG_ERROR, "your cpu does not support SSE1, but x264 was compiled with asm\n"); fail = 1; } #else if( !(cpuflags & X264_CPU_MMX2) ) { x264_log( h, X264_LOG_ERROR, "your cpu does not support MMXEXT, but x264 was compiled with asm\n"); fail = 1; } #endif if( fail ) { x264_log( h, X264_LOG_ERROR, "to run x264, recompile without asm (configure --disable-asm)\n"); return -1; } } #endif #if HAVE_INTERLACED h->param.b_interlaced = !!PARAM_INTERLACED; #else if( h->param.b_interlaced ) { x264_log( h, X264_LOG_ERROR, "not compiled with interlaced support\n" ); return -1; } #endif #define MAX_RESOLUTION 16384 if( h->param.i_width <= 0 || h->param.i_height <= 0 || h->param.i_width > MAX_RESOLUTION || h->param.i_height > MAX_RESOLUTION ) { x264_log( h, X264_LOG_ERROR, "invalid width x height (%dx%d)\n", h->param.i_width, h->param.i_height ); return -1; } int i_csp = h->param.i_csp & X264_CSP_MASK; #if X264_CHROMA_FORMAT if( CHROMA_FORMAT != CHROMA_400 && i_csp == X264_CSP_I400 ) { x264_log( h, X264_LOG_ERROR, "not compiled with 4:0:0 support\n" ); return -1; } else if( CHROMA_FORMAT != CHROMA_420 && i_csp >= X264_CSP_I420 && i_csp < X264_CSP_I422 ) { x264_log( h, X264_LOG_ERROR, "not compiled with 4:2:0 support\n" ); return -1; } else if( CHROMA_FORMAT != CHROMA_422 && i_csp >= X264_CSP_I422 && i_csp < X264_CSP_I444 ) { x264_log( h, X264_LOG_ERROR, "not compiled with 4:2:2 support\n" ); return -1; } else if( CHROMA_FORMAT != CHROMA_444 && i_csp >= X264_CSP_I444 && i_csp <= X264_CSP_RGB ) { x264_log( h, X264_LOG_ERROR, "not compiled with 4:4:4 support\n" ); return -1; } #endif if( i_csp <= X264_CSP_NONE || i_csp >= X264_CSP_MAX ) { x264_log( h, X264_LOG_ERROR, "invalid CSP (only I400/I420/YV12/NV12/NV21/I422/YV16/NV16/YUYV/UYVY/" "I444/YV24/BGR/BGRA/RGB supported)\n" ); return -1; } int w_mod = 1; int h_mod = 1 << (PARAM_INTERLACED || h->param.b_fake_interlaced); if( i_csp == X264_CSP_I400 ) { h->param.analyse.i_chroma_qp_offset = 0; h->param.analyse.b_chroma_me = 0; h->param.vui.i_colmatrix = 2; /* undefined */ } else if( i_csp < X264_CSP_I444 ) { w_mod = 2; if( i_csp < X264_CSP_I422 ) h_mod *= 2; } if( h->param.i_width % w_mod ) { x264_log( h, X264_LOG_ERROR, "width not divisible by %d (%dx%d)\n", w_mod, h->param.i_width, h->param.i_height ); return -1; } if( h->param.i_height % h_mod ) { x264_log( h, X264_LOG_ERROR, "height not divisible by %d (%dx%d)\n", h_mod, h->param.i_width, h->param.i_height ); return -1; } if( h->param.crop_rect.i_left < 0 || h->param.crop_rect.i_left >= h->param.i_width || h->param.crop_rect.i_right < 0 || h->param.crop_rect.i_right >= h->param.i_width || h->param.crop_rect.i_top < 0 || h->param.crop_rect.i_top >= h->param.i_height || h->param.crop_rect.i_bottom < 0 || h->param.crop_rect.i_bottom >= h->param.i_height || h->param.crop_rect.i_left + h->param.crop_rect.i_right >= h->param.i_width || h->param.crop_rect.i_top + h->param.crop_rect.i_bottom >= h->param.i_height ) { x264_log( h, X264_LOG_ERROR, "invalid crop-rect %d,%d,%d,%d\n", h->param.crop_rect.i_left, h->param.crop_rect.i_top, h->param.crop_rect.i_right, h->param.crop_rect.i_bottom ); return -1; } if( h->param.crop_rect.i_left % w_mod || h->param.crop_rect.i_right % w_mod || h->param.crop_rect.i_top % h_mod || h->param.crop_rect.i_bottom % h_mod ) { x264_log( h, X264_LOG_ERROR, "crop-rect %d,%d,%d,%d not divisible by %dx%d\n", h->param.crop_rect.i_left, h->param.crop_rect.i_top, h->param.crop_rect.i_right, h->param.crop_rect.i_bottom, w_mod, h_mod ); return -1; } if( h->param.vui.i_sar_width <= 0 || h->param.vui.i_sar_height <= 0 ) { h->param.vui.i_sar_width = 0; h->param.vui.i_sar_height = 0; } if( h->param.i_threads == X264_THREADS_AUTO ) { h->param.i_threads = x264_cpu_num_processors() * (h->param.b_sliced_threads?2:3)/2; /* Avoid too many threads as they don't improve performance and * complicate VBV. Capped at an arbitrary 2 rows per thread. */ int max_threads = X264_MAX( 1, (h->param.i_height+15)/16 / 2 ); h->param.i_threads = X264_MIN( h->param.i_threads, max_threads ); } int max_sliced_threads = X264_MAX( 1, (h->param.i_height+15)/16 / 4 ); if( h->param.i_threads > 1 ) { #if !HAVE_THREAD x264_log( h, X264_LOG_WARNING, "not compiled with thread support!\n"); h->param.i_threads = 1; #endif /* Avoid absurdly small thread slices as they can reduce performance * and VBV compliance. Capped at an arbitrary 4 rows per thread. */ if( h->param.b_sliced_threads ) h->param.i_threads = X264_MIN( h->param.i_threads, max_sliced_threads ); } h->param.i_threads = x264_clip3( h->param.i_threads, 1, X264_THREAD_MAX ); if( h->param.i_threads == 1 ) { h->param.b_sliced_threads = 0; h->param.i_lookahead_threads = 1; } h->i_thread_frames = h->param.b_sliced_threads ? 1 : h->param.i_threads; if( h->i_thread_frames > 1 ) h->param.nalu_process = NULL; if( h->param.b_opencl ) { #if !HAVE_OPENCL x264_log( h, X264_LOG_WARNING, "OpenCL: not compiled with OpenCL support, disabling\n" ); h->param.b_opencl = 0; #elif BIT_DEPTH > 8 x264_log( h, X264_LOG_WARNING, "OpenCL lookahead does not support high bit depth, disabling opencl\n" ); h->param.b_opencl = 0; #else if( h->param.i_width < 32 || h->param.i_height < 32 ) { x264_log( h, X264_LOG_WARNING, "OpenCL: frame size is too small, disabling opencl\n" ); h->param.b_opencl = 0; } #endif if( h->param.opencl_device_id && h->param.i_opencl_device ) { x264_log( h, X264_LOG_WARNING, "OpenCL: device id and device skip count configured; dropping skip\n" ); h->param.i_opencl_device = 0; } } h->param.i_keyint_max = x264_clip3( h->param.i_keyint_max, 1, X264_KEYINT_MAX_INFINITE ); if( h->param.i_keyint_max == 1 ) { h->param.b_intra_refresh = 0; h->param.analyse.i_weighted_pred = 0; h->param.i_frame_reference = 1; h->param.i_dpb_size = 1; } if( h->param.i_frame_packing < -1 || h->param.i_frame_packing > 7 ) { x264_log( h, X264_LOG_WARNING, "ignoring unknown frame packing value\n" ); h->param.i_frame_packing = -1; } if( h->param.i_frame_packing == 7 && ((h->param.i_width - h->param.crop_rect.i_left - h->param.crop_rect.i_right) % 3 || (h->param.i_height - h->param.crop_rect.i_top - h->param.crop_rect.i_bottom) % 3) ) { x264_log( h, X264_LOG_ERROR, "cropped resolution %dx%d not compatible with tile format frame packing\n", h->param.i_width - h->param.crop_rect.i_left - h->param.crop_rect.i_right, h->param.i_height - h->param.crop_rect.i_top - h->param.crop_rect.i_bottom ); return -1; } if( h->param.mastering_display.b_mastering_display ) { if( h->param.mastering_display.i_green_x > UINT16_MAX || h->param.mastering_display.i_green_x < 0 || h->param.mastering_display.i_green_y > UINT16_MAX || h->param.mastering_display.i_green_y < 0 || h->param.mastering_display.i_blue_x > UINT16_MAX || h->param.mastering_display.i_blue_x < 0 || h->param.mastering_display.i_blue_y > UINT16_MAX || h->param.mastering_display.i_blue_y < 0 || h->param.mastering_display.i_red_x > UINT16_MAX || h->param.mastering_display.i_red_x < 0 || h->param.mastering_display.i_red_y > UINT16_MAX || h->param.mastering_display.i_red_y < 0 || h->param.mastering_display.i_white_x > UINT16_MAX || h->param.mastering_display.i_white_x < 0 || h->param.mastering_display.i_white_y > UINT16_MAX || h->param.mastering_display.i_white_y < 0 ) { x264_log( h, X264_LOG_ERROR, "mastering display xy coordinates out of range [0,%u]\n", UINT16_MAX ); return -1; } if( h->param.mastering_display.i_display_max > UINT32_MAX || h->param.mastering_display.i_display_max < 0 || h->param.mastering_display.i_display_min > UINT32_MAX || h->param.mastering_display.i_display_min < 0 ) { x264_log( h, X264_LOG_ERROR, "mastering display brightness out of range [0,%u]\n", UINT32_MAX ); return -1; } if( h->param.mastering_display.i_display_min == 50000 && h->param.mastering_display.i_display_max == 50000 ) { x264_log( h, X264_LOG_ERROR, "mastering display min and max brightness cannot both be 50000\n" ); return -1; } } if( h->param.content_light_level.b_cll && (h->param.content_light_level.i_max_cll > UINT16_MAX || h->param.content_light_level.i_max_cll < 0 || h->param.content_light_level.i_max_fall > UINT16_MAX || h->param.content_light_level.i_max_fall < 0) ) { x264_log( h, X264_LOG_ERROR, "content light levels out of range [0,%u]\n", UINT16_MAX ); return -1; } /* Detect default ffmpeg settings and terminate with an error. */ if( b_open ) { int score = 0; score += h->param.analyse.i_me_range == 0; score += h->param.rc.i_qp_step == 3; score += h->param.i_keyint_max == 12; score += h->param.rc.i_qp_min == 2; score += h->param.rc.i_qp_max == 31; score += h->param.rc.f_qcompress == 0.5; score += fabs(h->param.rc.f_ip_factor - 1.25) < 0.01; score += fabs(h->param.rc.f_pb_factor - 1.25) < 0.01; score += h->param.analyse.inter == 0 && h->param.analyse.i_subpel_refine == 8; if( score >= 5 ) { x264_log( h, X264_LOG_ERROR, "broken ffmpeg default settings detected\n" ); x264_log( h, X264_LOG_ERROR, "use an encoding preset (e.g. -vpre medium)\n" ); x264_log( h, X264_LOG_ERROR, "preset usage: -vpre -vpre \n" ); x264_log( h, X264_LOG_ERROR, "speed presets are listed in x264 --help\n" ); x264_log( h, X264_LOG_ERROR, "profile is optional; x264 defaults to high\n" ); return -1; } } if( h->param.rc.i_rc_method < 0 || h->param.rc.i_rc_method > 2 ) { x264_log( h, X264_LOG_ERROR, "no ratecontrol method specified\n" ); return -1; } if( PARAM_INTERLACED ) h->param.b_pic_struct = 1; if( h->param.i_avcintra_class ) { if( BIT_DEPTH != 10 ) { x264_log( h, X264_LOG_ERROR, "%2d-bit AVC-Intra is not widely compatible\n", BIT_DEPTH ); x264_log( h, X264_LOG_ERROR, "10-bit x264 is required to encode AVC-Intra\n" ); return -1; } int type = h->param.i_avcintra_class == 200 ? 2 : h->param.i_avcintra_class == 100 ? 1 : h->param.i_avcintra_class == 50 ? 0 : -1; if( type < 0 ) { x264_log( h, X264_LOG_ERROR, "Invalid AVC-Intra class\n" ); return -1; } /* [50/100/200][res][fps] */ static const struct { uint16_t fps_num; uint16_t fps_den; uint8_t interlaced; uint16_t frame_size; const uint8_t *cqm_4ic; const uint8_t *cqm_8iy; } avcintra_lut[3][2][7] = { {{{ 60000, 1001, 0, 912, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }, { 50, 1, 0, 1100, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }, { 30000, 1001, 0, 912, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }, { 25, 1, 0, 1100, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }, { 24000, 1001, 0, 912, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }}, {{ 30000, 1001, 1, 1820, x264_cqm_avci50_4ic, x264_cqm_avci50_1080i_8iy }, { 25, 1, 1, 2196, x264_cqm_avci50_4ic, x264_cqm_avci50_1080i_8iy }, { 60000, 1001, 0, 1820, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }, { 30000, 1001, 0, 1820, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }, { 50, 1, 0, 2196, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }, { 25, 1, 0, 2196, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }, { 24000, 1001, 0, 1820, x264_cqm_avci50_4ic, x264_cqm_avci50_p_8iy }}}, {{{ 60000, 1001, 0, 1848, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }, { 50, 1, 0, 2224, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }, { 30000, 1001, 0, 1848, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }, { 25, 1, 0, 2224, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }, { 24000, 1001, 0, 1848, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }}, {{ 30000, 1001, 1, 3692, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080i_8iy }, { 25, 1, 1, 4444, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080i_8iy }, { 60000, 1001, 0, 3692, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }, { 30000, 1001, 0, 3692, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }, { 50, 1, 0, 4444, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }, { 25, 1, 0, 4444, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }, { 24000, 1001, 0, 3692, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }}}, {{{ 60000, 1001, 0, 3724, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }, { 50, 1, 0, 4472, x264_cqm_avci100_720p_4ic, x264_cqm_avci100_720p_8iy }}, {{ 30000, 1001, 1, 7444, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080i_8iy }, { 25, 1, 1, 8940, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080i_8iy }, { 60000, 1001, 0, 7444, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }, { 30000, 1001, 0, 7444, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }, { 50, 1, 0, 8940, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }, { 25, 1, 0, 8940, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }, { 24000, 1001, 0, 7444, x264_cqm_avci100_1080_4ic, x264_cqm_avci100_1080p_8iy }}} }; int res = -1; if( i_csp >= X264_CSP_I420 && i_csp < X264_CSP_I422 && !type ) { if( h->param.i_width == 1440 && h->param.i_height == 1080 ) res = 1; else if( h->param.i_width == 960 && h->param.i_height == 720 ) res = 0; } else if( i_csp >= X264_CSP_I422 && i_csp < X264_CSP_I444 && type ) { if( h->param.i_width == 1920 && h->param.i_height == 1080 ) res = 1; else if( h->param.i_width == 1280 && h->param.i_height == 720 ) res = 0; } else { x264_log( h, X264_LOG_ERROR, "Invalid colorspace for AVC-Intra %d\n", h->param.i_avcintra_class ); return -1; } if( res < 0 ) { x264_log( h, X264_LOG_ERROR, "Resolution %dx%d invalid for AVC-Intra %d\n", h->param.i_width, h->param.i_height, h->param.i_avcintra_class ); return -1; } if( h->param.nalu_process ) { x264_log( h, X264_LOG_ERROR, "nalu_process is not supported in AVC-Intra mode\n" ); return -1; } if( !h->param.b_repeat_headers ) { x264_log( h, X264_LOG_ERROR, "Separate headers not supported in AVC-Intra mode\n" ); return -1; } int i; uint32_t fps_num = h->param.i_fps_num, fps_den = h->param.i_fps_den; x264_reduce_fraction( &fps_num, &fps_den ); for( i = 0; i < 7; i++ ) { if( avcintra_lut[type][res][i].fps_num == fps_num && avcintra_lut[type][res][i].fps_den == fps_den && avcintra_lut[type][res][i].interlaced == PARAM_INTERLACED ) { break; } } if( i == 7 ) { x264_log( h, X264_LOG_ERROR, "FPS %d/%d%c not compatible with AVC-Intra\n", h->param.i_fps_num, h->param.i_fps_den, PARAM_INTERLACED ? 'i' : 'p' ); return -1; } h->param.i_keyint_max = 1; h->param.b_intra_refresh = 0; h->param.analyse.i_weighted_pred = 0; h->param.i_frame_reference = 1; h->param.i_dpb_size = 1; h->param.b_bluray_compat = 0; h->param.b_vfr_input = 0; h->param.b_aud = 1; h->param.vui.i_chroma_loc = 0; h->param.i_nal_hrd = X264_NAL_HRD_NONE; h->param.b_deblocking_filter = 0; h->param.b_stitchable = 1; h->param.b_pic_struct = 0; h->param.analyse.b_transform_8x8 = 1; h->param.analyse.intra = X264_ANALYSE_I8x8; h->param.analyse.i_chroma_qp_offset = res && type ? 