/* Copyright (c) 2016-2017 ZeroMQ community Copyright (c) 2016 VOCA AS / Harald Nøkland Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef __ZMQ_ADDON_HPP_INCLUDED__ #define __ZMQ_ADDON_HPP_INCLUDED__ #include "zmq.hpp" #include #include #include #include #ifdef ZMQ_CPP11 #include #include #include #endif namespace zmq { #ifdef ZMQ_CPP11 namespace detail { template recv_result_t recv_multipart_n(socket_ref s, OutputIt out, size_t n, recv_flags flags) { size_t msg_count = 0; message_t msg; while (true) { if ZMQ_CONSTEXPR_IF (CheckN) { if (msg_count >= n) throw std::runtime_error( "Too many message parts in recv_multipart_n"); } if (!s.recv(msg, flags)) { // zmq ensures atomic delivery of messages assert(msg_count == 0); return {}; } ++msg_count; const bool more = msg.more(); *out++ = std::move(msg); if (!more) break; } return msg_count; } inline bool is_little_endian() { const uint16_t i = 0x01; return *reinterpret_cast(&i) == 0x01; } inline void write_network_order(unsigned char *buf, const uint32_t value) { if (is_little_endian()) { ZMQ_CONSTEXPR_VAR uint32_t mask = std::numeric_limits::max(); *buf++ = static_cast((value >> 24) & mask); *buf++ = static_cast((value >> 16) & mask); *buf++ = static_cast((value >> 8) & mask); *buf++ = static_cast(value & mask); } else { std::memcpy(buf, &value, sizeof(value)); } } inline uint32_t read_u32_network_order(const unsigned char *buf) { if (is_little_endian()) { return (static_cast(buf[0]) << 24) + (static_cast(buf[1]) << 16) + (static_cast(buf[2]) << 8) + static_cast(buf[3]); } else { uint32_t value; std::memcpy(&value, buf, sizeof(value)); return value; } } } // namespace detail /* Receive a multipart message. Writes the zmq::message_t objects to OutputIterator out. The out iterator must handle an unspecified number of writes, e.g. by using std::back_inserter. Returns: the number of messages received or nullopt (on EAGAIN). Throws: if recv throws. Any exceptions thrown by the out iterator will be propagated and the message may have been only partially received with pending message parts. It is adviced to close this socket in that event. */ template ZMQ_NODISCARD recv_result_t recv_multipart(socket_ref s, OutputIt out, recv_flags flags = recv_flags::none) { return detail::recv_multipart_n(s, std::move(out), 0, flags); } /* Receive a multipart message. Writes at most n zmq::message_t objects to OutputIterator out. If the number of message parts of the incoming message exceeds n then an exception will be thrown. Returns: the number of messages received or nullopt (on EAGAIN). Throws: if recv throws. Throws std::runtime_error if the number of message parts exceeds n (exactly n messages will have been written to out). Any exceptions thrown by the out iterator will be propagated and the message may have been only partially received with pending message parts. It is adviced to close this socket in that event. */ template ZMQ_NODISCARD recv_result_t recv_multipart_n(socket_ref s, OutputIt out, size_t n, recv_flags flags = recv_flags::none) { return detail::recv_multipart_n(s, std::move(out), n, flags); } /* Send a multipart message. The range must be a ForwardRange of zmq::message_t, zmq::const_buffer or zmq::mutable_buffer. The flags may be zmq::send_flags::sndmore if there are more message parts to be sent after the call to this function. Returns: the number of messages sent (exactly msgs.size()) or nullopt (on EAGAIN). Throws: if send throws. Any exceptions thrown by the msgs range will be propagated and the message may have been only partially sent. It is adviced to close this socket in that event. */ template::value && (std::is_same, message_t>::value || detail::is_buffer>::value)>::type #endif > send_result_t send_multipart(socket_ref s, Range &&msgs, send_flags flags = send_flags::none) { using std::begin; using std::end; auto it = begin(msgs); const auto end_it = end(msgs); size_t msg_count = 0; while (it != end_it) { const auto next = std::next(it); const auto msg_flags = flags | (next == end_it ? send_flags::none : send_flags::sndmore); if (!s.send(*it, msg_flags)) { // zmq ensures atomic delivery of messages assert(it == begin(msgs)); return {}; } ++msg_count; it = next; } return msg_count; } /* Encode a multipart message. The range must be a ForwardRange of zmq::message_t. A zmq::multipart_t or STL container may be passed for encoding. Returns: a zmq::message_t holding the encoded multipart data. Throws: std::range_error is thrown if the size of any single part can not fit in an unsigned 32 bit integer. The encoding is compatible with that used by the CZMQ function zmsg_encode(), see https://rfc.zeromq.org/spec/50/. Each part consists of a size followed by the data. These are placed contiguously into the output message. A part of size less than 255 bytes will have a single byte size value. Larger parts will have a five byte size value with the first byte set to 0xFF and the remaining four bytes holding the size of the part's data. */ template::value && (std::is_same, message_t>::value || detail::is_buffer>::value)>::type #endif > message_t encode(const Range &parts) { size_t mmsg_size = 0; // First pass check sizes for (const auto &part : parts) { const size_t part_size = part.size(); if (part_size > std::numeric_limits::max()) { // Size value must fit into uint32_t. throw std::range_error("Invalid size, message part too large"); } const size_t count_size = part_size < std::numeric_limits::max() ? 