/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/acm2/acm_receiver.h" #include #include #include #include #include "absl/strings/match.h" #include "api/audio/audio_frame.h" #include "api/audio_codecs/audio_decoder.h" #include "api/neteq/neteq.h" #include "modules/audio_coding/acm2/acm_resampler.h" #include "modules/audio_coding/acm2/call_statistics.h" #include "modules/audio_coding/neteq/default_neteq_factory.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/strings/audio_format_to_string.h" #include "system_wrappers/include/clock.h" namespace webrtc { namespace acm2 { namespace { std::unique_ptr CreateNetEq( NetEqFactory* neteq_factory, const NetEq::Config& config, Clock* clock, const rtc::scoped_refptr& decoder_factory) { if (neteq_factory) { return neteq_factory->CreateNetEq(config, decoder_factory, clock); } return DefaultNetEqFactory().CreateNetEq(config, decoder_factory, clock); } } // namespace AcmReceiver::AcmReceiver(const AudioCodingModule::Config& config) : last_audio_buffer_(new int16_t[AudioFrame::kMaxDataSizeSamples]), neteq_(CreateNetEq(config.neteq_factory, config.neteq_config, config.clock, config.decoder_factory)), clock_(config.clock), resampled_last_output_frame_(true) { RTC_DCHECK(clock_); memset(last_audio_buffer_.get(), 0, sizeof(int16_t) * AudioFrame::kMaxDataSizeSamples); } AcmReceiver::~AcmReceiver() = default; int AcmReceiver::SetMinimumDelay(int delay_ms) { if (neteq_->SetMinimumDelay(delay_ms)) return 0; RTC_LOG(LERROR) << "AcmReceiver::SetExtraDelay " << delay_ms; return -1; } int AcmReceiver::SetMaximumDelay(int delay_ms) { if (neteq_->SetMaximumDelay(delay_ms)) return 0; RTC_LOG(LERROR) << "AcmReceiver::SetExtraDelay " << delay_ms; return -1; } bool AcmReceiver::SetBaseMinimumDelayMs(int delay_ms) { return neteq_->SetBaseMinimumDelayMs(delay_ms); } int AcmReceiver::GetBaseMinimumDelayMs() const { return neteq_->GetBaseMinimumDelayMs(); } absl::optional AcmReceiver::last_packet_sample_rate_hz() const { MutexLock lock(&mutex_); if (!last_decoder_) { return absl::nullopt; } return last_decoder_->sample_rate_hz; } int AcmReceiver::last_output_sample_rate_hz() const { return neteq_->last_output_sample_rate_hz(); } int AcmReceiver::InsertPacket(const RTPHeader& rtp_header, rtc::ArrayView incoming_payload) { if (incoming_payload.empty()) { neteq_->InsertEmptyPacket(rtp_header); return 0; } int payload_type = rtp_header.payloadType; auto format = neteq_->GetDecoderFormat(payload_type); if (format && absl::EqualsIgnoreCase(format->sdp_format.name, "red")) { // This is a RED packet. Get the format of the audio codec. payload_type = incoming_payload[0] & 0x7f; format = neteq_->GetDecoderFormat(payload_type); } if (!format) { RTC_LOG_F(LS_ERROR) << "Payload-type " << payload_type << " is not registered."; return -1; } { MutexLock lock(&mutex_); if (absl::EqualsIgnoreCase(format->sdp_format.name, "cn")) { if (last_decoder_ && last_decoder_->num_channels > 1) { // This is a CNG and the audio codec is not mono, so skip pushing in // packets into NetEq. return 0; } } else { last_decoder_ = DecoderInfo{/*payload_type=*/payload_type, /*sample_rate_hz=*/format->sample_rate_hz, /*num_channels=*/format->num_channels, /*sdp_format=*/std::move(format->sdp_format)}; } } // |mutex_| is released. if (neteq_->InsertPacket(rtp_header, incoming_payload) < 0) { RTC_LOG(LERROR) << "AcmReceiver::InsertPacket " << static_cast(rtp_header.payloadType) << " Failed to insert packet"; return -1; } return 