3 : 4; h->param.b_cabac = !type; h->param.rc.i_vbv_buffer_size = avcintra_lut[type][res][i].frame_size; h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate = h->param.rc.i_vbv_buffer_size * fps_num / fps_den; h->param.rc.i_rc_method = X264_RC_ABR; h->param.rc.f_vbv_buffer_init = 1.0; h->param.rc.b_filler = 1; h->param.i_cqm_preset = X264_CQM_CUSTOM; memcpy( h->param.cqm_4iy, x264_cqm_jvt4i, sizeof(h->param.cqm_4iy) ); memcpy( h->param.cqm_4ic, avcintra_lut[type][res][i].cqm_4ic, sizeof(h->param.cqm_4ic) ); memcpy( h->param.cqm_8iy, avcintra_lut[type][res][i].cqm_8iy, sizeof(h->param.cqm_8iy) ); /* Sony XAVC flavor much more simple */ if( h->param.i_avcintra_flavor == X264_AVCINTRA_FLAVOR_SONY ) { h->param.i_slice_count = 8; if( h->param.b_sliced_threads ) h->param.i_threads = h->param.i_slice_count; /* Sony XAVC unlike AVC-Intra doesn't seem to have a QP floor */ } else { /* Need exactly 10 slices of equal MB count... why? $deity knows... */ h->param.i_slice_max_mbs = ((h->param.i_width + 15) / 16) * ((h->param.i_height + 15) / 16) / 10; h->param.i_slice_max_size = 0; /* The slice structure only allows a maximum of 2 threads for 1080i/p * and 1 or 5 threads for 720p */ if( h->param.b_sliced_threads ) { if( res ) h->param.i_threads = X264_MIN( 2, h->param.i_threads ); else { h->param.i_threads = X264_MIN( 5, h->param.i_threads ); if( h->param.i_threads < 5 ) h->param.i_threads = 1; } } /* Official encoder doesn't appear to go under 13 * and Avid cannot handle negative QPs */ h->param.rc.i_qp_min = X264_MAX( h->param.rc.i_qp_min, QP_BD_OFFSET + 1 ); } if( type ) h->param.vui.i_sar_width = h->param.vui.i_sar_height = 1; else { h->param.vui.i_sar_width = 4; h->param.vui.i_sar_height = 3; } } h->param.rc.f_rf_constant = x264_clip3f( h->param.rc.f_rf_constant, -QP_BD_OFFSET, 51 ); h->param.rc.f_rf_constant_max = x264_clip3f( h->param.rc.f_rf_constant_max, -QP_BD_OFFSET, 51 ); h->param.rc.i_qp_constant = x264_clip3( h->param.rc.i_qp_constant, -1, QP_MAX ); h->param.analyse.i_subpel_refine = x264_clip3( h->param.analyse.i_subpel_refine, 0, 11 ); h->param.rc.f_ip_factor = x264_clip3f( h->param.rc.f_ip_factor, 0.01, 10.0 ); h->param.rc.f_pb_factor = x264_clip3f( h->param.rc.f_pb_factor, 0.01, 10.0 ); if( h->param.rc.i_rc_method == X264_RC_CRF ) { h->param.rc.i_qp_constant = h->param.rc.f_rf_constant + QP_BD_OFFSET; h->param.rc.i_bitrate = 0; } if( b_open && (h->param.rc.i_rc_method == X264_RC_CQP || h->param.rc.i_rc_method == X264_RC_CRF) && h->param.rc.i_qp_constant == 0 ) { h->mb.b_lossless = 1; h->param.i_cqm_preset = X264_CQM_FLAT; h->param.psz_cqm_file = NULL; h->param.rc.i_rc_method = X264_RC_CQP; h->param.rc.f_ip_factor = 1; h->param.rc.f_pb_factor = 1; h->param.analyse.b_psnr = 0; h->param.analyse.b_ssim = 0; h->param.analyse.i_chroma_qp_offset = 0; h->param.analyse.i_trellis = 0; h->param.analyse.b_fast_pskip = 0; h->param.analyse.i_noise_reduction = 0; h->param.analyse.b_psy = 0; h->param.i_bframe = 0; /* 8x8dct is not useful without RD in CAVLC lossless */ if( !h->param.b_cabac && h->param.analyse.i_subpel_refine < 6 ) h->param.analyse.b_transform_8x8 = 0; } if( h->param.rc.i_rc_method == X264_RC_CQP ) { float qp_p = h->param.rc.i_qp_constant; float qp_i = qp_p - 6*log2f( h->param.rc.f_ip_factor ); float qp_b = qp_p + 6*log2f( h->param.rc.f_pb_factor ); if( qp_p < 0 ) { x264_log( h, X264_LOG_ERROR, "qp not specified\n" ); return -1; } h->param.rc.i_qp_min = x264_clip3( (int)(X264_MIN3( qp_p, qp_i, qp_b )), 0, QP_MAX ); h->param.rc.i_qp_max = x264_clip3( (int)(X264_MAX3( qp_p, qp_i, qp_b ) + .999), 0, QP_MAX ); h->param.rc.i_aq_mode = 0; h->param.rc.b_mb_tree = 0; h->param.rc.i_bitrate = 0; } h->param.rc.i_qp_max = x264_clip3( h->param.rc.i_qp_max, 0, QP_MAX ); h->param.rc.i_qp_min = x264_clip3( h->param.rc.i_qp_min, 0, h->param.rc.i_qp_max ); h->param.rc.i_qp_step = x264_clip3( h->param.rc.i_qp_step, 2, QP_MAX ); h->param.rc.i_bitrate = x264_clip3( h->param.rc.i_bitrate, 0, 2000000 ); if( h->param.rc.i_rc_method == X264_RC_ABR && !h->param.rc.i_bitrate ) { x264_log( h, X264_LOG_ERROR, "bitrate not specified\n" ); return -1; } h->param.rc.i_vbv_buffer_size = x264_clip3( h->param.rc.i_vbv_buffer_size, 0, 2000000 ); h->param.rc.i_vbv_max_bitrate = x264_clip3( h->param.rc.i_vbv_max_bitrate, 0, 2000000 ); h->param.rc.f_vbv_buffer_init = x264_clip3f( h->param.rc.f_vbv_buffer_init, 0, 2000000 ); if( h->param.rc.i_vbv_buffer_size ) { if( h->param.rc.i_rc_method == X264_RC_CQP ) { x264_log( h, X264_LOG_WARNING, "VBV is incompatible with constant QP, ignored.\n" ); h->param.rc.i_vbv_max_bitrate = 0; h->param.rc.i_vbv_buffer_size = 0; } else if( h->param.rc.i_vbv_max_bitrate == 0 ) { if( h->param.rc.i_rc_method == X264_RC_ABR ) { x264_log( h, X264_LOG_WARNING, "VBV maxrate unspecified, assuming CBR\n" ); h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate; } else { x264_log( h, X264_LOG_WARNING, "VBV bufsize set but maxrate unspecified, ignored\n" ); h->param.rc.i_vbv_buffer_size = 0; } } else if( h->param.rc.i_vbv_max_bitrate < h->param.rc.i_bitrate && h->param.rc.i_rc_method == X264_RC_ABR ) { x264_log( h, X264_LOG_WARNING, "max bitrate less than average bitrate, assuming CBR\n" ); h->param.rc.i_bitrate = h->param.rc.i_vbv_max_bitrate; } } else if( h->param.rc.i_vbv_max_bitrate ) { x264_log( h, X264_LOG_WARNING, "VBV maxrate specified, but no bufsize, ignored\n" ); h->param.rc.i_vbv_max_bitrate = 0; } h->param.i_slice_max_size = X264_MAX( h->param.i_slice_max_size, 0 ); h->param.i_slice_max_mbs = X264_MAX( h->param.i_slice_max_mbs, 0 ); h->param.i_slice_min_mbs = X264_MAX( h->param.i_slice_min_mbs, 0 ); if( h->param.i_slice_max_mbs ) h->param.i_slice_min_mbs = X264_MIN( h->param.i_slice_min_mbs, h->param.i_slice_max_mbs/2 ); else if( !h->param.i_slice_max_size ) h->param.i_slice_min_mbs = 0; if( PARAM_INTERLACED && h->param.i_slice_min_mbs ) { x264_log( h, X264_LOG_WARNING, "interlace + slice-min-mbs is not implemented\n" ); h->param.i_slice_min_mbs = 0; } int mb_width = (h->param.i_width+15)/16; if( h->param.i_slice_min_mbs > mb_width ) { x264_log( h, X264_LOG_WARNING, "slice-min-mbs > row mb size (%d) not implemented\n", mb_width ); h->param.i_slice_min_mbs = mb_width; } int max_slices = (h->param.i_height+((16<param.b_sliced_threads ) h->param.i_slice_count = x264_clip3( h->param.i_threads, 0, max_slices ); else { h->param.i_slice_count = x264_clip3( h->param.i_slice_count, 0, max_slices ); if( h->param.i_slice_max_mbs || h->param.i_slice_max_size ) h->param.i_slice_count = 0; } if( h->param.i_slice_count_max > 0 ) h->param.i_slice_count_max = X264_MAX( h->param.i_slice_count, h->param.i_slice_count_max ); if( h->param.b_bluray_compat ) { h->param.i_bframe_pyramid = X264_MIN( X264_B_PYRAMID_STRICT, h->param.i_bframe_pyramid ); h->param.i_bframe = X264_MIN( h->param.i_bframe, 3 ); h->param.b_aud = 1; h->param.i_nal_hrd = X264_MAX( h->param.i_nal_hrd, X264_NAL_HRD_VBR ); h->param.i_slice_max_size = 0; h->param.i_slice_max_mbs = 0; h->param.b_intra_refresh = 0; h->param.i_frame_reference = X264_MIN( h->param.i_frame_reference, 6 ); h->param.i_dpb_size = X264_MIN( h->param.i_dpb_size, 6 ); /* Don't use I-frames, because Blu-ray treats them the same as IDR. */ h->param.i_keyint_min = 1; /* Due to the proliferation of broken players that don't handle dupes properly. */ h->param.analyse.i_weighted_pred = X264_MIN( h->param.analyse.i_weighted_pred, X264_WEIGHTP_SIMPLE ); if( h->param.b_fake_interlaced ) h->param.b_pic_struct = 1; } h->param.i_frame_reference = x264_clip3( h->param.i_frame_reference, 1, X264_REF_MAX ); h->param.i_dpb_size = x264_clip3( h->param.i_dpb_size, 1, X264_REF_MAX ); if( h->param.i_scenecut_threshold < 0 ) h->param.i_scenecut_threshold = 0; h->param.analyse.i_direct_mv_pred = x264_clip3( h->param.analyse.i_direct_mv_pred, X264_DIRECT_PRED_NONE, X264_DIRECT_PRED_AUTO ); if( !h->param.analyse.i_subpel_refine && h->param.analyse.i_direct_mv_pred > X264_DIRECT_PRED_SPATIAL ) { x264_log( h, X264_LOG_WARNING, "subme=0 + direct=temporal is not supported\n" ); h->param.analyse.i_direct_mv_pred = X264_DIRECT_PRED_SPATIAL; } h->param.i_bframe = x264_clip3( h->param.i_bframe, 0, X264_MIN( X264_BFRAME_MAX, h->param.i_keyint_max-1 ) ); h->param.i_bframe_bias = x264_clip3( h->param.i_bframe_bias, -90, 100 ); if( h->param.i_bframe <= 1 ) h->param.i_bframe_pyramid = X264_B_PYRAMID_NONE; h->param.i_bframe_pyramid = x264_clip3( h->param.i_bframe_pyramid, X264_B_PYRAMID_NONE, X264_B_PYRAMID_NORMAL ); h->param.i_bframe_adaptive = x264_clip3( h->param.i_bframe_adaptive, X264_B_ADAPT_NONE, X264_B_ADAPT_TRELLIS ); if( !h->param.i_bframe ) { h->param.i_bframe_adaptive = X264_B_ADAPT_NONE; h->param.analyse.i_direct_mv_pred = 0; h->param.analyse.b_weighted_bipred = 0; h->param.b_open_gop = 0; } if( h->param.b_intra_refresh && h->param.i_bframe_pyramid == X264_B_PYRAMID_NORMAL ) { x264_log( h, X264_LOG_WARNING, "b-pyramid normal + intra-refresh is not supported\n" ); h->param.i_bframe_pyramid = X264_B_PYRAMID_STRICT; } if( h->param.b_intra_refresh && (h->param.i_frame_reference > 1 || h->param.i_dpb_size > 1) ) { x264_log( h, X264_LOG_WARNING, "ref > 1 + intra-refresh is not supported\n" ); h->param.i_frame_reference = 1; h->param.i_dpb_size = 1; } if( h->param.b_intra_refresh && h->param.b_open_gop ) { x264_log( h, X264_LOG_WARNING, "intra-refresh is not compatible with open-gop\n" ); h->param.b_open_gop = 0; } if( !h->param.i_fps_num || !h->param.i_fps_den ) { h->param.i_fps_num = 25; h->param.i_fps_den = 1; } float fps = (float)h->param.i_fps_num / h->param.i_fps_den; if( h->param.i_keyint_min == X264_KEYINT_MIN_AUTO ) h->param.i_keyint_min = X264_MIN( h->param.i_keyint_max / 10, (int)fps ); h->param.i_keyint_min = x264_clip3( h->param.i_keyint_min, 1, h->param.i_keyint_max/2+1 ); h->param.rc.i_lookahead = x264_clip3( h->param.rc.i_lookahead, 0, X264_LOOKAHEAD_MAX ); { int maxrate = X264_MAX( h->param.rc.i_vbv_max_bitrate, h->param.rc.i_bitrate ); float bufsize = maxrate ? (float)h->param.rc.i_vbv_buffer_size / maxrate : 0; h->param.rc.i_lookahead = X264_MIN( h->param.rc.i_lookahead, X264_MAX( h->param.i_keyint_max, bufsize*fps ) ); } if( !h->param.i_timebase_num || !h->param.i_timebase_den || !(h->param.b_vfr_input || h->param.b_pulldown) ) { h->param.i_timebase_num = h->param.i_fps_den; h->param.i_timebase_den = h->param.i_fps_num; } h->param.rc.f_qcompress = x264_clip3f( h->param.rc.f_qcompress, 0.0, 1.0 ); if( h->param.i_keyint_max == 1 || h->param.rc.f_qcompress == 1 ) h->param.rc.b_mb_tree = 0; if( (!h->param.b_intra_refresh && h->param.i_keyint_max != X264_KEYINT_MAX_INFINITE) && !h->param.rc.i_lookahead && h->param.rc.b_mb_tree ) { x264_log( h, X264_LOG_WARNING, "lookaheadless mb-tree requires intra refresh or infinite keyint\n" ); h->param.rc.b_mb_tree = 0; } if( b_open && h->param.rc.b_stat_read ) h->param.rc.i_lookahead = 0; #if HAVE_THREAD if( h->param.i_sync_lookahead < 0 ) h->param.i_sync_lookahead = h->param.i_bframe + 1; h->param.i_sync_lookahead = X264_MIN( h->param.i_sync_lookahead, X264_LOOKAHEAD_MAX ); if( h->param.rc.b_stat_read || h->i_thread_frames == 1 ) h->param.i_sync_lookahead = 0; #else h->param.i_sync_lookahead = 0; #endif h->param.i_deblocking_filter_alphac0 = x264_clip3( h->param.i_deblocking_filter_alphac0, -6, 6 ); h->param.i_deblocking_filter_beta = x264_clip3( h->param.i_deblocking_filter_beta, -6, 6 ); h->param.analyse.i_luma_deadzone[0] = x264_clip3( h->param.analyse.i_luma_deadzone[0], 0, 32 ); h->param.analyse.i_luma_deadzone[1] = x264_clip3( h->param.analyse.i_luma_deadzone[1], 0, 32 ); h->param.i_cabac_init_idc = x264_clip3( h->param.i_cabac_init_idc, 0, 2 ); if( h->param.i_cqm_preset < X264_CQM_FLAT || h->param.i_cqm_preset > X264_CQM_CUSTOM ) h->param.i_cqm_preset = X264_CQM_FLAT; if( h->param.analyse.i_me_method < X264_ME_DIA || h->param.analyse.i_me_method > X264_ME_TESA ) h->param.analyse.i_me_method = X264_ME_HEX; h->param.analyse.i_me_range = x264_clip3( h->param.analyse.i_me_range, 4, 1024 ); if( h->param.analyse.i_me_range > 16 && h->param.analyse.i_me_method <= X264_ME_HEX ) h->param.analyse.i_me_range = 16; if( h->param.analyse.i_me_method == X264_ME_TESA && (h->mb.b_lossless || h->param.analyse.i_subpel_refine <= 1) ) h->param.analyse.i_me_method = X264_ME_ESA; h->param.analyse.b_mixed_references = h->param.analyse.b_mixed_references && h->param.i_frame_reference > 1; h->param.analyse.inter &= X264_ANALYSE_PSUB16x16|X264_ANALYSE_PSUB8x8|X264_ANALYSE_BSUB16x16| X264_ANALYSE_I4x4|X264_ANALYSE_I8x8; h->param.analyse.intra &= X264_ANALYSE_I4x4|X264_ANALYSE_I8x8; if( !(h->param.analyse.inter & X264_ANALYSE_PSUB16x16) ) h->param.analyse.inter &= ~X264_ANALYSE_PSUB8x8; if( !h->param.analyse.b_transform_8x8 ) { h->param.analyse.inter &= ~X264_ANALYSE_I8x8; h->param.analyse.intra &= ~X264_ANALYSE_I8x8; } h->param.analyse.i_trellis = x264_clip3( h->param.analyse.i_trellis, 0, 2 ); h->param.rc.i_aq_mode = x264_clip3( h->param.rc.i_aq_mode, 0, 3 ); h->param.rc.f_aq_strength = x264_clip3f( h->param.rc.f_aq_strength, 0, 3 ); if( h->param.rc.f_aq_strength == 0 ) h->param.rc.i_aq_mode = 0; if( h->param.i_log_level < X264_LOG_INFO ) { h->param.analyse.b_psnr = 0; h->param.analyse.b_ssim = 0; } /* Warn users trying to measure PSNR/SSIM with psy opts on. */ if( b_open && (h->param.analyse.b_psnr || h->param.analyse.b_ssim) ) { char *s = NULL; if( h->param.analyse.b_psy ) { s = h->param.analyse.b_psnr ? "psnr" : "ssim"; x264_log( h, X264_LOG_WARNING, "--%s used with psy on: results will be invalid!\n", s ); } else if( !h->param.rc.i_aq_mode && h->param.analyse.b_ssim ) { x264_log( h, X264_LOG_WARNING, "--ssim used with AQ off: results will be invalid!\n" ); s = "ssim"; } else if( h->param.rc.i_aq_mode && h->param.analyse.b_psnr ) { x264_log( h, X264_LOG_WARNING, "--psnr used with AQ on: results will be invalid!\n" ); s = "psnr"; } if( s ) x264_log( h, X264_LOG_WARNING, "--tune %s should be used if attempting to benchmark %s!\n", s, s ); } if( !h->param.analyse.b_psy ) { h->param.analyse.f_psy_rd = 0; h->param.analyse.f_psy_trellis = 0; } h->param.analyse.f_psy_rd = x264_clip3f( h->param.analyse.f_psy_rd, 0, 10 ); h->param.analyse.f_psy_trellis = x264_clip3f( h->param.analyse.f_psy_trellis, 0, 10 ); h->mb.i_psy_rd = h->param.analyse.i_subpel_refine >= 6 ? FIX8( h->param.analyse.f_psy_rd ) : 0; h->mb.i_psy_trellis = h->param.analyse.i_trellis ? FIX8( h->param.analyse.f_psy_trellis / 4 ) : 0; h->param.analyse.i_chroma_qp_offset = x264_clip3(h->param.analyse.i_chroma_qp_offset, -32, 32); /* In 4:4:4 mode, chroma gets twice as much resolution, so we can halve its quality. */ if( b_open && i_csp >= X264_CSP_I444 && i_csp < X264_CSP_BGR && h->param.analyse.b_psy ) h->param.analyse.i_chroma_qp_offset += 6; /* Psy RDO increases overall quantizers to improve the quality of luma--this indirectly hurts chroma quality */ /* so we lower the chroma QP offset to compensate */ if( b_open && h->mb.i_psy_rd && !h->param.i_avcintra_class ) h->param.analyse.i_chroma_qp_offset -= h->param.analyse.f_psy_rd < 0.25 ? 1 : 2; /* Psy trellis has a similar effect. */ if( b_open && h->mb.i_psy_trellis && !h->param.i_avcintra_class ) h->param.analyse.i_chroma_qp_offset -= h->param.analyse.f_psy_trellis < 0.25 ? 1 : 2; h->param.analyse.i_chroma_qp_offset = x264_clip3(h->param.analyse.i_chroma_qp_offset, -12, 12); /* MB-tree requires AQ to be on, even if the strength is zero. */ if( !h->param.rc.i_aq_mode && h->param.rc.b_mb_tree ) { h->param.rc.i_aq_mode = 1; h->param.rc.f_aq_strength = 0; } h->param.analyse.i_noise_reduction = x264_clip3( h->param.analyse.i_noise_reduction, 0, 1<<16 ); if( h->param.analyse.i_subpel_refine >= 10 && (h->param.analyse.i_trellis != 2 || !h->param.rc.i_aq_mode) ) h->param.analyse.i_subpel_refine = 9; if( b_open ) { const x264_level_t *l = x264_levels; if( h->param.i_level_idc < 0 ) { int maxrate_bak = h->param.rc.i_vbv_max_bitrate; if( h->param.rc.i_rc_method == X264_RC_ABR && h->param.rc.i_vbv_buffer_size <= 0 ) h->param.rc.i_vbv_max_bitrate = h->param.rc.i_bitrate * 2; x264_sps_init( h->sps, h->param.i_sps_id, &h->param ); do h->param.i_level_idc = l->level_idc; while( l[1].level_idc && x264_validate_levels( h, 0 ) && l++ ); h->param.rc.i_vbv_max_bitrate = maxrate_bak; } else { while( l->level_idc && l->level_idc != h->param.i_level_idc ) l++; if( l->level_idc == 0 ) { x264_log( h, X264_LOG_ERROR, "invalid level_idc: %d\n", h->param.i_level_idc ); return -1; } } if( h->param.analyse.i_mv_range <= 0 ) h->param.analyse.i_mv_range = l->mv_range >> PARAM_INTERLACED; else h->param.analyse.i_mv_range = x264_clip3(h->param.analyse.i_mv_range, 32, 8192 >> PARAM_INTERLACED); } h->param.analyse.i_weighted_pred = x264_clip3( h->param.analyse.i_weighted_pred, X264_WEIGHTP_NONE, X264_WEIGHTP_SMART ); if( h->param.i_lookahead_threads == X264_THREADS_AUTO ) { if( h->param.b_sliced_threads ) h->param.i_lookahead_threads = h->param.i_threads; else { /* If we're using much slower lookahead settings than encoding settings, it helps a lot to use * more lookahead threads. This typically happens in the first pass of a two-pass encode, so * try to guess at this sort of case. * * Tuned by a little bit of real encoding with the various presets. */ int badapt = h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS; int subme = X264_MIN( h->param.analyse.i_subpel_refine / 3, 3 ) + (h->param.analyse.i_subpel_refine > 1); int bframes = X264_MIN( (h->param.i_bframe - 1) / 3, 3 ); /* [b-adapt 0/1 vs 2][quantized subme][quantized bframes] */ static const uint8_t lookahead_thread_div[2][5][4] = {{{6,6,6,6}, {3,3,3,3}, {4,4,4,4}, {6,6,6,6}, {12,12,12,12}}, {{3,2,1,1}, {2,1,1,1}, {4,3,2,1}, {6,4,3,2}, {12, 9, 6, 4}}}; h->param.i_lookahead_threads = h->param.i_threads / lookahead_thread_div[badapt][subme][bframes]; /* Since too many lookahead threads significantly degrades lookahead accuracy, limit auto * lookahead threads to about 8 macroblock rows high each at worst. This number is chosen * pretty much arbitrarily. */ h->param.i_lookahead_threads = X264_MIN( h->param.i_lookahead_threads, h->param.i_height / 128 ); } } h->param.i_lookahead_threads = x264_clip3( h->param.i_lookahead_threads, 1, X264_MIN( max_sliced_threads, X264_LOOKAHEAD_THREAD_MAX ) ); if( PARAM_INTERLACED ) { if( h->param.analyse.i_me_method >= X264_ME_ESA ) { x264_log( h, X264_LOG_WARNING, "interlace + me=esa is not implemented\n" ); h->param.analyse.i_me_method = X264_ME_UMH; } if( h->param.analyse.i_weighted_pred > 0 ) { x264_log( h, X264_LOG_WARNING, "interlace + weightp is not implemented\n" ); h->param.analyse.i_weighted_pred = X264_WEIGHTP_NONE; } } if( !h->param.analyse.i_weighted_pred && h->param.rc.b_mb_tree && h->param.analyse.b_psy ) h->param.analyse.i_weighted_pred = X264_WEIGHTP_FAKE; if( h->i_thread_frames > 1 ) { int r = h->param.analyse.i_mv_range_thread; int r2; if( r <= 0 ) { // half of the available space is reserved and divided evenly among the threads, // the rest is allocated to whichever thread is far enough ahead to use it. // reserving more space increases quality for some videos, but costs more time // in thread synchronization. int