1 : 5; mmsg_size += part_size + count_size; } message_t encoded(mmsg_size); unsigned char *buf = encoded.data(); for (const auto &part : parts) { const uint32_t part_size = static_cast(part.size()); const unsigned char *part_data = static_cast(part.data()); if (part_size < std::numeric_limits::max()) { // small part *buf++ = (unsigned char) part_size; } else { // big part *buf++ = std::numeric_limits::max(); detail::write_network_order(buf, part_size); buf += sizeof(part_size); } std::memcpy(buf, part_data, part_size); buf += part_size; } assert(static_cast(buf - encoded.data()) == mmsg_size); return encoded; } /* Decode an encoded message to multiple parts. The given output iterator must be a ForwardIterator to a container holding zmq::message_t such as a zmq::multipart_t or various STL containers. Returns the ForwardIterator advanced once past the last decoded part. Throws: a std::out_of_range is thrown if the encoded part sizes lead to exceeding the message data bounds. The decoding assumes the message is encoded in the manner performed by zmq::encode(), see https://rfc.zeromq.org/spec/50/. */ template OutputIt decode(const message_t &encoded, OutputIt out) { const unsigned char *source = encoded.data(); const unsigned char *const limit = source + encoded.size(); while (source < limit) { size_t part_size = *source++; if (part_size == std::numeric_limits::max()) { if (static_cast(limit - source) < sizeof(uint32_t)) { throw std::out_of_range( "Malformed encoding, overflow in reading size"); } part_size = detail::read_u32_network_order(source); // the part size is allowed to be less than 0xFF source += sizeof(uint32_t); } if (static_cast(limit - source) < part_size) { throw std::out_of_range("Malformed encoding, overflow in reading part"); } *out = message_t(source, part_size); ++out; source += part_size; } assert(source == limit); return out; } #endif #ifdef ZMQ_HAS_RVALUE_REFS /* This class handles multipart messaging. It is the C++ equivalent of zmsg.h, which is part of CZMQ (the high-level C binding). Furthermore, it is a major improvement compared to zmsg.hpp, which is part of the examples in the ØMQ Guide. Unnecessary copying is avoided by using move semantics to efficiently add/remove parts. */ class multipart_t { private: std::deque m_parts; public: typedef std::deque::value_type value_type; typedef std::deque::iterator iterator; typedef std::deque::const_iterator const_iterator; typedef std::deque::reverse_iterator reverse_iterator; typedef std::deque::const_reverse_iterator const_reverse_iterator; // Default constructor multipart_t() {} // Construct from socket receive multipart_t(socket_ref socket) { recv(socket); } // Construct from memory block multipart_t(const void *src, size_t size) { addmem(src, size); } // Construct from string multipart_t(const std::string &string) { addstr(string); } // Construct from message part multipart_t(message_t &&message) { add(std::move(message)); } // Move constructor multipart_t(multipart_t &&other) { m_parts = std::move(other.m_parts); } // Move assignment operator multipart_t &operator=(multipart_t &&other) { m_parts = std::move(other.m_parts); return *this; } // Destructor virtual ~multipart_t() { clear(); } message_t &operator[](size_t n) { return m_parts[n]; } const message_t &operator[](size_t n) const { return m_parts[n]; } message_t &at(size_t n) { return m_parts.at(n); } const message_t &at(size_t n) const { return m_parts.at(n); } iterator begin() { return m_parts.begin(); } const_iterator begin() const { return m_parts.begin(); } const_iterator cbegin() const { return m_parts.cbegin(); } reverse_iterator rbegin() { return m_parts.rbegin(); } const_reverse_iterator rbegin() const { return m_parts.rbegin(); } iterator end() { return m_parts.end(); } const_iterator end() const { return m_parts.end(); } const_iterator cend() const { return m_parts.cend(); } reverse_iterator rend() { return m_parts.rend(); } const_reverse_iterator rend() const { return m_parts.rend(); } // Delete all parts void clear() { m_parts.clear(); } // Get number of parts size_t size() const { return m_parts.size(); } // Check if number of parts is zero bool empty() const { return m_parts.empty(); } // Receive multipart message from socket bool recv(socket_ref socket, int flags = 0) { clear(); bool more = true; while (more) { message_t message; #ifdef ZMQ_CPP11 if (!socket.recv(message, static_cast(flags))) return false; #else if (!socket.recv(&message, flags)) return false; #endif more = message.more(); add(std::move(message)); } return true; } // Send multipart message to socket bool send(socket_ref socket, int flags = 0) { flags &= ~(ZMQ_SNDMORE); bool more = size() > 0; while (more) { message_t