0; } int AcmReceiver::GetAudio(int desired_freq_hz, AudioFrame* audio_frame, bool* muted) { RTC_DCHECK(muted); // Accessing members, take the lock. MutexLock lock(&mutex_); if (neteq_->GetAudio(audio_frame, muted) != NetEq::kOK) { RTC_LOG(LERROR) << "AcmReceiver::GetAudio - NetEq Failed."; return -1; } const int current_sample_rate_hz = neteq_->last_output_sample_rate_hz(); // Update if resampling is required. const bool need_resampling = (desired_freq_hz != -1) && (current_sample_rate_hz != desired_freq_hz); if (need_resampling && !resampled_last_output_frame_) { // Prime the resampler with the last frame. int16_t temp_output[AudioFrame::kMaxDataSizeSamples]; int samples_per_channel_int = resampler_.Resample10Msec( last_audio_buffer_.get(), current_sample_rate_hz, desired_freq_hz, audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples, temp_output); if (samples_per_channel_int < 0) { RTC_LOG(LERROR) << "AcmReceiver::GetAudio - " "Resampling last_audio_buffer_ failed."; return -1; } } // TODO(henrik.lundin) Glitches in the output may appear if the output rate // from NetEq changes. See WebRTC issue 3923. if (need_resampling) { // TODO(yujo): handle this more efficiently for muted frames. int samples_per_channel_int = resampler_.Resample10Msec( audio_frame->data(), current_sample_rate_hz, desired_freq_hz, audio_frame->num_channels_, AudioFrame::kMaxDataSizeSamples, audio_frame->mutable_data()); if (samples_per_channel_int < 0) { RTC_LOG(LERROR) << "AcmReceiver::GetAudio - Resampling audio_buffer_ failed."; return -1; } audio_frame->samples_per_channel_ = static_cast(samples_per_channel_int); audio_frame->sample_rate_hz_ = desired_freq_hz; RTC_DCHECK_EQ( audio_frame->sample_rate_hz_, rtc::dchecked_cast(audio_frame->samples_per_channel_ * 100)); resampled_last_output_frame_ = true; } else { resampled_last_output_frame_ = false; // We might end up here ONLY if codec is changed. } // Store current audio in |last_audio_buffer_| for next time. memcpy(last_audio_buffer_.get(), audio_frame->data(), sizeof(int16_t) * audio_frame->samples_per_channel_ * audio_frame->num_channels_); call_stats_.DecodedByNetEq(audio_frame->speech_type_, *muted); return 0; } void AcmReceiver::SetCodecs(const std::map& codecs) { neteq_->SetCodecs(codecs); } void AcmReceiver::FlushBuffers() { neteq_->FlushBuffers(); } void AcmReceiver::RemoveAllCodecs() { MutexLock lock(&mutex_); neteq_->RemoveAllPayloadTypes(); last_decoder_ = absl::nullopt; } absl::optional AcmReceiver::GetPlayoutTimestamp() { return neteq_->GetPlayoutTimestamp(); } int AcmReceiver::FilteredCurrentDelayMs() const { return neteq_->FilteredCurrentDelayMs(); } int AcmReceiver::TargetDelayMs() const { return neteq_->TargetDelayMs(); } absl::optional> AcmReceiver::LastDecoder() const { MutexLock lock(&mutex_); if (!last_decoder_) { return absl::nullopt; } RTC_DCHECK_NE(-1, last_decoder_->payload_type); return std::make_pair(last_decoder_->payload_type, last_decoder_->sdp_format); } void AcmReceiver::GetNetworkStatistics( NetworkStatistics* acm_stat, bool get_and_clear_legacy_stats /* = true */) const { NetEqNetworkStatistics neteq_stat; if (get_and_clear_legacy_stats) { // NetEq function always returns zero, so we don't check the return value. neteq_->NetworkStatistics(&neteq_stat); acm_stat->currentExpandRate = neteq_stat.expand_rate; acm_stat->currentSpeechExpandRate = neteq_stat.speech_expand_rate; acm_stat->currentPreemptiveRate = neteq_stat.preemptive_rate; acm_stat->currentAccelerateRate = neteq_stat.accelerate_rate; acm_stat->currentSecondaryDecodedRate = neteq_stat.secondary_decoded_rate; acm_stat->currentSecondaryDiscardedRate = neteq_stat.secondary_discarded_rate; acm_stat->meanWaitingTimeMs = neteq_stat.mean_waiting_time_ms; acm_stat->maxWaitingTimeMs = neteq_stat.max_waiting_time_ms; } else { neteq_stat = neteq_->CurrentNetworkStatistics(); acm_stat->currentExpandRate = 0; acm_stat->currentSpeechExpandRate = 0; acm_stat->currentPreemptiveRate = 0; acm_stat->currentAccelerateRate = 0; acm_stat->currentSecondaryDecodedRate = 0; acm_stat->currentSecondaryDiscardedRate = 0; acm_stat->meanWaitingTimeMs = -1; acm_stat->maxWaitingTimeMs = 1; } acm_stat->currentBufferSize = neteq_stat.current_buffer_size_ms; acm_stat->preferredBufferSize = neteq_stat.preferred_buffer_size_ms; acm_stat->jitterPeaksFound = neteq_stat.jitter_peaks_found ? true : false; NetEqLifetimeStatistics neteq_lifetime_stat = neteq_->GetLifetimeStatistics(); acm_stat->totalSamplesReceived = neteq_lifetime_stat.total_samples_received; acm_stat->concealedSamples = neteq_lifetime_stat.concealed_samples; acm_stat->silentConcealedSamples = neteq_lifetime_stat.silent_concealed_samples; acm_stat->concealmentEvents = neteq_lifetime_stat.concealment_events; acm_stat->jitterBufferDelayMs = neteq_lifetime_stat.jitter_buffer_delay_ms; acm_stat->jitterBufferTargetDelayMs = neteq_lifetime_stat.jitter_buffer_target_delay_ms; acm_stat->jitterBufferEmittedCount = neteq_lifetime_stat.jitter_buffer_emitted_count; acm_stat->delayedPacketOutageSamples = neteq_lifetime_stat.delayed_packet_outage_samples; acm_stat->relativePacketArrivalDelayMs = neteq_lifetime_stat.relative_packet_arrival_delay_ms; acm_stat->interruptionCount = neteq_lifetime_stat.interruption_count; acm_stat->totalInterruptionDurationMs = neteq_lifetime_stat.total_interruption_duration_ms; acm_stat->insertedSamplesForDeceleration = neteq_lifetime_stat.inserted_samples_for_deceleration; acm_stat->removedSamplesForAcceleration = neteq_lifetime_stat.removed_samples_for_acceleration; acm_stat->fecPacketsReceived = neteq_lifetime_stat.fec_packets_received; acm_stat->fecPacketsDiscarded = neteq_lifetime_stat.fec_packets_discarded; NetEqOperationsAndState neteq_operations_and_state = neteq_->GetOperationsAndState(); acm_stat->packetBufferFlushes = neteq_operations_and_state.packet_buffer_flushes; } int AcmReceiver::EnableNack(size_t max_nack_list_size) { neteq_->EnableNack(max_nack_list_size); return 0; } void AcmReceiver::DisableNack() { neteq_->DisableNack(); } std::vector AcmReceiver::GetNackList( int64_t round_trip_time_ms) const { return neteq_->GetNackList(round_trip_time_ms); } void AcmReceiver::ResetInitialDelay() { neteq_->SetMinimumDelay(0); // TODO(turajs): Should NetEq Buffer be flushed? } uint32_t AcmReceiver::NowInTimestamp(int decoder_sampling_rate) const { // Down-cast the time to (32-6)-bit since we only care about // the least significant bits. (32-6) bits cover 2^(32-6) = 67108864 ms. // We masked 6 most significant bits of 32-bit so there is no overflow in // the conversion from milliseconds to timestamp. const uint32_t now_in_ms = static_cast(clock_->TimeInMilliseconds() & 0x03ffffff); return static_cast((decoder_sampling_rate / 1000) * now_in_ms); } void AcmReceiver::GetDecodingCallStatistics( AudioDecodingCallStats* stats) const { MutexLock lock(&mutex_); *stats = call_stats_.GetDecodingStatistics(); } } // namespace acm2 } // namespace webrtc