max_range = (h->param.i_height + X264_THREAD_HEIGHT) / h->i_thread_frames - X264_THREAD_HEIGHT; r = max_range / 2; } r = X264_MAX( r, h->param.analyse.i_me_range ); r = X264_MIN( r, h->param.analyse.i_mv_range ); // round up to use the whole mb row r2 = (r & ~15) + ((-X264_THREAD_HEIGHT) & 15); if( r2 < r ) r2 += 16; x264_log( h, X264_LOG_DEBUG, "using mv_range_thread = %d\n", r2 ); h->param.analyse.i_mv_range_thread = r2; } if( h->param.rc.f_rate_tolerance < 0 ) h->param.rc.f_rate_tolerance = 0; if( h->param.rc.f_qblur < 0 ) h->param.rc.f_qblur = 0; if( h->param.rc.f_complexity_blur < 0 ) h->param.rc.f_complexity_blur = 0; h->param.i_sps_id &= 31; h->param.i_nal_hrd = x264_clip3( h->param.i_nal_hrd, X264_NAL_HRD_NONE, X264_NAL_HRD_CBR ); if( h->param.i_nal_hrd && !h->param.rc.i_vbv_buffer_size ) { x264_log( h, X264_LOG_WARNING, "NAL HRD parameters require VBV parameters\n" ); h->param.i_nal_hrd = X264_NAL_HRD_NONE; } if( h->param.i_nal_hrd == X264_NAL_HRD_CBR && (h->param.rc.i_bitrate != h->param.rc.i_vbv_max_bitrate || !h->param.rc.i_vbv_max_bitrate) ) { x264_log( h, X264_LOG_WARNING, "CBR HRD requires constant bitrate\n" ); h->param.i_nal_hrd = X264_NAL_HRD_VBR; } if( h->param.i_nal_hrd == X264_NAL_HRD_CBR ) h->param.rc.b_filler = 1; /* ensure the booleans are 0 or 1 so they can be used in math */ #define BOOLIFY(x) h->param.x = !!h->param.x BOOLIFY( b_cabac ); BOOLIFY( b_constrained_intra ); BOOLIFY( b_deblocking_filter ); BOOLIFY( b_deterministic ); BOOLIFY( b_sliced_threads ); BOOLIFY( b_interlaced ); BOOLIFY( b_intra_refresh ); BOOLIFY( b_aud ); BOOLIFY( b_repeat_headers ); BOOLIFY( b_annexb ); BOOLIFY( b_vfr_input ); BOOLIFY( b_pulldown ); BOOLIFY( b_tff ); BOOLIFY( b_pic_struct ); BOOLIFY( b_fake_interlaced ); BOOLIFY( b_open_gop ); BOOLIFY( b_bluray_compat ); BOOLIFY( b_stitchable ); BOOLIFY( b_full_recon ); BOOLIFY( b_opencl ); BOOLIFY( analyse.b_transform_8x8 ); BOOLIFY( analyse.b_weighted_bipred ); BOOLIFY( analyse.b_chroma_me ); BOOLIFY( analyse.b_mixed_references ); BOOLIFY( analyse.b_fast_pskip ); BOOLIFY( analyse.b_dct_decimate ); BOOLIFY( analyse.b_psy ); BOOLIFY( analyse.b_psnr ); BOOLIFY( analyse.b_ssim ); BOOLIFY( rc.b_stat_write ); BOOLIFY( rc.b_stat_read ); BOOLIFY( rc.b_mb_tree ); BOOLIFY( rc.b_filler ); #undef BOOLIFY return 0; } static void mbcmp_init( x264_t *h ) { int satd = !h->mb.b_lossless && h->param.analyse.i_subpel_refine > 1; memcpy( h->pixf.mbcmp, satd ? h->pixf.satd : h->pixf.sad_aligned, sizeof(h->pixf.mbcmp) ); memcpy( h->pixf.mbcmp_unaligned, satd ? h->pixf.satd : h->pixf.sad, sizeof(h->pixf.mbcmp_unaligned) ); h->pixf.intra_mbcmp_x3_16x16 = satd ? h->pixf.intra_satd_x3_16x16 : h->pixf.intra_sad_x3_16x16; h->pixf.intra_mbcmp_x3_8x16c = satd ? h->pixf.intra_satd_x3_8x16c : h->pixf.intra_sad_x3_8x16c; h->pixf.intra_mbcmp_x3_8x8c = satd ? h->pixf.intra_satd_x3_8x8c : h->pixf.intra_sad_x3_8x8c; h->pixf.intra_mbcmp_x3_8x8 = satd ? h->pixf.intra_sa8d_x3_8x8 : h->pixf.intra_sad_x3_8x8; h->pixf.intra_mbcmp_x3_4x4 = satd ? h->pixf.intra_satd_x3_4x4 : h->pixf.intra_sad_x3_4x4; h->pixf.intra_mbcmp_x9_4x4 = h->param.b_cpu_independent || h->mb.b_lossless ? NULL : satd ? h->pixf.intra_satd_x9_4x4 : h->pixf.intra_sad_x9_4x4; h->pixf.intra_mbcmp_x9_8x8 = h->param.b_cpu_independent || h->mb.b_lossless ? NULL : satd ? h->pixf.intra_sa8d_x9_8x8 : h->pixf.intra_sad_x9_8x8; satd &= h->param.analyse.i_me_method == X264_ME_TESA; memcpy( h->pixf.fpelcmp, satd ? h->pixf.satd : h->pixf.sad, sizeof(h->pixf.fpelcmp) ); memcpy( h->pixf.fpelcmp_x3, satd ? h->pixf.satd_x3 : h->pixf.sad_x3, sizeof(h->pixf.fpelcmp_x3) ); memcpy( h->pixf.fpelcmp_x4, satd ? h->pixf.satd_x4 : h->pixf.sad_x4, sizeof(h->pixf.fpelcmp_x4) ); } static void chroma_dsp_init( x264_t *h ) { memcpy( h->luma2chroma_pixel, x264_luma2chroma_pixel[CHROMA_FORMAT], sizeof(h->luma2chroma_pixel) ); switch( CHROMA_FORMAT ) { case CHROMA_400: h->mc.prefetch_fenc = h->mc.prefetch_fenc_400; break; case CHROMA_420: memcpy( h->predict_chroma, h->predict_8x8c, sizeof(h->predict_chroma) ); h->mc.prefetch_fenc = h->mc.prefetch_fenc_420; h->loopf.deblock_chroma[0] = h->loopf.deblock_h_chroma_420; h->loopf.deblock_chroma_intra[0] = h->loopf.deblock_h_chroma_420_intra; h->loopf.deblock_chroma_mbaff = h->loopf.deblock_chroma_420_mbaff; h->loopf.deblock_chroma_intra_mbaff = h->loopf.deblock_chroma_420_intra_mbaff; h->pixf.intra_mbcmp_x3_chroma = h->pixf.intra_mbcmp_x3_8x8c; h->quantf.coeff_last[DCT_CHROMA_DC] = h->quantf.coeff_last4; h->quantf.coeff_level_run[DCT_CHROMA_DC] = h->quantf.coeff_level_run4; break; case CHROMA_422: memcpy( h->predict_chroma, h->predict_8x16c, sizeof(h->predict_chroma) ); h->mc.prefetch_fenc = h->mc.prefetch_fenc_422; h->loopf.deblock_chroma[0] = h->loopf.deblock_h_chroma_422; h->loopf.deblock_chroma_intra[0] = h->loopf.deblock_h_chroma_422_intra; h->loopf.deblock_chroma_mbaff = h->loopf.deblock_chroma_422_mbaff; h->loopf.deblock_chroma_intra_mbaff = h->loopf.deblock_chroma_422_intra_mbaff; h->pixf.intra_mbcmp_x3_chroma = h->pixf.intra_mbcmp_x3_8x16c; h->quantf.coeff_last[DCT_CHROMA_DC] = h->quantf.coeff_last8; h->quantf.coeff_level_run[DCT_CHROMA_DC] = h->quantf.coeff_level_run8; break; case CHROMA_444: h->mc.prefetch_fenc = h->mc.prefetch_fenc_422; /* FIXME: doesn't cover V plane */ h->loopf.deblock_chroma_mbaff = h->loopf.deblock_luma_mbaff; h->loopf.deblock_chroma_intra_mbaff = h->loopf.deblock_luma_intra_mbaff; break; } } static void set_aspect_ratio( x264_t *h, x264_param_t *param, int initial ) { /* VUI */ if( param->vui.i_sar_width > 0 && param->vui.i_sar_height > 0 ) { uint32_t i_w = param->vui.i_sar_width; uint32_t i_h = param->vui.i_sar_height; uint32_t old_w = h->param.vui.i_sar_width; uint32_t old_h = h->param.vui.i_sar_height; x264_reduce_fraction( &i_w, &i_h ); while( i_w > 65535 || i_h > 65535 ) { i_w /= 2; i_h /= 2; } x264_reduce_fraction( &i_w, &i_h ); if( i_w != old_w || i_h != old_h || initial ) { h->param.vui.i_sar_width = 0; h->param.vui.i_sar_height = 0; if( i_w == 0 || i_h == 0 ) x264_log( h, X264_LOG_WARNING, "cannot create valid sample aspect ratio\n" ); else { x264_log( h, initial?X264_LOG_INFO:X264_LOG_DEBUG, "using SAR=%d/%d\n", i_w, i_h ); h->param.vui.i_sar_width = i_w; h->param.vui.i_sar_height = i_h; } } } } /**************************************************************************** * x264_encoder_open: ****************************************************************************/ x264_t *x264_encoder_open( x264_param_t *param, void *api ) { x264_t *h; char buf[1000], *p; int i_slicetype_length; CHECKED_MALLOCZERO( h, sizeof(x264_t) ); /* Create a copy of param */ memcpy( &h->param, param, sizeof(x264_param_t) ); h->param.opaque = NULL; h->param.param_free = NULL; if( h->param.psz_cqm_file ) CHECKED_PARAM_STRDUP( h->param.psz_cqm_file, &h->param, h->param.psz_cqm_file ); if( h->param.psz_dump_yuv ) CHECKED_PARAM_STRDUP( h->param.psz_dump_yuv, &h->param, h->param.psz_dump_yuv ); if( h->param.rc.psz_stat_out ) CHECKED_PARAM_STRDUP( h->param.rc.psz_stat_out, &h->param, h->param.rc.psz_stat_out ); if( h->param.rc.psz_stat_in ) CHECKED_PARAM_STRDUP( h->param.rc.psz_stat_in, &h->param, h->param.rc.psz_stat_in ); if( h->param.rc.psz_zones ) CHECKED_PARAM_STRDUP( h->param.rc.psz_zones, &h->param, h->param.rc.psz_zones ); if( h->param.psz_clbin_file ) CHECKED_PARAM_STRDUP( h->param.psz_clbin_file, &h->param, h->param.psz_clbin_file ); if( param->param_free ) { x264_param_cleanup( param ); param->param_free( param ); } /* Save pointer to bit depth independent interface */ h->api = api; #if HAVE_INTEL_DISPATCHER x264_intel_dispatcher_override(); #endif if( x264_threading_init() ) { x264_log( h, X264_LOG_ERROR, "unable to initialize threading\n" ); goto fail; } if( validate_parameters( h, 1 ) < 0 ) goto fail; if( h->param.psz_cqm_file ) if( x264_cqm_parse_file( h, h->param.psz_cqm_file ) < 0 ) goto fail; x264_reduce_fraction( &h->param.i_fps_num, &h->param.i_fps_den ); x264_reduce_fraction( &h->param.i_timebase_num, &h->param.i_timebase_den ); /* Init x264_t */ h->i_frame = -1; h->i_frame_num = 0; if( h->param.i_avcintra_class ) h->i_idr_pic_id = 5; else h->i_idr_pic_id = 0; if( (uint64_t)h->param.i_timebase_den * 2 > UINT32_MAX ) { x264_log( h, X264_LOG_ERROR, "Effective timebase denominator %u exceeds H.264 maximum\n", h->param.i_timebase_den ); goto fail; } set_aspect_ratio( h, &h->param, 1 ); x264_sps_init( h->sps, h->param.i_sps_id, &h->param ); x264_sps_init_scaling_list( h->sps, &h->param ); x264_pps_init( h->pps, h->param.i_sps_id, &h->param, h->sps ); x264_validate_levels( h, 1 ); h->chroma_qp_table = i_chroma_qp_table + 12 + h->pps->i_chroma_qp_index_offset; if( x264_cqm_init( h ) < 0 ) goto fail; h->mb.i_mb_width = h->sps->i_mb_width; h->mb.i_mb_height = h->sps->i_mb_height; h->mb.i_mb_count = h->mb.i_mb_width * h->mb.i_mb_height; h->mb.chroma_h_shift = CHROMA_FORMAT == CHROMA_420 || CHROMA_FORMAT == CHROMA_422; h->mb.chroma_v_shift = CHROMA_FORMAT == CHROMA_420; /* Adaptive MBAFF and subme 0 are not supported as we require halving motion * vectors during prediction, resulting in hpel mvs. * The chosen solution is to make MBAFF non-adaptive in this case. */ h->mb.b_adaptive_mbaff = PARAM_INTERLACED && h->param.analyse.i_subpel_refine; /* Init frames. */ if( h->param.i_bframe_adaptive == X264_B_ADAPT_TRELLIS && !h->param.rc.b_stat_read ) h->frames.i_delay = X264_MAX(h->param.i_bframe,3)*4; else h->frames.i_delay = h->param.i_bframe; if( h->param.rc.b_mb_tree || h->param.rc.i_vbv_buffer_size ) h->frames.i_delay = X264_MAX( h->frames.i_delay, h->param.rc.i_lookahead ); i_slicetype_length = h->frames.i_delay; h->frames.i_delay += h->i_thread_frames - 1; h->frames.i_delay += h->param.i_sync_lookahead; h->frames.i_delay += h->param.b_vfr_input; h->frames.i_bframe_delay = h->param.i_bframe ? (h->param.i_bframe_pyramid ? 2 : 1) : 0; h->frames.i_max_ref0 = h->param.i_frame_reference; h->frames.i_max_ref1 = X264_MIN( h->sps->vui.i_num_reorder_frames, h->param.i_frame_reference ); h->frames.i_max_dpb = h->sps->vui.i_max_dec_frame_buffering; h->frames.b_have_lowres = !h->param.rc.b_stat_read && ( h->param.rc.i_rc_method == X264_RC_ABR || h->param.rc.i_rc_method == X264_RC_CRF || h->param.i_bframe_adaptive || h->param.i_scenecut_threshold || h->param.rc.b_mb_tree || h->param.analyse.i_weighted_pred ); h->frames.b_have_lowres |= h->param.rc.b_stat_read && h->param.rc.i_vbv_buffer_size > 0; h->frames.b_have_sub8x8_esa = !!(h->param.analyse.inter & X264_ANALYSE_PSUB8x8); h->frames.i_last_idr = h->frames.i_last_keyframe = - h->param.i_keyint_max; h->frames.i_input = 0; h->frames.i_largest_pts = h->frames.i_second_largest_pts = -1; h->frames.i_poc_last_open_gop = -1; CHECKED_MALLOCZERO( h->cost_table, sizeof(*h->cost_table) ); CHECKED_MALLOCZERO( h->frames.unused[0], (h->frames.i_delay + 3) * sizeof(x264_frame_t *) ); /* Allocate room for max refs plus a few extra just in case. */ CHECKED_MALLOCZERO( h->frames.unused[1], (h->i_thread_frames + X264_REF_MAX + 4) * sizeof(x264_frame_t *) ); CHECKED_MALLOCZERO( h->frames.current, (h->param.i_sync_lookahead + h->param.i_bframe + h->i_thread_frames + 3) * sizeof(x264_frame_t *) ); if( h->param.analyse.i_weighted_pred > 0 ) CHECKED_MALLOCZERO( h->frames.blank_unused, h->i_thread_frames * 4 * sizeof(x264_frame_t *) ); h->i_ref[0] = h->i_ref[1] = 0; h->i_cpb_delay = h->i_coded_fields = h->i_disp_fields = 0; h->i_prev_duration = ((uint64_t)h->param.i_fps_den * h->sps->vui.i_time_scale) / ((uint64_t)h->param.i_fps_num * h->sps->vui.i_num_units_in_tick); h->i_disp_fields_last_frame = -1; x264_rdo_init(); /* init CPU functions */ #if (ARCH_X86 || ARCH_X86_64) && HIGH_BIT_DEPTH /* FIXME: Only 8-bit has been optimized for AVX-512 so far. The few AVX-512 functions * enabled in high bit-depth are insignificant and just causes potential issues with * unnecessary thermal throttling and whatnot, so keep it disabled for now. */ h->param.cpu &= ~X264_CPU_AVX512; #endif x264_predict_16x16_init( h->param.cpu, h->predict_16x16 ); x264_predict_8x8c_init( h->param.cpu, h->predict_8x8c ); x264_predict_8x16c_init( h->param.cpu, h->predict_8x16c ); x264_predict_8x8_init( h->param.cpu, h->predict_8x8, &h->predict_8x8_filter ); x264_predict_4x4_init( h->param.cpu, h->predict_4x4 ); x264_pixel_init( h->param.cpu, &h->pixf ); x264_dct_init( h->param.cpu, &h->dctf ); x264_zigzag_init( h->param.cpu, &h->zigzagf_progressive, &h->zigzagf_interlaced ); memcpy( &h->zigzagf, PARAM_INTERLACED ? &h->zigzagf_interlaced : &h->zigzagf_progressive, sizeof(h->zigzagf) ); x264_mc_init( h->param.cpu, &h->mc, h->param.b_cpu_independent ); x264_quant_init( h, h->param.cpu, &h->quantf ); x264_deblock_init( h->param.cpu, &h->loopf, PARAM_INTERLACED ); x264_bitstream_init( h->param.cpu, &h->bsf ); if( h->param.b_cabac ) x264_cabac_init( h ); else x264_cavlc_init( h ); mbcmp_init( h ); chroma_dsp_init( h ); p = buf + sprintf( buf, "using cpu capabilities:" ); for( int i = 0; x264_cpu_names[i].flags; i++ ) { if( !strcmp(x264_cpu_names[i].name, "SSE") && h->param.cpu & (X264_CPU_SSE2) ) continue; if( !strcmp(x264_cpu_names[i].name, "SSE2") && h->param.cpu & (X264_CPU_SSE2_IS_FAST|X264_CPU_SSE2_IS_SLOW) ) continue; if( !strcmp(x264_cpu_names[i].name, "SSE3") && (h->param.cpu & X264_CPU_SSSE3 || !(h->param.cpu & X264_CPU_CACHELINE_64)) ) continue; if( !strcmp(x264_cpu_names[i].name, "SSE4.1") && (h->param.cpu & X264_CPU_SSE42) ) continue; if( !strcmp(x264_cpu_names[i].name, "LZCNT") && (h->param.cpu & X264_CPU_BMI1) ) continue; if( !strcmp(x264_cpu_names[i].name, "BMI1") && (h->param.cpu & X264_CPU_BMI2) ) continue; if( !strcmp(x264_cpu_names[i].name, "FMA4") && (h->param.cpu & X264_CPU_FMA3) ) continue; if( (h->param.cpu & x264_cpu_names[i].flags) == x264_cpu_names[i].flags && (!i || x264_cpu_names[i].flags != x264_cpu_names[i-1].flags) ) p += sprintf( p, " %s", x264_cpu_names[i].name ); } if( !h->param.cpu ) p += sprintf( p, " none!" ); x264_log( h, X264_LOG_INFO, "%s\n", buf ); if( x264_analyse_init_costs( h ) ) goto fail; /* Must be volatile or else GCC will optimize it out. */ volatile int temp = 392; if( x264_clz( temp ) != 23 ) { x264_log( h, X264_LOG_ERROR, "CLZ test failed: x264 has been miscompiled!\n" ); #if ARCH_X86 || ARCH_X86_64 x264_log( h, X264_LOG_ERROR, "Are you attempting to run an SSE4a/LZCNT-targeted build on a CPU that\n" ); x264_log( h, X264_LOG_ERROR, "doesn't support it?\n" ); #endif goto fail; } h->out.i_nal = 0; h->out.i_bitstream = x264_clip3f( h->param.i_width * h->param.i_height * 4 * ( h->param.rc.i_rc_method == X264_RC_ABR ? pow( 0.95, h->param.rc.i_qp_min ) : pow( 0.95, h->param.rc.i_qp_constant ) * X264_MAX( 1, h->param.rc.f_ip_factor ) ), 1000000, INT_MAX/3 ); h->nal_buffer_size = h->out.i_bitstream * 3/2 + 4 + 64; /* +4 for startcode, +64 for nal_escape assembly padding */ CHECKED_MALLOC( h->nal_buffer, h->nal_buffer_size ); CHECKED_MALLOC( h->reconfig_h, sizeof(x264_t) ); if( h->param.i_threads > 1 && x264_threadpool_init( &h->threadpool, h->param.i_threads, (void*)encoder_thread_init, h ) ) goto fail; if( h->param.i_lookahead_threads > 1 && x264_threadpool_init( &h->lookaheadpool, h->param.i_lookahead_threads, NULL, NULL ) ) goto fail; #if HAVE_OPENCL if( h->param.b_opencl ) { h->opencl.ocl = x264_opencl_load_library(); if( !h->opencl.ocl ) { x264_log( h, X264_LOG_WARNING, "failed to load OpenCL\n" ); h->param.b_opencl = 0; } } #endif h->thread[0] = h; for( int i = 1; i < h->param.i_threads + !!h->param.i_sync_lookahead; i++ ) CHECKED_MALLOC( h->thread[i], sizeof(x264_t) ); if( h->param.i_lookahead_threads > 1 ) for( int i = 0; i < h->param.i_lookahead_threads; i++ ) { CHECKED_MALLOC( h->lookahead_thread[i], sizeof(x264_t) ); *h->lookahead_thread[i] = *h; } *h->reconfig_h = *h; for( int i = 0; i < h->param.i_threads; i++ ) { int init_nal_count = h->param.i_slice_count + 3; int allocate_threadlocal_data = !h->param.b_sliced_threads || !i; if( i > 0 ) *h->thread[i] = *h; if( x264_pthread_mutex_init( &h->thread[i]->mutex, NULL ) ) goto fail; if( x264_pthread_cond_init( &h->thread[i]->cv, NULL ) ) goto fail; if( allocate_threadlocal_data ) { h->thread[i]->fdec = x264_frame_pop_unused( h, 1 ); if( !h->thread[i]->fdec ) goto fail; } else h->thread[i]->fdec = h->thread[0]->fdec; CHECKED_MALLOC( h->thread[i]->out.p_bitstream, h->out.i_bitstream ); /* Start each thread with room for init_nal_count NAL units; it'll realloc later if needed. */ CHECKED_MALLOC( h->thread[i]->out.nal, init_nal_count*sizeof(x264_nal_t) ); h->thread[i]->out.i_nals_allocated = init_nal_count; if( allocate_threadlocal_data && x264_macroblock_cache_allocate( h->thread[i] ) < 0 ) goto fail; } #if HAVE_OPENCL if( h->param.b_opencl && x264_opencl_lookahead_init( h ) < 0 ) h->param.b_opencl = 0; #endif if( x264_lookahead_init( h, i_slicetype_length ) ) goto fail; for( int i = 0; i < h->param.i_threads; i++ ) if( x264_macroblock_thread_allocate( h->thread[i], 0 ) < 0 ) goto fail; if( x264_ratecontrol_new( h ) < 0 ) goto fail; if( h->param.i_nal_hrd ) { x264_log( h, X264_LOG_DEBUG, "HRD bitrate: %i bits/sec\n", h->sps->vui.hrd.i_bit_rate_unscaled ); x264_log( h, X264_LOG_DEBUG, "CPB size: %i bits\n", h->sps->vui.hrd.i_cpb_size_unscaled ); } if( h->param.psz_dump_yuv ) { /* create or truncate the reconstructed video file */ FILE *f = x264_fopen( h->param.psz_dump_yuv, "w" ); if( !f ) { x264_log( h, X264_LOG_ERROR, "dump_yuv: can't write to %s\n", h->param.psz_dump_yuv ); goto fail; } else if( !x264_is_regular_file( f ) ) { x264_log( h, X264_LOG_ERROR, "dump_yuv: incompatible with non-regular file %s\n", h->param.psz_dump_yuv ); fclose( f ); goto fail; } fclose( f ); } const char *profile = h->sps->i_profile_idc == PROFILE_BASELINE ? "Constrained Baseline" : h->sps->i_profile_idc == PROFILE_MAIN ? "Main" : h->sps->i_profile_idc == PROFILE_HIGH ? "High" : h->sps->i_profile_idc == PROFILE_HIGH10 ? (h->sps->b_constraint_set3 ? "High 10 Intra" : "High 10") : h->sps->i_profile_idc == PROFILE_HIGH422 ? (h->sps->b_constraint_set3 ? "High 4:2:2 Intra" : "High 4:2:2") : h->sps->b_constraint_set3 ? "High 4:4:4 Intra" : "High 4:4:4 Predictive"; char level[16]; if( h->sps->i_level_idc == 9 || ( h->sps->i_level_idc == 11 && h->sps->b_constraint_set3 && (h->sps->i_profile_idc == PROFILE_BASELINE || h->sps->i_profile_idc == PROFILE_MAIN) ) ) strcpy( level, "1b" ); else snprintf( level, sizeof(level), "%d.%d", h->sps->i_level_idc / 10, h->sps->i_level_idc % 10 ); static const char * const subsampling[4] = { "4:0:0", "4:2:0", "4:2:2", "4:4:4" }; x264_log( h, X264_LOG_INFO, "profile %s, level %s, %s, %d-bit\n", profile, level, subsampling[CHROMA_FORMAT], BIT_DEPTH ); return h; fail: x264_free( h ); return NULL; } /****************************************************************************/ static int encoder_try_reconfig( x264_t *h, x264_param_t *param, int *rc_reconfig ) { *rc_reconfig = 0; set_aspect_ratio( h, param, 0 ); #define COPY(var) h->param.var = param->var COPY( i_frame_reference ); // but never uses more refs than initially specified COPY( i_bframe_bias ); if( h->param.i_scenecut_threshold ) COPY( i_scenecut_threshold ); // can't turn it on or off, only vary the threshold COPY( b_deblocking_filter ); COPY( i_deblocking_filter_alphac0 ); COPY( i_deblocking_filter_beta ); COPY( i_frame_packing ); COPY( mastering_display ); COPY( content_light_level ); COPY( i_alternative_transfer ); COPY( analyse.inter ); COPY( analyse.intra ); COPY( analyse.i_direct_mv_pred ); /* Scratch buffer prevents me_range from being increased for esa/tesa */ if( h->param.analyse.i_me_method < X264_ME_ESA || param->analyse.i_me_range < h->param.analyse.i_me_range ) COPY( analyse.i_me_range ); COPY( analyse.i_noise_reduction ); /* We can't switch out of subme=0 during encoding. */ if( h->param.analyse.i_subpel_refine ) COPY( analyse.i_subpel_refine ); COPY( analyse.i_trellis ); COPY( analyse.b_chroma_me ); COPY( analyse.b_dct_decimate ); COPY( analyse.b_fast_pskip ); COPY( analyse.b_mixed_references ); COPY( analyse.f_psy_rd ); COPY( analyse.f_psy_trellis ); COPY( crop_rect ); // can only twiddle these if they were enabled to begin with: if( h->param.analyse.i_me_method >= X264_ME_ESA || param->analyse.i_me_method < X264_ME_ESA ) COPY( analyse.i_me_method ); if( h->param.analyse.i_me_method >= X264_ME_ESA && !h->frames.b_have_sub8x8_esa ) h->param.analyse.inter &= ~X264_ANALYSE_PSUB8x8; if( h->pps->b_transform_8x8_mode ) COPY( analyse.b_transform_8x8 ); if( h->frames.i_max_ref1 > 1 ) COPY( i_bframe_pyramid ); COPY( i_slice_max_size ); COPY( i_slice_max_mbs ); COPY( i_slice_min_mbs ); COPY( i_slice_count ); COPY( i_slice_count_max ); COPY( b_tff ); /* VBV can't be turned on if it wasn't on to begin with */ if( h->param.rc.i_vbv_max_bitrate > 0 && h->param.rc.i_vbv_buffer_size > 0 && param->rc.i_vbv_max_bitrate > 0 && param->rc.i_vbv_buffer_size > 0 ) { *rc_reconfig |= h->param.rc.i_vbv_max_bitrate != param->rc.i_vbv_max_bitrate; *rc_reconfig |= h->param.rc.i_vbv_buffer_size != param->rc.i_vbv_buffer_size; *rc_reconfig |= h->param.rc.i_bitrate != param->rc.i_bitrate; COPY( rc.i_vbv_max_bitrate ); COPY( rc.i_vbv_buffer_size ); COPY( rc.i_bitrate ); } *rc_reconfig |= h->param.rc.f_rf_constant != param->rc.f_rf_constant; *rc_reconfig |= h->param.rc.f_rf_constant_max != param->rc.f_rf_constant_max; COPY( rc.f_rf_constant ); COPY( rc.f_rf_constant_max ); #undef COPY return validate_parameters( h, 0 ); } int x264_encoder_reconfig_apply( x264_t *h, x264_param_t *param ) { int rc_reconfig; int ret = encoder_try_reconfig( h, param, &rc_reconfig ); mbcmp_init( h ); if( !ret ) x264_sps_init_reconfigurable( h->sps, &h->param ); /* Supported reconfiguration options (1-pass only): * vbv-maxrate * vbv-bufsize * crf * bitrate (CBR only) */ if( !ret && rc_reconfig ) x264_ratecontrol_init_reconfigurable( h, 0 ); return ret; } /**************************************************************************** * x264_encoder_reconfig: ****************************************************************************/ int x264_encoder_reconfig( x264_t *h, x264_param_t *param ) { h = h->thread[h->thread[0]->i_thread_phase]; x264_param_t param_save = h->reconfig_h->param; h->reconfig_h->param = h->param; int rc_reconfig; int ret = encoder_try_reconfig( h->reconfig_h, param, &rc_reconfig ); if( !ret ) h->reconfig = 1; else h->reconfig_h->param = param_save; return ret; } /**************************************************************************** * x264_encoder_parameters: ****************************************************************************/ void x264_encoder_parameters( x264_t *h, x264_param_t *param ) { memcpy( param, &h->thread[h->i_thread_phase]->param, sizeof(x264_param_t) ); param->opaque = NULL; } /* internal usage */ static void nal_start( x264_t *h, int i_type, int i_ref_idc ) { x264_nal_t *nal = &h->out.nal[h->out.i_nal]; nal->i_ref_idc = i_ref_idc; nal->i_type = i_type; nal->b_long_startcode = 1; nal->i_payload= 0; nal->p_payload= &h->out.p_bitstream[bs_pos( &h->out.bs ) / 8]; nal->i_padding= 0; } /* if number of allocated nals is not enough, re-allocate a larger one. */ static int nal_check_buffer( x264_t *h ) { if( h->out.i_nal >= h->out.i_nals_allocated ) { x264_nal_t *new_out = x264_malloc( sizeof(x264_nal_t) * (h->out.i_nals_allocated*2) ); if( !new_out ) return -1; memcpy( new_out, h->out.nal, sizeof(x264_nal_t) * (h->out.i_nals_allocated) ); x264_free( h->out.nal ); h->out.nal = new_out; h->out.i_nals_allocated *= 2; } return 0; } static int nal_end( x264_t *h ) { x264_nal_t *nal = &h->out.nal[h->out.i_nal]; uint8_t *end = &h->out.p_bitstream[bs_pos( &h->out.bs ) / 8]; nal->i_payload = end - nal->p_payload; /* Assembly implementation of nal_escape reads past the end of the input. * While undefined padding wouldn't actually affect the output, it makes valgrind unhappy. */ memset( end, 0xff, 64 ); if( h->param.nalu_process ) h->param.nalu_process( (x264_t *)h->api, nal, h->fenc->opaque ); h->out.i_nal++; return nal_check_buffer( h ); } static int check_encapsulated_buffer( x264_t *h, x264_t *h0, int start, int64_t previous_nal_size, int64_t necessary_size ) { if( h0->nal_buffer_size < necessary_size ) { necessary_size *= 2; if( necessary_size > INT_MAX ) return -1; uint8_t *buf = x264_malloc( necessary_size ); if( !buf ) return -1; if( previous_nal_size ) memcpy( buf, h0->nal_buffer, previous_nal_size ); intptr_t delta = buf - h0->nal_buffer; for( int i = 0; i < start; i++ ) h->out.nal[i].p_payload += delta; x264_free( h0->nal_buffer ); h0->nal_buffer = buf; h0->nal_buffer_size = necessary_size; } return 0; } static int encoder_encapsulate_nals( x264_t *h, int start ) { x264_t *h0 = h->thread[0]; int64_t nal_size = 0, previous_nal_size = 0; if( h->param.nalu_process ) { for( int i = start; i < h->out.i_nal; i++ ) nal_size += h->out.nal[i].i_payload; if( nal_size > INT_MAX ) return -1; return nal_size; } for( int i = 0; i < start; i++ ) previous_nal_size += h->out.nal[i].i_payload; for( int i = start; i < h->out.i_nal; i++ ) nal_size += h->out.nal[i].i_payload; /* Worst-case NAL unit escaping: reallocate the buffer if it's too small. */ int64_t necessary_size = previous_nal_size + nal_size * 3/2 + h->out.i_nal * 4 + 4 + 64; for( int i = start; i < h->out.i_nal; i++ ) necessary_size += h->out.nal[i].i_padding; if( check_encapsulated_buffer( h, h0, start, previous_nal_size, necessary_size ) ) return -1; uint8_t *nal_buffer = h0->nal_buffer + previous_nal_size; for( int i = start; i < h->out.i_nal; i++ ) { h->out.nal[i].b_long_startcode = !i || h->out.nal[i].i_type == NAL_SPS || h->out.nal[i].i_type == NAL_PPS || h->param.i_avcintra_class; x264_nal_encode( h, nal_buffer, &h->out.nal[i] ); nal_buffer += h->out.nal[i].i_payload; } x264_emms(); return nal_buffer - (h0->nal_buffer + previous_nal_size); } /**************************************************************************** * x264_encoder_headers: ****************************************************************************/ int x264_encoder_headers( x264_t *h, x264_nal_t **pp_nal, int *pi_nal ) { int frame_size = 0; /* init bitstream context */ h->out.i_nal = 0; bs_init( &h->out.bs, h->out.p_bitstream, h->out.i_bitstream ); /* Write SEI, SPS and PPS. */ /* generate sequence parameters */ nal_start( h, NAL_SPS, NAL_PRIORITY_HIGHEST ); x264_sps_write( &h->out.bs, h->sps ); if( nal_end( h ) ) return -1; /* generate picture parameters */ nal_start( h, NAL_PPS, NAL_PRIORITY_HIGHEST ); x264_pps_write( &h->out.bs, h->sps, h->pps ); if( nal_end( h ) ) return -1; /* identify ourselves */ nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); if( x264_sei_version_write( h, &h->out.bs ) ) return -1; if( nal_end( h ) ) return -1; frame_size = encoder_encapsulate_nals( h, 0 ); if( frame_size < 0 ) return -1; /* now set output*/ *pi_nal = h->out.i_nal; *pp_nal = &h->out.nal[0]; h->out.i_nal = 0; return frame_size; } /* Check to see whether we have chosen a reference list ordering different * from the standard's default. */ static inline void reference_check_reorder( x264_t *h ) { /* The reorder check doesn't check for missing frames, so just * force a reorder if one of the reference list is corrupt. */ for( int i = 0; h->frames.reference[i]; i++ ) if( h->frames.reference[i]->b_corrupt ) { h->b_ref_reorder[0] = 1; return; } for( int list = 0; list <= (h->sh.i_type == SLICE_TYPE_B); list++ ) for( int i = 0; i < h->i_ref[list] - 1; i++ ) { int framenum_diff = h->fref[list][i+1]->i_frame_num - h->fref[list][i]->i_frame_num; int poc_diff = h->fref[list][i+1]->i_poc - h->fref[list][i]->i_poc; /* P and B-frames use different default orders. */ if( h->sh.i_type == SLICE_TYPE_P ? framenum_diff > 0 : list == 1 ? poc_diff < 0 : poc_diff > 0 ) { h->b_ref_reorder[list] = 1; return; } } } /* return -1 on failure, else return the index of the new reference frame */ static int weighted_reference_duplicate( x264_t *h, int i_ref, const x264_weight_t *w ) { int i = h->i_ref[0]; int j = 1; x264_frame_t *newframe; if( i <= 1 ) /* empty list, definitely can't duplicate frame */ return -1; //Duplication is only used in X264_WEIGHTP_SMART if( h->param.analyse.i_weighted_pred != X264_WEIGHTP_SMART ) return -1; /* Duplication is a hack to compensate for crappy rounding in motion compensation. * With high bit depth, it's not worth doing, so turn it off except in the case of * unweighted dupes. */ if( BIT_DEPTH > 8 && w != x264_weight_none ) return -1; newframe = x264_frame_pop_blank_unused( h ); if( !newframe ) return -1; //FIXME: probably don't need to copy everything *newframe = *h->fref[0][i_ref]; newframe->i_reference_count = 1; newframe->orig = h->fref[0][i_ref]; newframe->b_duplicate = 1; memcpy( h->fenc->weight[j], w, sizeof(h->fenc->weight[i]) ); /* shift the frames to make space for the dupe. */ h->b_ref_reorder[0] = 1; if( h->i_ref[0] < X264_REF_MAX ) ++h->i_ref[0]; h->fref[0][X264_REF_MAX-1] = NULL; x264_frame_unshift( &h->fref[0][j], newframe ); return j; } static void weighted_pred_init( x264_t *h ) { /* for now no analysis and set all weights to nothing */ for( int i_ref = 0; i_ref < h->i_ref[0]; i_ref++ ) h->fenc->weighted[i_ref] = h->fref[0][i_ref]->filtered[0][0]; // FIXME: This only supports weighting of one reference frame // and duplicates of that frame. h->fenc->i_lines_weighted = 0; for( int i_ref = 0; i_ref < (h->i_ref[0] << SLICE_MBAFF); i_ref++ ) for( int i = 0; i < 3; i++ ) h->sh.weight[i_ref][i].weightfn = NULL; if( h->sh.i_type != SLICE_TYPE_P || h->param.analyse.i_weighted_pred <= 0 ) return; int i_padv = PADV << PARAM_INTERLACED; int denom = -1; int weightplane[2] = { 0, 0 }; int buffer_next = 0; for( int i = 0; i < 3; i++ ) { for( int j = 0; j < h->i_ref[0]; j++ ) { if( h->fenc->weight[j][i].weightfn ) { h->sh.weight[j][i] = h->fenc->weight[j][i]; // if weight is useless, don't write it to stream if( h->sh.weight[j][i].i_scale == 1<sh.weight[j][i].i_denom && h->sh.weight[j][i].i_offset == 0 ) h->sh.weight[j][i].weightfn = NULL; else { if( !weightplane[!!i] ) { weightplane[!!i] = 1; h->sh.weight[0][!!i].i_denom = denom = h->sh.weight[j][i].i_denom; assert( x264_clip3( denom, 0, 7 ) == denom ); } assert( h->sh.weight[j][i].i_denom == denom ); if( !i ) { h->fenc->weighted[j] = h->mb.p_weight_buf[buffer_next++] + h->fenc->i_stride[0] * i_padv + PADH_ALIGN; //scale full resolution frame if( h->param.i_threads == 1 ) { pixel *src = h->fref[0][j]->filtered[0][0] - h->fref[0][j]->i_stride[0]*i_padv - PADH_ALIGN; pixel *dst = h->fenc->weighted[j] - h->fenc->i_stride[0]*i_padv - PADH_ALIGN; int stride = h->fenc->i_stride[0]; int width = h->fenc->i_width[0] + PADH2; int height = h->fenc->i_lines[0] + i_padv*2; x264_weight_scale_plane( h, dst, stride, src, stride, width, height, &h->sh.weight[j][0] ); h->fenc->i_lines_weighted = height; } } } } } } if( weightplane[1] ) for( int i = 0; i < h->i_ref[0]; i++ ) { if( h->sh.weight[i][1].weightfn && !h->sh.weight[i][2].weightfn ) { h->sh.weight[i][2].i_scale = 1 << h->sh.weight[0][1].i_denom; h->sh.weight[i][2].i_offset = 0; } else if( h->sh.weight[i][2].weightfn && !h->sh.weight[i][1].weightfn ) { h->sh.weight[i][1].i_scale = 1 << h->sh.weight[0][1].i_denom; h->sh.weight[i][1].i_offset = 0; } } if( !weightplane[0] ) h->sh.weight[0][0].i_denom = 0; if( !weightplane[1] ) h->sh.weight[0][1].i_denom = 0; h->sh.weight[0][2].i_denom = h->sh.weight[0][1].i_denom; } static inline int reference_distance( x264_t *h, x264_frame_t *frame ) { if( h->param.i_frame_packing == 5 ) return abs((h->fenc->i_frame&~1) - (frame->i_frame&~1)) + ((h->fenc->i_frame&1) != (frame->i_frame&1)); else return abs(h->fenc->i_frame - frame->i_frame); } static inline void reference_build_list( x264_t *h, int i_poc ) { int b_ok; /* build ref list 0/1 */ h->mb.pic.i_fref[0] = h->i_ref[0] = 0; h->mb.pic.i_fref[1] = h->i_ref[1] = 0; if( h->sh.i_type == SLICE_TYPE_I ) return; for( int i = 0; h->frames.reference[i]; i++ ) { if( h->frames.reference[i]->b_corrupt ) continue; if( h->frames.reference[i]->i_poc < i_poc ) h->fref[0][h->i_ref[0]++] = h->frames.reference[i]; else if( h->frames.reference[i]->i_poc > i_poc ) h->fref[1][h->i_ref[1]++] = h->frames.reference[i]; } if( h->sh.i_mmco_remove_from_end ) { /* Order ref0 for MMCO remove */ do { b_ok = 1; for( int i = 0; i < h->i_ref[0] - 1; i++ ) { if( h->fref[0][i]->i_frame < h->fref[0][i+1]->i_frame ) { XCHG( x264_frame_t*, h->fref[0][i], h->fref[0][i+1] ); b_ok = 0; break; } } } while( !b_ok ); for( int i = h->i_ref[0]-1; i >= h->i_ref[0] - h->sh.i_mmco_remove_from_end; i-- ) { int diff = h->i_frame_num - h->fref[0][i]->i_frame_num; h->sh.mmco[h->sh.i_mmco_command_count].i_poc = h->fref[0][i]->i_poc; h->sh.mmco[h->sh.i_mmco_command_count++].i_difference_of_pic_nums = diff; } } /* Order reference lists by distance from the current frame. */ for( int list = 0; list < 2; list++ ) { h->fref_nearest[list] = h->fref[list][0]; do { b_ok = 1; for( int i = 0; i < h->i_ref[list] - 1; i++ ) { if( list ? h->fref[list][i+1]->i_poc < h->fref_nearest[list]->i_poc : h->fref[list][i+1]->i_poc > h->fref_nearest[list]->i_poc ) h->fref_nearest[list] = h->fref[list][i+1]; if( reference_distance( h, h->fref[list][i] ) > reference_distance( h, h->fref[list][i+1] ) ) { XCHG( x264_frame_t*, h->fref[list][i], h->fref[list][i+1] ); b_ok = 0; break; } } } while( !b_ok ); } reference_check_reorder( h ); h->i_ref[1] = X264_MIN( h->i_ref[1], h->frames.i_max_ref1 ); h->i_ref[0] = X264_MIN( h->i_ref[0], h->frames.i_max_ref0 ); h->i_ref[0] = X264_MIN( h->i_ref[0], h->param.i_frame_reference ); // if reconfig() has lowered the limit /* For Blu-ray compliance, don't reference frames outside of the minigop. */ if( IS_X264_TYPE_B( h->fenc->i_type ) && h->param.b_bluray_compat ) h->i_ref[0] = X264_MIN( h->i_ref[0], IS_X264_TYPE_B( h->fref[0][0]->i_type ) + 1 ); /* add duplicates */ if( h->fenc->i_type == X264_TYPE_P ) { int idx = -1; if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE ) { x264_weight_t w[3]; w[1].weightfn = w[2].weightfn = NULL; if( h->param.rc.b_stat_read ) x264_ratecontrol_set_weights( h, h->fenc ); if( !h->fenc->weight[0][0].weightfn ) { h->fenc->weight[0][0].i_denom = 0; SET_WEIGHT( w[0], 1, 1, 0, -1 ); idx = weighted_reference_duplicate( h, 0, w ); } else { if( h->fenc->weight[0][0].i_scale == 1<fenc->weight[0][0].i_denom ) { SET_WEIGHT( h->fenc->weight[0][0], 1, 1, 0, h->fenc->weight[0][0].i_offset ); } weighted_reference_duplicate( h, 0, x264_weight_none ); if( h->fenc->weight[0][0].i_offset > -128 ) { w[0] = h->fenc->weight[0][0]; w[0].i_offset--; h->mc.weight_cache( h, &w[0] ); idx = weighted_reference_duplicate( h, 0, w ); } } } h->mb.ref_blind_dupe = idx; } assert( h->i_ref[0] + h->i_ref[1] <= X264_REF_MAX ); h->mb.pic.i_fref[0] = h->i_ref[0]; h->mb.pic.i_fref[1] = h->i_ref[1]; } static void fdec_filter_row( x264_t *h, int mb_y, int pass ) { /* mb_y is the mb to be encoded next, not the mb to be filtered here */ int b_hpel = h->fdec->b_kept_as_ref; int b_deblock = h->sh.i_disable_deblocking_filter_idc != 1; int b_end = mb_y == h->i_threadslice_end; int b_measure_quality = 1; int min_y = mb_y - (1 << SLICE_MBAFF); int b_start = min_y == h->i_threadslice_start; /* Even in interlaced mode, deblocking never modifies more than 4 pixels * above each MB, as bS=4 doesn't happen for the top of interlaced mbpairs. */ int minpix_y = min_y*16 - 4 * !b_start; int maxpix_y = mb_y*16 - 4 * !b_end; b_deblock &= b_hpel || h->param.b_full_recon || h->param.psz_dump_yuv; if( h->param.b_sliced_threads ) { switch( pass ) { /* During encode: only do deblock if asked for */ default: case 0: b_deblock &= h->param.b_full_recon; b_hpel = 0; break; /* During post-encode pass: do deblock if not done yet, do hpel for all * rows except those between slices. */ case 1: b_deblock &= !h->param.b_full_recon; b_hpel &= !(b_start && min_y > 0); b_measure_quality = 0; break; /* Final pass: do the rows between slices in sequence. */ case 2: b_deblock = 0; b_measure_quality = 0; break; } } if( mb_y & SLICE_MBAFF ) return; if( min_y < h->i_threadslice_start ) return; if( b_deblock ) for( int y = min_y; y < mb_y; y += (1 << SLICE_MBAFF) ) x264_frame_deblock_row( h, y ); /* FIXME: Prediction requires different borders for interlaced/progressive mc, * but the actual image data is equivalent. For now, maintain this * consistency by copying deblocked pixels between planes. */ if( PARAM_INTERLACED && (!h->param.b_sliced_threads || pass == 1) ) for( int p = 0; p < h->fdec->i_plane; p++ ) for( int i = minpix_y>>(CHROMA_V_SHIFT && p); i < maxpix_y>>(CHROMA_V_SHIFT && p); i++ ) memcpy( h->fdec->plane_fld[p] + i*h->fdec->i_stride[p], h->fdec->plane[p] + i*h->fdec->i_stride[p], h->mb.i_mb_width*16*SIZEOF_PIXEL ); if( h->fdec->b_kept_as_ref && (!h->param.b_sliced_threads || pass == 1) ) x264_frame_expand_border( h, h->fdec, min_y ); if( b_hpel ) { int end = mb_y == h->mb.i_mb_height; /* Can't do hpel until the previous slice is done encoding. */ if( h->param.analyse.i_subpel_refine ) { x264_frame_filter( h, h->fdec, min_y, end ); x264_frame_expand_border_filtered( h, h->fdec, min_y, end ); } } if( SLICE_MBAFF && pass == 0 ) for( int i = 0; i < 3; i++ ) { XCHG( pixel *, h->intra_border_backup[0][i], h->intra_border_backup[3][i] ); XCHG( pixel *, h->intra_border_backup[1][i], h->intra_border_backup[4][i] ); } if( h->i_thread_frames > 1 && h->fdec->b_kept_as_ref ) x264_frame_cond_broadcast( h->fdec, mb_y*16 + (b_end ? 10000 : -(X264_THREAD_HEIGHT << SLICE_MBAFF)) ); if( b_measure_quality ) { maxpix_y = X264_MIN( maxpix_y, h->param.i_height ); if( h->param.analyse.b_psnr ) { for( int p = 0; p < (CHROMA444 ? 3 : 1); p++ ) h->stat.frame.i_ssd[p] += x264_pixel_ssd_wxh( &h->pixf, h->fdec->plane[p] + minpix_y * h->fdec->i_stride[p], h->fdec->i_stride[p], h->fenc->plane[p] + minpix_y * h->fenc->i_stride[p], h->fenc->i_stride[p], h->param.i_width, maxpix_y-minpix_y ); if( !CHROMA444 ) { uint64_t ssd_u, ssd_v; int v_shift = CHROMA_V_SHIFT; x264_pixel_ssd_nv12( &h->pixf, h->fdec->plane[1] + (minpix_y>>v_shift) * h->fdec->i_stride[1], h->fdec->i_stride[1], h->fenc->plane[1] + (minpix_y>>v_shift) * h->fenc->i_stride[1], h->fenc->i_stride[1], h->param.i_width>>1, (maxpix_y-minpix_y)>>v_shift, &ssd_u, &ssd_v ); h->stat.frame.i_ssd[1] += ssd_u; h->stat.frame.i_ssd[2] += ssd_v; } } if( h->param.analyse.b_ssim ) { int ssim_cnt; x264_emms(); /* offset by 2 pixels to avoid alignment of ssim blocks with dct blocks, * and overlap by 4 */ minpix_y += b_start ? 2 : -6; h->stat.frame.f_ssim += x264_pixel_ssim_wxh( &h->pixf, h->fdec->plane[0] + 2+minpix_y*h->fdec->i_stride[0], h->fdec->i_stride[0], h->fenc->plane[0] + 2+minpix_y*h->fenc->i_stride[0], h->fenc->i_stride[0], h->param.i_width-2, maxpix_y-minpix_y, h->scratch_buffer, &ssim_cnt ); h->stat.frame.i_ssim_cnt += ssim_cnt; } } } static inline int reference_update( x264_t *h ) { if( !h->fdec->b_kept_as_ref ) { if( h->i_thread_frames > 1 ) { x264_frame_push_unused( h, h->fdec ); h->fdec = x264_frame_pop_unused( h, 1 ); if( !h->fdec ) return -1; } return 0; } /* apply mmco from previous frame. */ for( int i = 0; i < h->sh.i_mmco_command_count; i++ ) for( int j = 0; h->frames.reference[j]; j++ ) if( h->frames.reference[j]->i_poc == h->sh.mmco[i].i_poc ) x264_frame_push_unused( h, x264_frame_shift( &h->frames.reference[j] ) ); /* move frame in the buffer */ x264_frame_push( h->frames.reference, h->fdec ); if( h->frames.reference[h->sps->i_num_ref_frames] ) x264_frame_push_unused( h, x264_frame_shift( h->frames.reference ) ); h->fdec = x264_frame_pop_unused( h, 1 ); if( !h->fdec ) return -1; return 0; } static inline void reference_reset( x264_t *h ) { while( h->frames.reference[0] ) x264_frame_push_unused( h, x264_frame_pop( h->frames.reference ) ); h->fdec->i_poc = h->fenc->i_poc = 0; } static inline void reference_hierarchy_reset( x264_t *h ) { int ref; int b_hasdelayframe = 0; /* look for delay frames -- chain must only contain frames that are disposable */ for( int i = 0; h->frames.current[i] && IS_DISPOSABLE( h->frames.current[i]->i_type ); i++ ) b_hasdelayframe |= h->frames.current[i]->i_coded != h->frames.current[i]->i_frame + h->sps->vui.i_num_reorder_frames; /* This function must handle b-pyramid and clear frames for open-gop */ if( h->param.i_bframe_pyramid != X264_B_PYRAMID_STRICT && !b_hasdelayframe && h->frames.i_poc_last_open_gop == -1 ) return; /* Remove last BREF. There will never be old BREFs in the * dpb during a BREF decode when pyramid == STRICT */ for( ref = 0; h->frames.reference[ref]; ref++ ) { if( ( h->param.i_bframe_pyramid == X264_B_PYRAMID_STRICT && h->frames.reference[ref]->i_type == X264_TYPE_BREF ) || ( h->frames.reference[ref]->i_poc < h->frames.i_poc_last_open_gop && h->sh.i_type != SLICE_TYPE_B ) ) { int diff = h->i_frame_num - h->frames.reference[ref]->i_frame_num; h->sh.mmco[h->sh.i_mmco_command_count].i_difference_of_pic_nums = diff; h->sh.mmco[h->sh.i_mmco_command_count++].i_poc = h->frames.reference[ref]->i_poc; x264_frame_push_unused( h, x264_frame_shift( &h->frames.reference[ref] ) ); h->b_ref_reorder[0] = 1; ref--; } } /* Prepare room in the dpb for the delayed display time of the later b-frame's */ if( h->param.i_bframe_pyramid ) h->sh.i_mmco_remove_from_end = X264_MAX( ref + 2 - h->frames.i_max_dpb, 0 ); } static inline void slice_init( x264_t *h, int i_nal_type, int i_global_qp ) { /* ------------------------ Create slice header ----------------------- */ if( i_nal_type == NAL_SLICE_IDR ) { slice_header_init( h, &h->sh, h->sps, h->pps, h->i_idr_pic_id, h->i_frame_num, i_global_qp ); /* alternate id */ if( h->param.i_avcintra_class ) { switch( h->i_idr_pic_id ) { case 5: h->i_idr_pic_id = 3; break; case 3: h->i_idr_pic_id = 4; break; case 4: default: h->i_idr_pic_id = 5; break; } } else h->i_idr_pic_id ^= 1; } else { slice_header_init( h, &h->sh, h->sps, h->pps, -1, h->i_frame_num, i_global_qp ); h->sh.i_num_ref_idx_l0_active = h->i_ref[0] <= 0 ? 1 : h->i_ref[0]; h->sh.i_num_ref_idx_l1_active = h->i_ref[1] <= 0 ? 1 : h->i_ref[1]; if( h->sh.i_num_ref_idx_l0_active != h->pps->i_num_ref_idx_l0_default_active || (h->sh.i_type == SLICE_TYPE_B && h->sh.i_num_ref_idx_l1_active != h->pps->i_num_ref_idx_l1_default_active) ) { h->sh.b_num_ref_idx_override = 1; } } if( h->fenc->i_type == X264_TYPE_BREF && h->param.b_bluray_compat && h->sh.i_mmco_command_count ) { h->b_sh_backup = 1; h->sh_backup = h->sh; } h->fdec->i_frame_num = h->sh.i_frame_num; if( h->sps->i_poc_type == 0 ) { h->sh.i_poc = h->fdec->i_poc; if( PARAM_INTERLACED ) { h->sh.i_delta_poc_bottom = h->param.b_tff ? 1 : -1; h->sh.i_poc += h->sh.i_delta_poc_bottom == -1; } else h->sh.i_delta_poc_bottom = 0; h->fdec->i_delta_poc[0] = h->sh.i_delta_poc_bottom == -1; h->fdec->i_delta_poc[1] = h->sh.i_delta_poc_bottom == 1; } else { /* Nothing to do ? */ } x264_macroblock_slice_init( h ); } typedef struct { int skip; uint8_t cabac_prevbyte; bs_t bs; x264_cabac_t cabac; x264_frame_stat_t stat; int last_qp; int last_dqp; int field_decoding_flag; } x264_bs_bak_t; static ALWAYS_INLINE void bitstream_backup( x264_t *h, x264_bs_bak_t *bak, int i_skip, int full ) { if( full ) { bak->stat = h->stat.frame; bak->last_qp = h->mb.i_last_qp; bak->last_dqp = h->mb.i_last_dqp; bak->field_decoding_flag = h->mb.field_decoding_flag; } else { bak->stat.i_mv_bits = h->stat.frame.i_mv_bits; bak->stat.i_tex_bits = h->stat.frame.i_tex_bits; } /* In the per-MB backup, we don't need the contexts because flushing the CABAC * encoder has no context dependency and in this case, a slice is ended (and * thus the content of all contexts are thrown away). */ if( h->param.b_cabac ) { if( full ) memcpy( &bak->cabac, &h->cabac, sizeof(x264_cabac_t) ); else memcpy( &bak->cabac, &h->cabac, offsetof(x264_cabac_t, f8_bits_encoded) ); /* x264's CABAC writer modifies the previous byte during carry, so it has to be * backed up. */ bak->cabac_prevbyte = h->cabac.p[-1]; } else { bak->bs = h->out.bs; bak->skip = i_skip; } } static ALWAYS_INLINE void bitstream_restore( x264_t *h, x264_bs_bak_t *bak, int *skip, int full ) { if( full ) { h->stat.frame = bak->stat; h->mb.i_last_qp = bak->last_qp; h->mb.i_last_dqp = bak->last_dqp; h->mb.field_decoding_flag = bak->field_decoding_flag; } else { h->stat.frame.i_mv_bits = bak->stat.i_mv_bits; h->stat.frame.i_tex_bits = bak->stat.i_tex_bits; } if( h->param.b_cabac ) { if( full ) memcpy( &h->cabac, &bak->cabac, sizeof(x264_cabac_t) ); else memcpy( &h->cabac, &bak->cabac, offsetof(x264_cabac_t, f8_bits_encoded) ); h->cabac.p[-1] = bak->cabac_prevbyte; } else { h->out.bs = bak->bs; *skip = bak->skip; } } static intptr_t slice_write( x264_t *h ) { int i_skip; int mb_xy, i_mb_x, i_mb_y; /* NALUs other than the first use a 3-byte startcode. * Add one extra byte for the rbsp, and one more for the final CABAC putbyte. * Then add an extra 5 bytes just in case, to account for random NAL escapes and * other inaccuracies. */ int overhead_guess = (NALU_OVERHEAD - (h->param.b_annexb && h->out.i_nal)) + 1 + h->param.b_cabac + 5; int slice_max_size = h->param.i_slice_max_size > 0 ? (h->param.i_slice_max_size-overhead_guess)*8 : 0; int back_up_bitstream_cavlc = !h->param.b_cabac && h->sps->i_profile_idc < PROFILE_HIGH; int back_up_bitstream = slice_max_size || back_up_bitstream_cavlc; int starting_bits = bs_pos(&h->out.bs); int b_deblock = h->sh.i_disable_deblocking_filter_idc != 1; int b_hpel = h->fdec->b_kept_as_ref; int orig_last_mb = h->sh.i_last_mb; int thread_last_mb = h->i_threadslice_end * h->mb.i_mb_width - 1; uint8_t *last_emu_check; #define BS_BAK_SLICE_MAX_SIZE 0 #define BS_BAK_CAVLC_OVERFLOW 1 #define BS_BAK_SLICE_MIN_MBS 2 #define BS_BAK_ROW_VBV 3 x264_bs_bak_t bs_bak[4]; b_deblock &= b_hpel || h->param.b_full_recon || h->param.psz_dump_yuv; bs_realign( &h->out.bs ); /* Slice */ nal_start( h, h->i_nal_type, h->i_nal_ref_idc ); h->out.nal[h->out.i_nal].i_first_mb = h->sh.i_first_mb; /* Slice header */ x264_macroblock_thread_init( h ); /* Set the QP equal to the first QP in the slice for more accurate CABAC initialization. */ h->mb.i_mb_xy = h->sh.i_first_mb; h->sh.i_qp = x264_ratecontrol_mb_qp( h ); h->sh.i_qp = SPEC_QP( h->sh.i_qp ); h->sh.i_qp_delta = h->sh.i_qp - h->pps->i_pic_init_qp; slice_header_write( &h->out.bs, &h->sh, h->i_nal_ref_idc ); if( h->param.b_cabac ) { /* alignment needed */ bs_align_1( &h->out.bs ); /* init cabac */ x264_cabac_context_init( h, &h->cabac, h->sh.i_type, x264_clip3( h->sh.i_qp-QP_BD_OFFSET, 0, 51 ), h->sh.i_cabac_init_idc ); x264_cabac_encode_init ( &h->cabac, h->out.bs.p, h->out.bs.p_end ); last_emu_check = h->cabac.p; } else last_emu_check = h->out.bs.p; h->mb.i_last_qp = h->sh.i_qp; h->mb.i_last_dqp = 0; h->mb.field_decoding_flag = 0; i_mb_y = h->sh.i_first_mb / h->mb.i_mb_width; i_mb_x = h->sh.i_first_mb % h->mb.i_mb_width; i_skip = 0; while( 1 ) { mb_xy = i_mb_x + i_mb_y * h->mb.i_mb_width; int mb_spos = bs_pos(&h->out.bs) + x264_cabac_pos(&h->cabac); if( i_mb_x == 0 ) { if( bitstream_check_buffer( h ) ) return -1; if( !(i_mb_y & SLICE_MBAFF) && h->param.rc.i_vbv_buffer_size ) bitstream_backup( h, &bs_bak[BS_BAK_ROW_VBV], i_skip, 1 ); if( !h->mb.b_reencode_mb ) fdec_filter_row( h, i_mb_y, 0 ); } if( back_up_bitstream ) { if( back_up_bitstream_cavlc ) bitstream_backup( h, &bs_bak[BS_BAK_CAVLC_OVERFLOW], i_skip, 0 ); if( slice_max_size && !(i_mb_y & SLICE_MBAFF) ) { bitstream_backup( h, &bs_bak[BS_BAK_SLICE_MAX_SIZE], i_skip, 0 ); if( (thread_last_mb+1-mb_xy) == h->param.i_slice_min_mbs ) bitstream_backup( h, &bs_bak[BS_BAK_SLICE_MIN_MBS], i_skip, 0 ); } } if( PARAM_INTERLACED ) { if( h->mb.b_adaptive_mbaff ) { if( !(i_mb_y&1) ) { /* FIXME: VSAD is fast but fairly poor at choosing the best interlace type. */ h->mb.b_interlaced = x264_field_vsad( h, i_mb_x, i_mb_y ); memcpy( &h->zigzagf, MB_INTERLACED ? &h->zigzagf_interlaced : &h->zigzagf_progressive, sizeof(h->zigzagf) ); if( !MB_INTERLACED && (i_mb_y+2) == h->mb.i_mb_height ) x264_expand_border_mbpair( h, i_mb_x, i_mb_y ); } } h->mb.field[mb_xy] = MB_INTERLACED; } /* load cache */ if( SLICE_MBAFF ) x264_macroblock_cache_load_interlaced( h, i_mb_x, i_mb_y ); else x264_macroblock_cache_load_progressive( h, i_mb_x, i_mb_y ); x264_macroblock_analyse( h ); /* encode this macroblock -> be careful it can change the mb type to P_SKIP if needed */ reencode: x264_macroblock_encode( h ); if( h->param.b_cabac ) { if( mb_xy > h->sh.i_first_mb && !(SLICE_MBAFF && (i_mb_y&1)) ) x264_cabac_encode_terminal( &h->cabac ); if( IS_SKIP( h->mb.i_type ) ) x264_cabac_mb_skip( h, 1 ); else { if( h->sh.i_type != SLICE_TYPE_I ) x264_cabac_mb_skip( h, 0 ); x264_macroblock_write_cabac( h, &h->cabac ); } } else { if( IS_SKIP( h->mb.i_type ) ) i_skip++; else { if( h->sh.i_type != SLICE_TYPE_I ) { bs_write_ue( &h->out.bs, i_skip ); /* skip run */ i_skip = 0; } x264_macroblock_write_cavlc( h ); /* If there was a CAVLC level code overflow, try again at a higher QP. */ if( h->mb.b_overflow ) { h->mb.i_chroma_qp = h->chroma_qp_table[++h->mb.i_qp]; h->mb.i_skip_intra = 0; h->mb.b_skip_mc = 0; h->mb.b_overflow = 0; bitstream_restore( h, &bs_bak[BS_BAK_CAVLC_OVERFLOW], &i_skip, 0 ); goto reencode; } } } int total_bits = bs_pos(&h->out.bs) + x264_cabac_pos(&h->cabac); int mb_size = total_bits - mb_spos; if( slice_max_size && (!SLICE_MBAFF || (i_mb_y&1)) ) { /* Count the skip run, just in case. */ if( !h->param.b_cabac ) total_bits += bs_size_ue_big( i_skip ); /* Check for escape bytes. */ uint8_t *end = h->param.b_cabac ? h->cabac.p : h->out.bs.p; for( ; last_emu_check < end - 2; last_emu_check++ ) if( last_emu_check[0] == 0 && last_emu_check[1] == 0 && last_emu_check[2] <= 3 ) { slice_max_size -= 8; last_emu_check++; } /* We'll just re-encode this last macroblock if we go over the max slice size. */ if( total_bits - starting_bits > slice_max_size && !h->mb.b_reencode_mb ) { if( !x264_frame_new_slice( h, h->fdec ) ) { /* Handle the most obnoxious slice-min-mbs edge case: we need to end the slice * because it's gone over the maximum size, but doing so would violate slice-min-mbs. * If possible, roll back to the last checkpoint and try again. * We could try raising QP, but that would break in the case where a slice spans multiple * rows, which the re-encoding infrastructure can't currently handle. */ if( mb_xy <= thread_last_mb && (thread_last_mb+1-mb_xy) < h->param.i_slice_min_mbs ) { if( thread_last_mb-h->param.i_slice_min_mbs < h->sh.i_first_mb+h->param.i_slice_min_mbs ) { x264_log( h, X264_LOG_WARNING, "slice-max-size violated (frame %d, cause: slice-min-mbs)\n", h->i_frame ); slice_max_size = 0; goto cont; } bitstream_restore( h, &bs_bak[BS_BAK_SLICE_MIN_MBS], &i_skip, 0 ); h->mb.b_reencode_mb = 1; h->sh.i_last_mb = thread_last_mb-h->param.i_slice_min_mbs; break; } if( mb_xy-SLICE_MBAFF*h->mb.i_mb_stride != h->sh.i_first_mb ) { bitstream_restore( h, &bs_bak[BS_BAK_SLICE_MAX_SIZE], &i_skip, 0 ); h->mb.b_reencode_mb = 1; if( SLICE_MBAFF ) { // set to bottom of previous mbpair if( i_mb_x ) h->sh.i_last_mb = mb_xy-1+h->mb.i_mb_stride*(!(i_mb_y&1)); else h->sh.i_last_mb = (i_mb_y-2+!(i_mb_y&1))*h->mb.i_mb_stride + h->mb.i_mb_width - 1; } else h->sh.i_last_mb = mb_xy-1; break; } else h->sh.i_last_mb = mb_xy; } else slice_max_size = 0; } } cont: h->mb.b_reencode_mb = 0; /* save cache */ x264_macroblock_cache_save( h ); if( x264_ratecontrol_mb( h, mb_size ) < 0 ) { bitstream_restore( h, &bs_bak[BS_BAK_ROW_VBV], &i_skip, 1 ); h->mb.b_reencode_mb = 1; i_mb_x = 0; i_mb_y = i_mb_y - SLICE_MBAFF; h->mb.i_mb_prev_xy = i_mb_y * h->mb.i_mb_stride - 1; h->sh.i_last_mb = orig_last_mb; continue; } /* accumulate mb stats */ h->stat.frame.i_mb_count[h->mb.i_type]++; int b_intra = IS_INTRA( h->mb.i_type ); int b_skip = IS_SKIP( h->mb.i_type ); if( h->param.i_log_level >= X264_LOG_INFO || h->param.rc.b_stat_write ) { if( !b_intra && !b_skip && !IS_DIRECT( h->mb.i_type ) ) { if( h->mb.i_partition != D_8x8 ) h->stat.frame.i_mb_partition[h->mb.i_partition] += 4; else for( int i = 0; i < 4; i++ ) h->stat.frame.i_mb_partition[h->mb.i_sub_partition[i]] ++; if( h->param.i_frame_reference > 1 ) for( int i_list = 0; i_list <= (h->sh.i_type == SLICE_TYPE_B); i_list++ ) for( int i = 0; i < 4; i++ ) { int i_ref = h->mb.cache.ref[i_list][ x264_scan8[4*i] ]; if( i_ref >= 0 ) h->stat.frame.i_mb_count_ref[i_list][i_ref] ++; } } } if( h->param.i_log_level >= X264_LOG_INFO ) { if( h->mb.i_cbp_luma | h->mb.i_cbp_chroma ) { if( CHROMA444 ) { for( int i = 0; i < 4; i++ ) if( h->mb.i_cbp_luma & (1 << i) ) for( int p = 0; p < 3; p++ ) { int s8 = i*4+p*16; int nnz8x8 = M16( &h->mb.cache.non_zero_count[x264_scan8[s8]+0] ) | M16( &h->mb.cache.non_zero_count[x264_scan8[s8]+8] ); h->stat.frame.i_mb_cbp[!b_intra + p*2] += !!nnz8x8; } } else { int cbpsum = (h->mb.i_cbp_luma&1) + ((h->mb.i_cbp_luma>>1)&1) + ((h->mb.i_cbp_luma>>2)&1) + (h->mb.i_cbp_luma>>3); h->stat.frame.i_mb_cbp[!b_intra + 0] += cbpsum; h->stat.frame.i_mb_cbp[!b_intra + 2] += !!h->mb.i_cbp_chroma; h->stat.frame.i_mb_cbp[!b_intra + 4] += h->mb.i_cbp_chroma >> 1; } } if( h->mb.i_cbp_luma && !b_intra ) { h->stat.frame.i_mb_count_8x8dct[0] ++; h->stat.frame.i_mb_count_8x8dct[1] += h->mb.b_transform_8x8; } if( b_intra && h->mb.i_type != I_PCM ) { if( h->mb.i_type == I_16x16 ) h->stat.frame.i_mb_pred_mode[0][h->mb.i_intra16x16_pred_mode]++; else if( h->mb.i_type == I_8x8 ) for( int i = 0; i < 16; i += 4 ) h->stat.frame.i_mb_pred_mode[1][h->mb.cache.intra4x4_pred_mode[x264_scan8[i]]]++; else //if( h->mb.i_type == I_4x4 ) for( int i = 0; i < 16; i++ ) h->stat.frame.i_mb_pred_mode[2][h->mb.cache.intra4x4_pred_mode[x264_scan8[i]]]++; h->stat.frame.i_mb_pred_mode[3][x264_mb_chroma_pred_mode_fix[h->mb.i_chroma_pred_mode]]++; } h->stat.frame.i_mb_field[b_intra?0:b_skip?2:1] += MB_INTERLACED; } /* calculate deblock strength values (actual deblocking is done per-row along with hpel) */ if( b_deblock ) x264_macroblock_deblock_strength( h ); if( mb_xy == h->sh.i_last_mb ) break; if( SLICE_MBAFF ) { i_mb_x += i_mb_y & 1; i_mb_y ^= i_mb_x < h->mb.i_mb_width; } else i_mb_x++; if( i_mb_x == h->mb.i_mb_width ) { i_mb_y++; i_mb_x = 0; } } if( h->sh.i_last_mb < h->sh.i_first_mb ) return 0; h->out.nal[h->out.i_nal].i_last_mb = h->sh.i_last_mb; if( h->param.b_cabac ) { x264_cabac_encode_flush( h, &h->cabac ); h->out.bs.p = h->cabac.p; } else { if( i_skip > 0 ) bs_write_ue( &h->out.bs, i_skip ); /* last skip run */ /* rbsp_slice_trailing_bits */ bs_rbsp_trailing( &h->out.bs ); bs_flush( &h->out.bs ); } if( nal_end( h ) ) return -1; if( h->sh.i_last_mb == (h->i_threadslice_end * h->mb.i_mb_width - 1) ) { h->stat.frame.i_misc_bits = bs_pos( &h->out.bs ) + (h->out.i_nal*NALU_OVERHEAD * 8) - h->stat.frame.i_tex_bits - h->stat.frame.i_mv_bits; fdec_filter_row( h, h->i_threadslice_end, 0 ); if( h->param.b_sliced_threads ) { /* Tell the main thread we're done. */ x264_threadslice_cond_broadcast( h, 1 ); /* Do hpel now */ for( int mb_y = h->i_threadslice_start; mb_y <= h->i_threadslice_end; mb_y++ ) fdec_filter_row( h, mb_y, 1 ); x264_threadslice_cond_broadcast( h, 2 ); /* Do the first row of hpel, now that the previous slice is done */ if( h->i_thread_idx > 0 ) { x264_threadslice_cond_wait( h->thread[h->i_thread_idx-1], 2 ); fdec_filter_row( h, h->i_threadslice_start + (1 << SLICE_MBAFF), 2 ); } } /* Free mb info after the last thread's done using it */ if( h->fdec->mb_info_free && (!h->param.b_sliced_threads || h->i_thread_idx == (h->param.i_threads-1)) ) { h->fdec->mb_info_free( h->fdec->mb_info ); h->fdec->mb_info = NULL; h->fdec->mb_info_free = NULL; } } return 0; } static void thread_sync_context( x264_t *dst, x264_t *src ) { if( dst == src ) return; // reference counting for( x264_frame_t **f = src->frames.reference; *f; f++ ) (*f)->i_reference_count++; for( x264_frame_t **f = dst->frames.reference; *f; f++ ) x264_frame_push_unused( src, *f ); src->fdec->i_reference_count++; x264_frame_push_unused( src, dst->fdec ); // copy everything except the per-thread pointers and the constants. memcpy( &dst->i_frame, &src->i_frame, offsetof(x264_t, mb.base) - offsetof(x264_t, i_frame) ); dst->param = src->param; dst->stat = src->stat; dst->pixf = src->pixf; dst->reconfig = src->reconfig; } static void thread_sync_stat( x264_t *dst, x264_t *src ) { if( dst != src ) memcpy( &dst->stat, &src->stat, offsetof(x264_t, stat.frame) - offsetof(x264_t, stat) ); } static void *slices_write( x264_t *h ) { int i_slice_num = 0; int last_thread_mb = h->sh.i_last_mb; int round_bias = h->param.i_avcintra_class ? 0 : h->param.i_slice_count/2; /* init stats */ memset( &h->stat.frame, 0, sizeof(h->stat.frame) ); h->mb.b_reencode_mb = 0; while( h->sh.i_first_mb + SLICE_MBAFF*h->mb.i_mb_stride <= last_thread_mb ) { h->sh.i_last_mb = last_thread_mb; if( !i_slice_num || !x264_frame_new_slice( h, h->fdec ) ) { if( h->param.i_slice_max_mbs ) { if( SLICE_MBAFF ) { // convert first to mbaff form, add slice-max-mbs, then convert back to normal form int last_mbaff = 2*(h->sh.i_first_mb % h->mb.i_mb_width) + h->mb.i_mb_width*(h->sh.i_first_mb / h->mb.i_mb_width) + h->param.i_slice_max_mbs - 1; int last_x = (last_mbaff % (2*h->mb.i_mb_width))/2; int last_y = (last_mbaff / (2*h->mb.i_mb_width))*2 + 1; h->sh.i_last_mb = last_x + h->mb.i_mb_stride*last_y; } else { h->sh.i_last_mb = h->sh.i_first_mb + h->param.i_slice_max_mbs - 1; if( h->sh.i_last_mb < last_thread_mb && last_thread_mb - h->sh.i_last_mb < h->param.i_slice_min_mbs ) h->sh.i_last_mb = last_thread_mb - h->param.i_slice_min_mbs; } i_slice_num++; } else if( h->param.i_slice_count && !h->param.b_sliced_threads ) { int height = h->mb.i_mb_height >> PARAM_INTERLACED; int width = h->mb.i_mb_width << PARAM_INTERLACED; i_slice_num++; h->sh.i_last_mb = (height * i_slice_num + round_bias) / h->param.i_slice_count * width - 1; } } h->sh.i_last_mb = X264_MIN( h->sh.i_last_mb, last_thread_mb ); if( slice_write( h ) ) goto fail; h->sh.i_first_mb = h->sh.i_last_mb + 1; // if i_first_mb is not the last mb in a row then go to the next mb in MBAFF order if( SLICE_MBAFF && h->sh.i_first_mb % h->mb.i_mb_width ) h->sh.i_first_mb -= h->mb.i_mb_stride; } return (void *)0; fail: /* Tell other threads we're done, so they wouldn't wait for it */ if( h->param.b_sliced_threads ) x264_threadslice_cond_broadcast( h, 2 ); return (void *)-1; } static int threaded_slices_write( x264_t *h ) { int round_bias = h->param.i_avcintra_class ? 0 : h->param.i_slice_count/2; /* set first/last mb and sync contexts */ for( int i = 0; i < h->param.i_threads; i++ ) { x264_t *t = h->thread[i]; if( i ) { t->param = h->param; memcpy( &t->i_frame, &h->i_frame, offsetof(x264_t, rc) - offsetof(x264_t, i_frame) ); } int height = h->mb.i_mb_height >> PARAM_INTERLACED; t->i_threadslice_start = ((height * i + round_bias) / h->param.i_threads) << PARAM_INTERLACED; t->i_threadslice_end = ((height * (i+1) + round_bias) / h->param.i_threads) << PARAM_INTERLACED; t->sh.i_first_mb = t->i_threadslice_start * h->mb.i_mb_width; t->sh.i_last_mb = t->i_threadslice_end * h->mb.i_mb_width - 1; } x264_analyse_weight_frame( h, h->mb.i_mb_height*16 + 16 ); x264_threads_distribute_ratecontrol( h ); /* setup */ for( int i = 0; i < h->param.i_threads; i++ ) { h->thread[i]->i_thread_idx = i; h->thread[i]->b_thread_active = 1; x264_threadslice_cond_broadcast( h->thread[i], 0 ); } /* dispatch */ for( int i = 0; i < h->param.i_threads; i++ ) x264_threadpool_run( h->threadpool, (void*)slices_write, h->thread[i] ); /* wait */ for( int i = 0; i < h->param.i_threads; i++ ) x264_threadslice_cond_wait( h->thread[i], 1 ); x264_threads_merge_ratecontrol( h ); for( int i = 1; i < h->param.i_threads; i++ ) { x264_t *t = h->thread[i]; for( int j = 0; j < t->out.i_nal; j++ ) { h->out.nal[h->out.i_nal] = t->out.nal[j]; h->out.i_nal++; nal_check_buffer( h ); } /* All entries in stat.frame are ints except for ssd/ssim. */ for( size_t j = 0; j < (offsetof(x264_t,stat.frame.i_ssd) - offsetof(x264_t,stat.frame.i_mv_bits)) / sizeof(int); j++ ) ((int*)&h->stat.frame)[j] += ((int*)&t->stat.frame)[j]; for( int j = 0; j < 3; j++ ) h->stat.frame.i_ssd[j] += t->stat.frame.i_ssd[j]; h->stat.frame.f_ssim += t->stat.frame.f_ssim; h->stat.frame.i_ssim_cnt += t->stat.frame.i_ssim_cnt; } return 0; } void x264_encoder_intra_refresh( x264_t *h ) { h = h->thread[h->i_thread_phase]; h->b_queued_intra_refresh = 1; } int x264_encoder_invalidate_reference( x264_t *h, int64_t pts ) { if( h->param.i_bframe ) { x264_log( h, X264_LOG_ERROR, "x264_encoder_invalidate_reference is not supported with B-frames enabled\n" ); return -1; } if( h->param.b_intra_refresh ) { x264_log( h, X264_LOG_ERROR, "x264_encoder_invalidate_reference is not supported with intra refresh enabled\n" ); return -1; } h = h->thread[h->i_thread_phase]; if( pts >= h->i_last_idr_pts ) { for( int i = 0; h->frames.reference[i]; i++ ) if( pts <= h->frames.reference[i]->i_pts ) h->frames.reference[i]->b_corrupt = 1; if( pts <= h->fdec->i_pts ) h->fdec->b_corrupt = 1; } return 0; } /**************************************************************************** * x264_encoder_encode: * XXX: i_poc : is the poc of the current given picture * i_frame : is the number of the frame being coded * ex: type frame poc * I 0 2*0 * P 1 2*3 * B 2 2*1 * B 3 2*2 * P 4 2*6 * B 5 2*4 * B 6 2*5 ****************************************************************************/ int x264_encoder_encode( x264_t *h, x264_nal_t **pp_nal, int *pi_nal, x264_picture_t *pic_in, x264_picture_t *pic_out ) { x264_t *thread_current, *thread_prev, *thread_oldest; int i_nal_type, i_nal_ref_idc, i_global_qp; int overhead = NALU_OVERHEAD; #if HAVE_OPENCL if( h->opencl.b_fatal_error ) return -1; #endif if( h->i_thread_frames > 1 ) { thread_prev = h->thread[ h->i_thread_phase ]; h->i_thread_phase = (h->i_thread_phase + 1) % h->i_thread_frames; thread_current = h->thread[ h->i_thread_phase ]; thread_oldest = h->thread[ (h->i_thread_phase + 1) % h->i_thread_frames ]; thread_sync_context( thread_current, thread_prev ); x264_thread_sync_ratecontrol( thread_current, thread_prev, thread_oldest ); h = thread_current; } else { thread_current = thread_oldest = h; } h->i_cpb_delay_pir_offset = h->i_cpb_delay_pir_offset_next; /* no data out */ *pi_nal = 0; *pp_nal = NULL; /* ------------------- Setup new frame from picture -------------------- */ if( pic_in != NULL ) { if( h->lookahead->b_exit_thread ) { x264_log( h, X264_LOG_ERROR, "lookahead thread is already stopped\n" ); return -1; } /* 1: Copy the picture to a frame and move it to a buffer */ x264_frame_t *fenc = x264_frame_pop_unused( h, 0 ); if( !fenc ) return -1; if( x264_frame_copy_picture( h, fenc, pic_in ) < 0 ) return -1; if( h->param.i_width != 16 * h->mb.i_mb_width || h->param.i_height != 16 * h->mb.i_mb_height ) x264_frame_expand_border_mod16( h, fenc ); fenc->i_frame = h->frames.i_input++; if( fenc->i_frame == 0 ) h->frames.i_first_pts = fenc->i_pts; if( h->frames.i_bframe_delay && fenc->i_frame == h->frames.i_bframe_delay ) h->frames.i_bframe_delay_time = fenc->i_pts - h->frames.i_first_pts; if( h->param.b_vfr_input && fenc->i_pts <= h->frames.i_largest_pts ) x264_log( h, X264_LOG_WARNING, "non-strictly-monotonic PTS\n" ); h->frames.i_second_largest_pts = h->frames.i_largest_pts; h->frames.i_largest_pts = fenc->i_pts; if( (fenc->i_pic_struct < PIC_STRUCT_AUTO) || (fenc->i_pic_struct > PIC_STRUCT_TRIPLE) ) fenc->i_pic_struct = PIC_STRUCT_AUTO; if( fenc->i_pic_struct == PIC_STRUCT_AUTO ) { #if HAVE_INTERLACED int b_interlaced = fenc->param ? fenc->param->b_interlaced : h->param.b_interlaced; #else int b_interlaced = 0; #endif if( b_interlaced ) { int b_tff = fenc->param ? fenc->param->b_tff : h->param.b_tff; fenc->i_pic_struct = b_tff ? PIC_STRUCT_TOP_BOTTOM : PIC_STRUCT_BOTTOM_TOP; } else fenc->i_pic_struct = PIC_STRUCT_PROGRESSIVE; } if( h->param.rc.b_mb_tree && h->param.rc.b_stat_read ) { if( x264_macroblock_tree_read( h, fenc, pic_in->prop.quant_offsets ) ) return -1; } else x264_adaptive_quant_frame( h, fenc, pic_in->prop.quant_offsets ); if( pic_in->prop.quant_offsets_free ) pic_in->prop.quant_offsets_free( pic_in->prop.quant_offsets ); if( h->frames.b_have_lowres ) x264_frame_init_lowres( h, fenc ); /* 2: Place the frame into the queue for its slice type decision */ x264_lookahead_put_frame( h, fenc ); if( h->frames.i_input <= h->frames.i_delay + 1 - h->i_thread_frames ) { /* Nothing yet to encode, waiting for filling of buffers */ pic_out->i_type = X264_TYPE_AUTO; return 0; } } else { /* signal kills for lookahead thread */ x264_pthread_mutex_lock( &h->lookahead->ifbuf.mutex ); h->lookahead->b_exit_thread = 1; x264_pthread_cond_broadcast( &h->lookahead->ifbuf.cv_fill ); x264_pthread_mutex_unlock( &h->lookahead->ifbuf.mutex ); } h->i_frame++; /* 3: The picture is analyzed in the lookahead */ if( !h->frames.current[0] ) x264_lookahead_get_frames( h ); if( !h->frames.current[0] && x264_lookahead_is_empty( h ) ) return encoder_frame_end( thread_oldest, thread_current, pp_nal, pi_nal, pic_out ); /* ------------------- Get frame to be encoded ------------------------- */ /* 4: get picture to encode */ h->fenc = x264_frame_shift( h->frames.current ); /* If applicable, wait for previous frame reconstruction to finish */ if( h->param.b_sliced_threads ) if( threadpool_wait_all( h ) < 0 ) return -1; if( h->i_frame == 0 ) h->i_reordered_pts_delay = h->fenc->i_reordered_pts; if( h->reconfig ) { x264_encoder_reconfig_apply( h, &h->reconfig_h->param ); h->reconfig = 0; } if( h->fenc->param ) { x264_encoder_reconfig_apply( h, h->fenc->param ); if( h->fenc->param->param_free ) { x264_param_cleanup( h->fenc->param ); h->fenc->param->param_free( h->fenc->param ); h->fenc->param = NULL; } } x264_ratecontrol_zone_init( h ); // ok to call this before encoding any frames, since the initial values of fdec have b_kept_as_ref=0 if( reference_update( h ) ) return -1; h->fdec->i_lines_completed = -1; if( !IS_X264_TYPE_I( h->fenc->i_type ) ) { int valid_refs_left = 0; for( int i = 0; h->frames.reference[i]; i++ ) if( !h->frames.reference[i]->b_corrupt ) valid_refs_left++; /* No valid reference frames left: force an IDR. */ if( !valid_refs_left ) { h->fenc->b_keyframe = 1; h->fenc->i_type = X264_TYPE_IDR; } } if( h->fenc->b_keyframe ) { h->frames.i_last_keyframe = h->fenc->i_frame; if( h->fenc->i_type == X264_TYPE_IDR ) { h->i_frame_num = 0; h->frames.i_last_idr = h->fenc->i_frame; } } h->sh.i_mmco_command_count = h->sh.i_mmco_remove_from_end = 0; h->b_ref_reorder[0] = h->b_ref_reorder[1] = 0; h->fdec->i_poc = h->fenc->i_poc = 2 * ( h->fenc->i_frame - X264_MAX( h->frames.i_last_idr, 0 ) ); /* ------------------- Setup frame context ----------------------------- */ /* 5: Init data dependent of frame type */ if( h->fenc->i_type == X264_TYPE_IDR ) { /* reset ref pictures */ i_nal_type = NAL_SLICE_IDR; i_nal_ref_idc = NAL_PRIORITY_HIGHEST; h->sh.i_type = SLICE_TYPE_I; reference_reset( h ); h->frames.i_poc_last_open_gop = -1; } else if( h->fenc->i_type == X264_TYPE_I ) { i_nal_type = NAL_SLICE; i_nal_ref_idc = NAL_PRIORITY_HIGH; /* Not completely true but for now it is (as all I/P are kept as ref)*/ h->sh.i_type = SLICE_TYPE_I; reference_hierarchy_reset( h ); if( h->param.b_open_gop ) h->frames.i_poc_last_open_gop = h->fenc->b_keyframe ? h->fenc->i_poc : -1; } else if( h->fenc->i_type == X264_TYPE_P ) { i_nal_type = NAL_SLICE; i_nal_ref_idc = NAL_PRIORITY_HIGH; /* Not completely true but for now it is (as all I/P are kept as ref)*/ h->sh.i_type = SLICE_TYPE_P; reference_hierarchy_reset( h ); h->frames.i_poc_last_open_gop = -1; } else if( h->fenc->i_type == X264_TYPE_BREF ) { i_nal_type = NAL_SLICE; i_nal_ref_idc = h->param.i_bframe_pyramid == X264_B_PYRAMID_STRICT ? NAL_PRIORITY_LOW : NAL_PRIORITY_HIGH; h->sh.i_type = SLICE_TYPE_B; reference_hierarchy_reset( h ); } else /* B frame */ { i_nal_type = NAL_SLICE; i_nal_ref_idc = NAL_PRIORITY_DISPOSABLE; h->sh.i_type = SLICE_TYPE_B; } h->fdec->i_type = h->fenc->i_type; h->fdec->i_frame = h->fenc->i_frame; h->fenc->b_kept_as_ref = h->fdec->b_kept_as_ref = i_nal_ref_idc != NAL_PRIORITY_DISPOSABLE && h->param.i_keyint_max > 1; h->fdec->mb_info = h->fenc->mb_info; h->fdec->mb_info_free = h->fenc->mb_info_free; h->fenc->mb_info = NULL; h->fenc->mb_info_free = NULL; h->fdec->i_pts = h->fenc->i_pts; if( h->frames.i_bframe_delay ) { int64_t *prev_reordered_pts = thread_current->frames.i_prev_reordered_pts; h->fdec->i_dts = h->i_frame > h->frames.i_bframe_delay ? prev_reordered_pts[ (h->i_frame - h->frames.i_bframe_delay) % h->frames.i_bframe_delay ] : h->fenc->i_reordered_pts - h->frames.i_bframe_delay_time; prev_reordered_pts[ h->i_frame % h->frames.i_bframe_delay ] = h->fenc->i_reordered_pts; } else h->fdec->i_dts = h->fenc->i_reordered_pts; if( h->fenc->i_type == X264_TYPE_IDR ) h->i_last_idr_pts = h->fdec->i_pts; /* ------------------- Init ----------------------------- */ /* build ref list 0/1 */ reference_build_list( h, h->fdec->i_poc ); /* ---------------------- Write the bitstream -------------------------- */ /* Init bitstream context */ if( h->param.b_sliced_threads ) { for( int i = 0; i < h->param.i_threads; i++ ) { bs_init( &h->thread[i]->out.bs, h->thread[i]->out.p_bitstream, h->thread[i]->out.i_bitstream ); h->thread[i]->out.i_nal = 0; } } else { bs_init( &h->out.bs, h->out.p_bitstream, h->out.i_bitstream ); h->out.i_nal = 0; } if( h->param.b_aud ) { int pic_type; if( h->sh.i_type == SLICE_TYPE_I ) pic_type = 0; else if( h->sh.i_type == SLICE_TYPE_P ) pic_type = 1; else if( h->sh.i_type == SLICE_TYPE_B ) pic_type = 2; else pic_type = 7; nal_start( h, NAL_AUD, NAL_PRIORITY_DISPOSABLE ); bs_write( &h->out.bs, 3, pic_type ); bs_rbsp_trailing( &h->out.bs ); bs_flush( &h->out.bs ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + NALU_OVERHEAD; } h->i_nal_type = i_nal_type; h->i_nal_ref_idc = i_nal_ref_idc; if( h->param.b_intra_refresh ) { if( IS_X264_TYPE_I( h->fenc->i_type ) ) { h->fdec->i_frames_since_pir = 0; h->b_queued_intra_refresh = 0; /* PIR is currently only supported with ref == 1, so any intra frame effectively refreshes * the whole frame and counts as an intra refresh. */ h->fdec->f_pir_position = h->mb.i_mb_width; } else if( h->fenc->i_type == X264_TYPE_P ) { int pocdiff = (h->fdec->i_poc - h->fref[0][0]->i_poc)/2; float increment = X264_MAX( ((float)h->mb.i_mb_width-1) / h->param.i_keyint_max, 1 ); h->fdec->f_pir_position = h->fref[0][0]->f_pir_position; h->fdec->i_frames_since_pir = h->fref[0][0]->i_frames_since_pir + pocdiff; if( h->fdec->i_frames_since_pir >= h->param.i_keyint_max || (h->b_queued_intra_refresh && h->fdec->f_pir_position + 0.5 >= h->mb.i_mb_width) ) { h->fdec->f_pir_position = 0; h->fdec->i_frames_since_pir = 0; h->b_queued_intra_refresh = 0; h->fenc->b_keyframe = 1; } h->fdec->i_pir_start_col = h->fdec->f_pir_position+0.5; h->fdec->f_pir_position += increment * pocdiff; h->fdec->i_pir_end_col = h->fdec->f_pir_position+0.5; /* If our intra refresh has reached the right side of the frame, we're done. */ if( h->fdec->i_pir_end_col >= h->mb.i_mb_width - 1 ) { h->fdec->f_pir_position = h->mb.i_mb_width; h->fdec->i_pir_end_col = h->mb.i_mb_width - 1; } } } if( h->fenc->b_keyframe ) { /* Write SPS and PPS */ if( h->param.b_repeat_headers ) { /* generate sequence parameters */ nal_start( h, NAL_SPS, NAL_PRIORITY_HIGHEST ); x264_sps_write( &h->out.bs, h->sps ); if( nal_end( h ) ) return -1; /* Pad AUD/SPS to 256 bytes like Panasonic */ if( h->param.i_avcintra_class ) h->out.nal[h->out.i_nal-1].i_padding = 256 - bs_pos( &h->out.bs ) / 8 - 2*NALU_OVERHEAD; overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + NALU_OVERHEAD; /* generate picture parameters */ nal_start( h, NAL_PPS, NAL_PRIORITY_HIGHEST ); x264_pps_write( &h->out.bs, h->sps, h->pps ); if( nal_end( h ) ) return -1; if( h->param.i_avcintra_class ) { int total_len = 256; /* Sony XAVC uses an oversized PPS instead of SEI padding */ if( h->param.i_avcintra_flavor == X264_AVCINTRA_FLAVOR_SONY ) total_len += h->param.i_height == 1080 ? 18*512 : 10*512; h->out.nal[h->out.i_nal-1].i_padding = total_len - h->out.nal[h->out.i_nal-1].i_payload - NALU_OVERHEAD; } overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + NALU_OVERHEAD; } /* when frame threading is used, buffering period sei is written in encoder_frame_end */ if( h->i_thread_frames == 1 && h->sps->vui.b_nal_hrd_parameters_present ) { x264_hrd_fullness( h ); nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_buffering_period_write( h, &h->out.bs ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } } /* write extra sei */ for( int i = 0; i < h->fenc->extra_sei.num_payloads; i++ ) { nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_write( &h->out.bs, h->fenc->extra_sei.payloads[i].payload, h->fenc->extra_sei.payloads[i].payload_size, h->fenc->extra_sei.payloads[i].payload_type ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; if( h->fenc->extra_sei.sei_free ) { h->fenc->extra_sei.sei_free( h->fenc->extra_sei.payloads[i].payload ); h->fenc->extra_sei.payloads[i].payload = NULL; } } if( h->fenc->extra_sei.sei_free ) { h->fenc->extra_sei.sei_free( h->fenc->extra_sei.payloads ); h->fenc->extra_sei.payloads = NULL; h->fenc->extra_sei.sei_free = NULL; } if( h->fenc->b_keyframe ) { /* Avid's decoder strictly wants two SEIs for AVC-Intra so we can't insert the x264 SEI */ if( h->param.b_repeat_headers && h->fenc->i_frame == 0 && !h->param.i_avcintra_class ) { /* identify ourself */ nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); if( x264_sei_version_write( h, &h->out.bs ) ) return -1; if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( h->fenc->i_type != X264_TYPE_IDR ) { int time_to_recovery = h->param.b_open_gop ? 0 : X264_MIN( h->mb.i_mb_width - 1, h->param.i_keyint_max ) + h->param.i_bframe - 1; nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_recovery_point_write( h, &h->out.bs, time_to_recovery ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( h->param.mastering_display.b_mastering_display ) { nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_mastering_display_write( h, &h->out.bs ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( h->param.content_light_level.b_cll ) { nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_content_light_level_write( h, &h->out.bs ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( h->param.i_alternative_transfer != 2 ) { nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_alternative_transfer_write( h, &h->out.bs ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } } if( h->param.i_frame_packing >= 0 && (h->fenc->b_keyframe || h->param.i_frame_packing == 5) ) { nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_frame_packing_write( h, &h->out.bs ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } /* generate sei pic timing */ if( h->sps->vui.b_pic_struct_present || h->sps->vui.b_nal_hrd_parameters_present ) { nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_pic_timing_write( h, &h->out.bs ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } /* As required by Blu-ray. */ if( !IS_X264_TYPE_B( h->fenc->i_type ) && h->b_sh_backup ) { h->b_sh_backup = 0; nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_dec_ref_pic_marking_write( h, &h->out.bs ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; } if( h->fenc->b_keyframe && h->param.b_intra_refresh ) h->i_cpb_delay_pir_offset_next = h->fenc->i_cpb_delay; /* Filler space: 10 or 18 SEIs' worth of space, depending on resolution */ if( h->param.i_avcintra_class && h->param.i_avcintra_flavor != X264_AVCINTRA_FLAVOR_SONY ) { /* Write an empty filler NAL to mimic the AUD in the P2 format*/ nal_start( h, NAL_FILLER, NAL_PRIORITY_DISPOSABLE ); x264_filler_write( h, &h->out.bs, 0 ); if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + NALU_OVERHEAD; /* All lengths are magic lengths that decoders expect to see */ /* "UMID" SEI */ nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); if( x264_sei_avcintra_umid_write( h, &h->out.bs ) < 0 ) return -1; if( nal_end( h ) ) return -1; overhead += h->out.nal[h->out.i_nal-1].i_payload + SEI_OVERHEAD; int unpadded_len; int total_len; if( h->param.i_height == 1080 ) { unpadded_len = 5780; total_len = 17*512; } else { unpadded_len = 2900; total_len = 9*512; } /* "VANC" SEI */ nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); if( x264_sei_avcintra_vanc_write( h, &h->out.bs, unpadded_len ) < 0 ) return -1; if( nal_end( h ) ) return -1; h->out.nal[h->out.i_nal-1].i_padding = total_len - h->out.nal[h->out.i_nal-1].i_payload - SEI_OVERHEAD; overhead += h->out.nal[h->out.i_nal-1].i_payload + h->out.nal[h->out.i_nal-1].i_padding + SEI_OVERHEAD; } /* Init the rate control */ /* FIXME: Include slice header bit cost. */ x264_ratecontrol_start( h, h->fenc->i_qpplus1, overhead*8 ); i_global_qp = x264_ratecontrol_qp( h ); pic_out->i_qpplus1 = h->fdec->i_qpplus1 = i_global_qp + 1; if( h->param.rc.b_stat_read && h->sh.i_type != SLICE_TYPE_I ) { x264_reference_build_list_optimal( h ); reference_check_reorder( h ); } if( h->i_ref[0] ) h->fdec->i_poc_l0ref0 = h->fref[0][0]->i_poc; /* ------------------------ Create slice header ----------------------- */ slice_init( h, i_nal_type, i_global_qp ); /*------------------------- Weights -------------------------------------*/ if( h->sh.i_type == SLICE_TYPE_B ) x264_macroblock_bipred_init( h ); weighted_pred_init( h ); if( i_nal_ref_idc != NAL_PRIORITY_DISPOSABLE ) h->i_frame_num++; /* Write frame */ h->i_threadslice_start = 0; h->i_threadslice_end = h->mb.i_mb_height; if( h->i_thread_frames > 1 ) { x264_threadpool_run( h->threadpool, (void*)slices_write, h ); h->b_thread_active = 1; } else if( h->param.b_sliced_threads ) { if( threaded_slices_write( h ) ) return -1; } else if( (intptr_t)slices_write( h ) ) return -1; return encoder_frame_end( thread_oldest, thread_current, pp_nal, pi_nal, pic_out ); } static int encoder_frame_end( x264_t *h, x264_t *thread_current, x264_nal_t **pp_nal, int *pi_nal, x264_picture_t *pic_out ) { char psz_message[80]; if( !h->param.b_sliced_threads && h->b_thread_active ) { h->b_thread_active = 0; if( (intptr_t)x264_threadpool_wait( h->threadpool, h ) ) return -1; } if( !h->out.i_nal ) { pic_out->i_type = X264_TYPE_AUTO; return 0; } x264_emms(); /* generate buffering period sei and insert it into place */ if( h->i_thread_frames > 1 && h->fenc->b_keyframe && h->sps->vui.b_nal_hrd_parameters_present ) { x264_hrd_fullness( h ); nal_start( h, NAL_SEI, NAL_PRIORITY_DISPOSABLE ); x264_sei_buffering_period_write( h, &h->out.bs ); if( nal_end( h ) ) return -1; /* buffering period sei must follow AUD, SPS and PPS and precede all other SEIs */ int idx = 0; while( h->out.nal[idx].i_type == NAL_AUD || h->out.nal[idx].i_type == NAL_SPS || h->out.nal[idx].i_type == NAL_PPS ) idx++; x264_nal_t nal_tmp = h->out.nal[h->out.i_nal-1]; memmove( &h->out.nal[idx+1], &h->out.nal[idx], (h->out.i_nal-idx-1)*sizeof(x264_nal_t) ); h->out.nal[idx] = nal_tmp; } int frame_size = encoder_encapsulate_nals( h, 0 ); if( frame_size < 0 ) return -1; /* Set output picture properties */ pic_out->i_type = h->fenc->i_type; pic_out->b_keyframe = h->fenc->b_keyframe; pic_out->i_pic_struct = h->fenc->i_pic_struct; pic_out->i_pts = h->fdec->i_pts; pic_out->i_dts = h->fdec->i_dts; if( pic_out->i_pts < pic_out->i_dts ) x264_log( h, X264_LOG_WARNING, "invalid DTS: PTS is less than DTS\n" ); pic_out->opaque = h->fenc->opaque; pic_out->img.i_csp = h->fdec->i_csp; #if HIGH_BIT_DEPTH pic_out->img.i_csp |= X264_CSP_HIGH_DEPTH; #endif pic_out->img.i_plane = h->fdec->i_plane; for( int i = 0; i < pic_out->img.i_plane; i++ ) { pic_out->img.i_stride[i] = h->fdec->i_stride[i] * SIZEOF_PIXEL; pic_out->img.plane[i] = (uint8_t*)h->fdec->plane[i]; } x264_frame_push_unused( thread_current, h->fenc ); /* ---------------------- Update encoder state ------------------------- */ /* update rc */ int filler = 0; if( x264_ratecontrol_end( h, frame_size * 8, &filler ) < 0 ) return -1; pic_out->hrd_timing = h->fenc->hrd_timing; pic_out->prop.f_crf_avg = h->fdec->f_crf_avg; /* Filler in AVC-Intra mode is written as zero bytes to the last slice * We don't know the size of the last slice until encapsulation so we add filler to the encapsulated NAL */ if( h->param.i_avcintra_class ) { if( check_encapsulated_buffer( h, h->thread[0], h->out.i_nal, frame_size, (int64_t)frame_size + filler ) < 0 ) return -1; x264_nal_t *nal = &h->out.nal[h->out.i_nal-1]; memset( nal->p_payload + nal->i_payload, 0, filler ); nal->i_payload += filler; nal->i_padding = filler; frame_size += filler; /* Fix up the size header for mp4/etc */ if( !h->param.b_annexb ) { /* Size doesn't include the size of the header we're writing now. */ uint8_t *nal_data = nal->p_payload; int chunk_size = nal->i_payload - 4; nal_data[0] = chunk_size >> 24; nal_data[1] = chunk_size >> 16; nal_data[2] = chunk_size >> 8; nal_data[3] = chunk_size >> 0; } } else { while( filler > 0 ) { int f, overhead = FILLER_OVERHEAD - h->param.b_annexb; if( h->param.i_slice_max_size && filler > h->param.i_slice_max_size ) { int next_size = filler - h->param.i_slice_max_size; int overflow = X264_MAX( overhead - next_size, 0 ); f = h->param.i_slice_max_size - overhead - overflow; } else f = X264_MAX( 0, filler - overhead ); if( bitstream_check_buffer_filler( h, f ) ) return -1; nal_start( h, NAL_FILLER, NAL_PRIORITY_DISPOSABLE ); x264_filler_write( h, &h->out.bs, f ); if( nal_end( h ) ) return -1; int total_size = encoder_encapsulate_nals( h, h->out.i_nal-1 ); if( total_size < 0 ) return -1; frame_size += total_size; filler -= total_size; } } /* End bitstream, set output */ *pi_nal = h->out.i_nal; *pp_nal = h->out.nal; h->out.i_nal = 0; x264_noise_reduction_update( h ); /* ---------------------- Compute/Print statistics --------------------- */ thread_sync_stat( h, h->thread[0] ); /* Slice stat */ h->stat.i_frame_count[h->sh.i_type]++; h->stat.i_frame_size[h->sh.i_type] += frame_size; h->stat.f_frame_qp[h->sh.i_type] += h->fdec->f_qp_avg_aq; for( int i = 0; i < X264_MBTYPE_MAX; i++ ) h->stat.i_mb_count[h->sh.i_type][i] += h->stat.frame.i_mb_count[i]; for( int i = 0; i < 2; i++ ) h->stat.i_mb_count_8x8dct[i] += h->stat.frame.i_mb_count_8x8dct[i]; for( int i = 0; i < 6; i++ ) h->stat.i_mb_cbp[i] += h->stat.frame.i_mb_cbp[i]; for( int i = 0; i < 4; i++ ) for( int j = 0; j < 13; j++ ) h->stat.i_mb_pred_mode[i][j] += h->stat.frame.i_mb_pred_mode[i][j]; if( h->sh.i_type != SLICE_TYPE_I ) { for( int i = 0; i < X264_PARTTYPE_MAX; i++ ) h->stat.i_mb_partition[h->sh.i_type][i] += h->stat.frame.i_mb_partition[i]; for( int i_list = 0; i_list < 2; i_list++ ) for( int i = 0; i < X264_REF_MAX*2; i++ ) h->stat.i_mb_count_ref[h->sh.i_type][i_list][i] += h->stat.frame.i_mb_count_ref[i_list][i]; } for( int i = 0; i < 3; i++ ) h->stat.i_mb_field[i] += h->stat.frame.i_mb_field[i]; if( h->sh.i_type == SLICE_TYPE_P && h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE ) { h->stat.i_wpred[0] += !!h->sh.weight[0][0].weightfn; h->stat.i_wpred[1] += !!h->sh.weight[0][1].weightfn || !!h->sh.weight[0][2].weightfn; } if( h->sh.i_type == SLICE_TYPE_B ) { h->stat.i_direct_frames[ h->sh.b_direct_spatial_mv_pred ] ++; if( h->mb.b_direct_auto_write ) { //FIXME somewhat arbitrary time constants if( h->stat.i_direct_score[0] + h->stat.i_direct_score[1] > h->mb.i_mb_count ) for( int i = 0; i < 2; i++ ) h->stat.i_direct_score[i] = h->stat.i_direct_score[i] * 9/10; for( int i = 0; i < 2; i++ ) h->stat.i_direct_score[i] += h->stat.frame.i_direct_score[i]; } } else h->stat.i_consecutive_bframes[h->fenc->i_bframes]++; psz_message[0] = '\0'; double dur = h->fenc->f_duration; h->stat.f_frame_duration[h->sh.i_type] += dur; if( h->param.analyse.b_psnr ) { int64_t ssd[3] = { h->stat.frame.i_ssd[0], h->stat.frame.i_ssd[1], h->stat.frame.i_ssd[2], }; int luma_size = h->param.i_width * h->param.i_height; int chroma_size = CHROMA_SIZE( luma_size ); pic_out->prop.f_psnr[0] = calc_psnr( ssd[0], luma_size ); pic_out->prop.f_psnr[1] = calc_psnr( ssd[1], chroma_size ); pic_out->prop.f_psnr[2] = calc_psnr( ssd[2], chroma_size ); pic_out->prop.f_psnr_avg = calc_psnr( ssd[0] + ssd[1] + ssd[2], luma_size + chroma_size*2 ); h->stat.f_ssd_global[h->sh.i_type] += dur * (ssd[0] + ssd[1] + ssd[2]); h->stat.f_psnr_average[h->sh.i_type] += dur * pic_out->prop.f_psnr_avg; h->stat.f_psnr_mean_y[h->sh.i_type] += dur * pic_out->prop.f_psnr[0]; h->stat.f_psnr_mean_u[h->sh.i_type] += dur * pic_out->prop.f_psnr[1]; h->stat.f_psnr_mean_v[h->sh.i_type] += dur * pic_out->prop.f_psnr[2]; snprintf( psz_message, 80, " PSNR Y:%5.2f U:%5.2f V:%5.2f", pic_out->prop.f_psnr[0], pic_out->prop.f_psnr[1], pic_out->prop.f_psnr[2] ); } if( h->param.analyse.b_ssim ) { pic_out->prop.f_ssim = h->stat.frame.f_ssim / h->stat.frame.i_ssim_cnt; h->stat.f_ssim_mean_y[h->sh.i_type] += pic_out->prop.f_ssim * dur; int msg_len = strlen(psz_message); snprintf( psz_message + msg_len, 80 - msg_len, " SSIM Y:%.5f", pic_out->prop.f_ssim ); } psz_message[79] = '\0'; x264_log( h, X264_LOG_DEBUG, "frame=%4d QP=%.2f NAL=%d Slice:%c Poc:%-3d I:%-4d P:%-4d SKIP:%-4d size=%d bytes%s\n", h->i_frame, h->fdec->f_qp_avg_aq, h->i_nal_ref_idc, h->sh.i_type == SLICE_TYPE_I ? 'I' : (h->sh.i_type == SLICE_TYPE_P ? 'P' : 'B' ), h->fdec->i_poc, h->stat.frame.i_mb_count_i, h->stat.frame.i_mb_count_p, h->stat.frame.i_mb_count_skip, frame_size, psz_message ); // keep stats all in one place thread_sync_stat( h->thread[0], h ); // for the use of the next frame thread_sync_stat( thread_current, h ); #ifdef DEBUG_MB_TYPE { static const char mb_chars[] = { 'i', 'i', 'I', 'C', 'P', '8', 'S', 'D', '<', 'X', 'B', 'X', '>', 'B', 'B', 'B', 'B', '8', 'S' }; for( int mb_xy = 0; mb_xy < h->mb.i_mb_width * h->mb.i_mb_height; mb_xy++ ) { if( h->mb.type[mb_xy] < X264_MBTYPE_MAX && h->mb.type[mb_xy] >= 0 ) fprintf( stderr, "%c ", mb_chars[ h->mb.type[mb_xy] ] ); else fprintf( stderr, "? " ); if( (mb_xy+1) % h->mb.i_mb_width == 0 ) fprintf( stderr, "\n" ); } } #endif /* Remove duplicates, must be done near the end as breaks h->fref0 array * by freeing some of its pointers. */ for( int i = 0; i < h->i_ref[0]; i++ ) if( h->fref[0][i] && h->fref[0][i]->b_duplicate ) { x264_frame_push_blank_unused( h, h->fref[0][i] ); h->fref[0][i] = 0; } if( h->param.psz_dump_yuv ) frame_dump( h ); x264_emms(); return frame_size; } static void print_intra( int64_t *i_mb_count, double i_count, int b_print_pcm, char *intra ) { intra += sprintf( intra, "I16..4%s: %4.1f%% %4.1f%% %4.1f%%", b_print_pcm ? "..PCM" : "", i_mb_count[I_16x16]/ i_count, i_mb_count[I_8x8] / i_count, i_mb_count[I_4x4] / i_count ); if( b_print_pcm ) sprintf( intra, " %4.1f%%", i_mb_count[I_PCM] / i_count ); } /**************************************************************************** * x264_encoder_close: ****************************************************************************/ void x264_encoder_close ( x264_t *h ) { int64_t i_yuv_size = FRAME_SIZE( h->param.i_width * h->param.i_height ); int64_t i_mb_count_size[2][7] = {{0}}; char buf[200]; int b_print_pcm = h->stat.i_mb_count[SLICE_TYPE_I][I_PCM] || h->stat.i_mb_count[SLICE_TYPE_P][I_PCM] || h->stat.i_mb_count[SLICE_TYPE_B][I_PCM]; x264_lookahead_delete( h ); #if HAVE_OPENCL x264_opencl_lookahead_delete( h ); x264_opencl_function_t *ocl = h->opencl.ocl; #endif if( h->param.b_sliced_threads ) threadpool_wait_all( h ); if( h->param.i_threads > 1 ) x264_threadpool_delete( h->threadpool ); if( h->param.i_lookahead_threads > 1 ) x264_threadpool_delete( h->lookaheadpool ); if( h->i_thread_frames > 1 ) { for( int i = 0; i < h->i_thread_frames; i++ ) if( h->thread[i]->b_thread_active ) { assert( h->thread[i]->fenc->i_reference_count == 1 ); x264_frame_delete( h->thread[i]->fenc ); } x264_t *thread_prev = h->thread[h->i_thread_phase]; x264_thread_sync_ratecontrol( h, thread_prev, h ); x264_thread_sync_ratecontrol( thread_prev, thread_prev, h ); h->i_frame = thread_prev->i_frame + 1 - h->i_thread_frames; } h->i_frame++; /* Slices used and PSNR */ for( int i = 0; i < 3; i++ ) { static const uint8_t slice_order[] = { SLICE_TYPE_I, SLICE_TYPE_P, SLICE_TYPE_B }; int i_slice = slice_order[i]; if( h->stat.i_frame_count[i_slice] > 0 ) { int i_count = h->stat.i_frame_count[i_slice]; double dur = h->stat.f_frame_duration[i_slice]; if( h->param.analyse.b_psnr ) { x264_log( h, X264_LOG_INFO, "frame %c:%-5d Avg QP:%5.2f size:%6.0f PSNR Mean Y:%5.2f U:%5.2f V:%5.2f Avg:%5.2f Global:%5.2f\n", slice_type_to_char[i_slice], i_count, h->stat.f_frame_qp[i_slice] / i_count, (double)h->stat.i_frame_size[i_slice] / i_count, h->stat.f_psnr_mean_y[i_slice] / dur, h->stat.f_psnr_mean_u[i_slice] / dur, h->stat.f_psnr_mean_v[i_slice] / dur, h->stat.f_psnr_average[i_slice] / dur, calc_psnr( h->stat.f_ssd_global[i_slice], dur * i_yuv_size ) ); } else { x264_log( h, X264_LOG_INFO, "frame %c:%-5d Avg QP:%5.2f size:%6.0f\n", slice_type_to_char[i_slice], i_count, h->stat.f_frame_qp[i_slice] / i_count, (double)h->stat.i_frame_size[i_slice] / i_count ); } } } if( h->param.i_bframe && h->stat.i_frame_count[SLICE_TYPE_B] ) { char *p = buf; int den = 0; // weight by number of frames (including the I/P-frames) that are in a sequence of N B-frames for( int i = 0; i <= h->param.i_bframe; i++ ) den += (i+1) * h->stat.i_consecutive_bframes[i]; for( int i = 0; i <= h->param.i_bframe; i++ ) p += sprintf( p, " %4.1f%%", 100. * (i+1) * h->stat.i_consecutive_bframes[i] / den ); x264_log( h, X264_LOG_INFO, "consecutive B-frames:%s\n", buf ); } for( int i_type = 0; i_type < 2; i_type++ ) for( int i = 0; i < X264_PARTTYPE_MAX; i++ ) { if( i == D_DIRECT_8x8 ) continue; /* direct is counted as its own type */ i_mb_count_size[i_type][x264_mb_partition_pixel_table[i]] += h->stat.i_mb_partition[i_type][i]; } /* MB types used */ if( h->stat.i_frame_count[SLICE_TYPE_I] > 0 ) { int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_I]; double i_count = (double)h->stat.i_frame_count[SLICE_TYPE_I] * h->mb.i_mb_count / 100.0; print_intra( i_mb_count, i_count, b_print_pcm, buf ); x264_log( h, X264_LOG_INFO, "mb I %s\n", buf ); } if( h->stat.i_frame_count[SLICE_TYPE_P] > 0 ) { int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_P]; double i_count = (double)h->stat.i_frame_count[SLICE_TYPE_P] * h->mb.i_mb_count / 100.0; int64_t *i_mb_size = i_mb_count_size[SLICE_TYPE_P]; print_intra( i_mb_count, i_count, b_print_pcm, buf ); x264_log( h, X264_LOG_INFO, "mb P %s P16..4: %4.1f%% %4.1f%% %4.1f%% %4.1f%% %4.1f%% skip:%4.1f%%\n", buf, i_mb_size[PIXEL_16x16] / (i_count*4), (i_mb_size[PIXEL_16x8] + i_mb_size[PIXEL_8x16]) / (i_count*4), i_mb_size[PIXEL_8x8] / (i_count*4), (i_mb_size[PIXEL_8x4] + i_mb_size[PIXEL_4x8]) / (i_count*4), i_mb_size[PIXEL_4x4] / (i_count*4), i_mb_count[P_SKIP] / i_count ); } if( h->stat.i_frame_count[SLICE_TYPE_B] > 0 ) { int64_t *i_mb_count = h->stat.i_mb_count[SLICE_TYPE_B]; double i_count = (double)h->stat.i_frame_count[SLICE_TYPE_B] * h->mb.i_mb_count / 100.0; double i_mb_list_count; int64_t *i_mb_size = i_mb_count_size[SLICE_TYPE_B]; int64_t list_count[3] = {0}; /* 0 == L0, 1 == L1, 2 == BI */ print_intra( i_mb_count, i_count, b_print_pcm, buf ); for( int i = 0; i < X264_PARTTYPE_MAX; i++ ) for( int j = 0; j < 2; j++ ) { int l0 = x264_mb_type_list_table[i][0][j]; int l1 = x264_mb_type_list_table[i][1][j]; if( l0 || l1 ) list_count[l1+l0*l1] += h->stat.i_mb_count[SLICE_TYPE_B][i] * 2; } list_count[0] += h->stat.i_mb_partition[SLICE_TYPE_B][D_L0_8x8]; list_count[1] += h->stat.i_mb_partition[SLICE_TYPE_B][D_L1_8x8]; list_count[2] += h->stat.i_mb_partition[SLICE_TYPE_B][D_BI_8x8]; i_mb_count[B_DIRECT] += (h->stat.i_mb_partition[SLICE_TYPE_B][D_DIRECT_8x8]+2)/4; i_mb_list_count = (list_count[0] + list_count[1] + list_count[2]) / 100.0; sprintf( buf + strlen(buf), " B16..8: %4.1f%% %4.1f%% %4.1f%% direct:%4.1f%% skip:%4.1f%%", i_mb_size[PIXEL_16x16] / (i_count*4), (i_mb_size[PIXEL_16x8] + i_mb_size[PIXEL_8x16]) / (i_count*4), i_mb_size[PIXEL_8x8] / (i_count*4), i_mb_count[B_DIRECT] / i_count, i_mb_count[B_SKIP] / i_count ); if( i_mb_list_count != 0 ) sprintf( buf + strlen(buf), " L0:%4.1f%% L1:%4.1f%% BI:%4.1f%%", list_count[0] / i_mb_list_count, list_count[1] / i_mb_list_count, list_count[2] / i_mb_list_count ); x264_log( h, X264_LOG_INFO, "mb B %s\n", buf ); } x264_ratecontrol_summary( h ); if( h->stat.i_frame_count[SLICE_TYPE_I] + h->stat.i_frame_count[SLICE_TYPE_P] + h->stat.i_frame_count[SLICE_TYPE_B] > 0 ) { #define SUM3(p) (p[SLICE_TYPE_I] + p[SLICE_TYPE_P] + p[SLICE_TYPE_B]) #define SUM3b(p,o) (p[SLICE_TYPE_I][o] + p[SLICE_TYPE_P][o] + p[SLICE_TYPE_B][o]) int64_t i_i8x8 = SUM3b( h->stat.i_mb_count, I_8x8 ); int64_t i_intra = i_i8x8 + SUM3b( h->stat.i_mb_count, I_4x4 ) + SUM3b( h->stat.i_mb_count, I_16x16 ); int64_t i_all_intra = i_intra + SUM3b( h->stat.i_mb_count, I_PCM ); int64_t i_skip = SUM3b( h->stat.i_mb_count, P_SKIP ) + SUM3b( h->stat.i_mb_count, B_SKIP ); const int i_count = h->stat.i_frame_count[SLICE_TYPE_I] + h->stat.i_frame_count[SLICE_TYPE_P] + h->stat.i_frame_count[SLICE_TYPE_B]; int64_t i_mb_count = (int64_t)i_count * h->mb.i_mb_count; int64_t i_inter = i_mb_count - i_skip - i_all_intra; const double duration = h->stat.f_frame_duration[SLICE_TYPE_I] + h->stat.f_frame_duration[SLICE_TYPE_P] + h->stat.f_frame_duration[SLICE_TYPE_B]; float f_bitrate = SUM3(h->stat.i_frame_size) / duration / 125; if( PARAM_INTERLACED ) { char *fieldstats = buf; fieldstats[0] = 0; if( i_inter ) fieldstats += sprintf( fieldstats, " inter:%.1f%%", h->stat.i_mb_field[1] * 100.0 / i_inter ); if( i_skip ) fieldstats += sprintf( fieldstats, " skip:%.1f%%", h->stat.i_mb_field[2] * 100.0 / i_skip ); x264_log( h, X264_LOG_INFO, "field mbs: intra: %.1f%%%s\n", h->stat.i_mb_field[0] * 100.0 / i_all_intra, buf ); } if( h->pps->b_transform_8x8_mode ) { buf[0] = 0; if( h->stat.i_mb_count_8x8dct[0] ) sprintf( buf, " inter:%.1f%%", 100. * h->stat.i_mb_count_8x8dct[1] / h->stat.i_mb_count_8x8dct[0] ); x264_log( h, X264_LOG_INFO, "8x8 transform intra:%.1f%%%s\n", 100. * i_i8x8 / X264_MAX( i_intra, 1 ), buf ); } if( (h->param.analyse.i_direct_mv_pred == X264_DIRECT_PRED_AUTO || (h->stat.i_direct_frames[0] && h->stat.i_direct_frames[1])) && h->stat.i_frame_count[SLICE_TYPE_B] ) { x264_log( h, X264_LOG_INFO, "direct mvs spatial:%.1f%% temporal:%.1f%%\n", h->stat.i_direct_frames[1] * 100. / h->stat.i_frame_count[SLICE_TYPE_B], h->stat.i_direct_frames[0] * 100. / h->stat.i_frame_count[SLICE_TYPE_B] ); } buf[0] = 0; if( CHROMA_FORMAT ) { int csize = CHROMA444 ? 4 : 1; if( i_mb_count != i_all_intra ) sprintf( buf, " inter: %.1f%% %.1f%% %.1f%%", h->stat.i_mb_cbp[1] * 100.0 / ((i_mb_count - i_all_intra)*4), h->stat.i_mb_cbp[3] * 100.0 / ((i_mb_count - i_all_intra)*csize), h->stat.i_mb_cbp[5] * 100.0 / ((i_mb_count - i_all_intra)*csize) ); x264_log( h, X264_LOG_INFO, "coded y,%s,%s intra: %.1f%% %.1f%% %.1f%%%s\n", CHROMA444?"u":"uvDC", CHROMA444?"v":"uvAC", h->stat.i_mb_cbp[0] * 100.0 / (i_all_intra*4), h->stat.i_mb_cbp[2] * 100.0 / (i_all_intra*csize), h->stat.i_mb_cbp[4] * 100.0 / (i_all_intra*csize), buf ); } else { if( i_mb_count != i_all_intra ) sprintf( buf, " inter: %.1f%%", h->stat.i_mb_cbp[1] * 100.0 / ((i_mb_count - i_all_intra)*4) ); x264_log( h, X264_LOG_INFO, "coded y intra: %.1f%%%s\n", h->stat.i_mb_cbp[0] * 100.0 / (i_all_intra*4), buf ); } int64_t fixed_pred_modes[4][9] = {{0}}; int64_t sum_pred_modes[4] = {0}; for( int i = 0; i <= I_PRED_16x16_DC_128; i++ ) { fixed_pred_modes[0][x264_mb_pred_mode16x16_fix[i]] += h->stat.i_mb_pred_mode[0][i]; sum_pred_modes[0] += h->stat.i_mb_pred_mode[0][i]; } if( sum_pred_modes[0] ) x264_log( h, X264_LOG_INFO, "i16 v,h,dc,p: %2.0f%% %2.0f%% %2.0f%% %2.0f%%\n", fixed_pred_modes[0][0] * 100.0 / sum_pred_modes[0], fixed_pred_modes[0][1] * 100.0 / sum_pred_modes[0], fixed_pred_modes[0][2] * 100.0 / sum_pred_modes[0], fixed_pred_modes[0][3] * 100.0 / sum_pred_modes[0] ); for( int i = 1; i <= 2; i++ ) { for( int j = 0; j <= I_PRED_8x8_DC_128; j++ ) { fixed_pred_modes[i][x264_mb_pred_mode4x4_fix(j)] += h->stat.i_mb_pred_mode[i][j]; sum_pred_modes[i] += h->stat.i_mb_pred_mode[i][j]; } if( sum_pred_modes[i] ) x264_log( h, X264_LOG_INFO, "i%d v,h,dc,ddl,ddr,vr,hd,vl,hu: %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%% %2.0f%%\n", (3-i)*4, fixed_pred_modes[i][0] * 100.0 / sum_pred_modes[i], fixed_pred_modes[i][1] * 100.0 / sum_pred_modes[i], fixed_pred_modes[i][2] * 100.0 / sum_pred_modes[i], fixed_pred_modes[i][3] * 100.0 / sum_pred_modes[i], fixed_pred_modes[i][4] * 100.0 / sum_pred_modes[i], fixed_pred_modes[i][5] * 100.0 / sum_pred_modes[i], fixed_pred_modes[i][6] * 100.0 / sum_pred_modes[i], fixed_pred_modes[i][7] * 100.0 / sum_pred_modes[i], fixed_pred_modes[i][8] * 100.0 / sum_pred_modes[i] ); } for( int i = 0; i <= I_PRED_CHROMA_DC_128; i++ ) { fixed_pred_modes[3][x264_mb_chroma_pred_mode_fix[i]] += h->stat.i_mb_pred_mode[3][i]; sum_pred_modes[3] += h->stat.i_mb_pred_mode[3][i]; } if( sum_pred_modes[3] && !CHROMA444 ) x264_log( h, X264_LOG_INFO, "i8c dc,h,v,p: %2.0f%% %2.0f%% %2.0f%% %2.0f%%\n", fixed_pred_modes[3][0] * 100.0 / sum_pred_modes[3], fixed_pred_modes[3][1] * 100.0 / sum_pred_modes[3], fixed_pred_modes[3][2] * 100.0 / sum_pred_modes[3], fixed_pred_modes[3][3] * 100.0 / sum_pred_modes[3] ); if( h->param.analyse.i_weighted_pred >= X264_WEIGHTP_SIMPLE && h->stat.i_frame_count[SLICE_TYPE_P] > 0 ) { buf[0] = 0; if( CHROMA_FORMAT ) sprintf( buf, " UV:%.1f%%", h->stat.i_wpred[1] * 100.0 / h->stat.i_frame_count[SLICE_TYPE_P] ); x264_log( h, X264_LOG_INFO, "Weighted P-Frames: Y:%.1f%%%s\n", h->stat.i_wpred[0] * 100.0 / h->stat.i_frame_count[SLICE_TYPE_P], buf ); } for( int i_list = 0; i_list < 2; i_list++ ) for( int i_slice = 0; i_slice < 2; i_slice++ ) { char *p = buf; int64_t i_den = 0; int i_max = 0; for( int i = 0; i < X264_REF_MAX*2; i++ ) if( h->stat.i_mb_count_ref[i_slice][i_list][i] ) { i_den += h->stat.i_mb_count_ref[i_slice][i_list][i]; i_max = i; } if( i_max == 0 ) continue; for( int i = 0; i <= i_max; i++ ) p += sprintf( p, " %4.1f%%", 100. * h->stat.i_mb_count_ref[i_slice][i_list][i] / i_den ); x264_log( h, X264_LOG_INFO, "ref %c L%d:%s\n", "PB"[i_slice], i_list, buf ); } if( h->param.analyse.b_ssim ) { float ssim = SUM3( h->stat.f_ssim_mean_y ) / duration; x264_log( h, X264_LOG_INFO, "SSIM Mean Y:%.7f (%6.3fdb)\n", ssim, calc_ssim_db( ssim ) ); } if( h->param.analyse.b_psnr ) { x264_log( h, X264_LOG_INFO, "PSNR Mean Y:%6.3f U:%6.3f V:%6.3f Avg:%6.3f Global:%6.3f kb/s:%.2f\n", SUM3( h->stat.f_psnr_mean_y ) / duration, SUM3( h->stat.f_psnr_mean_u ) / duration, SUM3( h->stat.f_psnr_mean_v ) / duration, SUM3( h->stat.f_psnr_average ) / duration, calc_psnr( SUM3( h->stat.f_ssd_global ), duration * i_yuv_size ), f_bitrate ); } else x264_log( h, X264_LOG_INFO, "kb/s:%.2f\n", f_bitrate ); } /* rc */ x264_ratecontrol_delete( h ); /* param */ x264_param_cleanup( &h->param ); x264_cqm_delete( h ); x264_free( h->nal_buffer ); x264_free( h->reconfig_h ); x264_analyse_free_costs( h ); x264_free( h->cost_table ); if( h->i_thread_frames > 1 ) h = h->thread[h->i_thread_phase]; /* frames */ x264_frame_delete_list( h->frames.unused[0] ); x264_frame_delete_list( h->frames.unused[1] ); x264_frame_delete_list( h->frames.current ); x264_frame_delete_list( h->frames.blank_unused ); h = h->thread[0]; for( int i = 0; i < h->i_thread_frames; i++ ) if( h->thread[i]->b_thread_active ) for( int j = 0; j < h->thread[i]->i_ref[0]; j++ ) if( h->thread[i]->fref[0][j] && h->thread[i]->fref[0][j]->b_duplicate ) x264_frame_delete( h->thread[i]->fref[0][j] ); if( h->param.i_lookahead_threads > 1 ) for( int i = 0; i < h->param.i_lookahead_threads; i++ ) x264_free( h->lookahead_thread[i] ); for( int i = h->param.i_threads - 1; i >= 0; i-- ) { x264_frame_t **frame; if( !h->param.b_sliced_threads || i == 0 ) { for( frame = h->thread[i]->frames.reference; *frame; frame++ ) { assert( (*frame)->i_reference_count > 0 ); (*frame)->i_reference_count--; if( (*frame)->i_reference_count == 0 ) x264_frame_delete( *frame ); } frame = &h->thread[i]->fdec; if( *frame ) { assert( (*frame)->i_reference_count > 0 ); (*frame)->i_reference_count--; if( (*frame)->i_reference_count == 0 ) x264_frame_delete( *frame ); } x264_macroblock_cache_free( h->thread[i] ); } x264_macroblock_thread_free( h->thread[i], 0 ); x264_free( h->thread[i]->out.p_bitstream ); x264_free( h->thread[i]->out.nal ); x264_pthread_mutex_destroy( &h->thread[i]->mutex ); x264_pthread_cond_destroy( &h->thread[i]->cv ); x264_free( h->thread[i] ); } #if HAVE_OPENCL x264_opencl_close_library( ocl ); #endif } int x264_encoder_delayed_frames( x264_t *h ) { int delayed_frames = 0; if( h->i_thread_frames > 1 ) { for( int i = 0; i < h->i_thread_frames; i++ ) delayed_frames += h->thread[i]->b_thread_active; h = h->thread[h->i_thread_phase]; } for( int i = 0; h->frames.current[i]; i++ ) delayed_frames++; x264_pthread_mutex_lock( &h->lookahead->ofbuf.mutex ); x264_pthread_mutex_lock( &h->lookahead->ifbuf.mutex ); x264_pthread_mutex_lock( &h->lookahead->next.mutex ); delayed_frames += h->lookahead->ifbuf.i_size + h->lookahead->next.i_size + h->lookahead->ofbuf.i_size; x264_pthread_mutex_unlock( &h->lookahead->next.mutex ); x264_pthread_mutex_unlock( &h->lookahead->ifbuf.mutex ); x264_pthread_mutex_unlock( &h->lookahead->ofbuf.mutex ); return delayed_frames; } int x264_encoder_maximum_delayed_frames( x264_t *h ) { return h->frames.i_delay; }