message = pop(); more = size() > 0; #ifdef ZMQ_CPP11 if (!socket.send(message, static_cast( (more ? ZMQ_SNDMORE : 0) | flags))) return false; #else if (!socket.send(message, (more ? ZMQ_SNDMORE : 0) | flags)) return false; #endif } clear(); return true; } // Concatenate other multipart to front void prepend(multipart_t &&other) { while (!other.empty()) push(other.remove()); } // Concatenate other multipart to back void append(multipart_t &&other) { while (!other.empty()) add(other.pop()); } // Push memory block to front void pushmem(const void *src, size_t size) { m_parts.push_front(message_t(src, size)); } // Push memory block to back void addmem(const void *src, size_t size) { m_parts.push_back(message_t(src, size)); } // Push string to front void pushstr(const std::string &string) { m_parts.push_front(message_t(string.data(), string.size())); } // Push string to back void addstr(const std::string &string) { m_parts.push_back(message_t(string.data(), string.size())); } // Push type (fixed-size) to front template void pushtyp(const T &type) { static_assert(!std::is_same::value, "Use pushstr() instead of pushtyp()"); m_parts.push_front(message_t(&type, sizeof(type))); } // Push type (fixed-size) to back template void addtyp(const T &type) { static_assert(!std::is_same::value, "Use addstr() instead of addtyp()"); m_parts.push_back(message_t(&type, sizeof(type))); } // Push message part to front void push(message_t &&message) { m_parts.push_front(std::move(message)); } // Push message part to back void add(message_t &&message) { m_parts.push_back(std::move(message)); } // Alias to allow std::back_inserter() void push_back(message_t &&message) { m_parts.push_back(std::move(message)); } // Pop string from front std::string popstr() { std::string string(m_parts.front().data(), m_parts.front().size()); m_parts.pop_front(); return string; } // Pop type (fixed-size) from front template T poptyp() { static_assert(!std::is_same::value, "Use popstr() instead of poptyp()"); if (sizeof(T) != m_parts.front().size()) throw std::runtime_error( "Invalid type, size does not match the message size"); T type = *m_parts.front().data(); m_parts.pop_front(); return type; } // Pop message part from front message_t pop() { message_t message = std::move(m_parts.front()); m_parts.pop_front(); return message; } // Pop message part from back message_t remove() { message_t message = std::move(m_parts.back()); m_parts.pop_back(); return message; } // get message part from front const message_t &front() { return m_parts.front(); } // get message part from back const message_t &back() { return m_parts.back(); } // Get pointer to a specific message part const message_t *peek(size_t index) const { return &m_parts[index]; } // Get a string copy of a specific message part std::string peekstr(size_t index) const { std::string string(m_parts[index].data(), m_parts[index].size()); return string; } // Peek type (fixed-size) from front template T peektyp(size_t index) const { static_assert(!std::is_same::value, "Use peekstr() instead of peektyp()"); if (sizeof(T) != m_parts[index].size()) throw std::runtime_error( "Invalid type, size does not match the message size"); T type = *m_parts[index].data(); return type; } // Create multipart from type (fixed-size) template static multipart_t create(const T &type) { multipart_t multipart; multipart.addtyp(type); return multipart; } // Copy multipart multipart_t clone() const { multipart_t multipart; for (size_t i = 0; i < size(); i++) multipart.addmem(m_parts[i].data(), m_parts[i].size()); return multipart; } // Dump content to string std::string str() const { std::stringstream ss; for (size_t i = 0; i < m_parts.size(); i++) { const unsigned char *data = m_parts[i].data(); size_t size = m_parts[i].size(); // Dump the message as text or binary bool isText = true; for (size_t j = 0; j < size; j++) { if (data[j] < 32 || data[j] > 127) { isText = false; break; } } ss << "\n[" << std::dec << std::setw(3) << std::setfill('0') << size << "] "; if (size >= 1000) { ss << "... (too big to print)"; continue; } for (size_t j = 0; j < size; j++) { if (isText) ss << static_cast(data[j]); else ss << std::hex << std::setw(2) << std::setfill('0') << static_cast(data[j]); } } return ss.str(); } // Check if equal to other multipart bool equal(const multipart_t *other) const ZMQ_NOTHROW { return *this == *other; } bool operator==(const multipart_t &other) const ZMQ_NOTHROW { if (size() != other.size()) return false; for (size_t i = 0; i < size(); i++) if (at(i) != other.at(i)) return false; return true; } bool operator!=(const multipart_t &other) const ZMQ_NOTHROW { return !(*this == other); } #ifdef ZMQ_CPP11 // Return single part message_t encoded from this multipart_t. message_t encode() const { return zmq::encode(*this); } // Decode encoded message into multiple parts and append to self. void decode_append(const message_t &encoded) { zmq::decode(encoded, std::back_inserter(*this)); } // Return a new multipart_t containing the decoded message_t. static multipart_t decode(const message_t &encoded) { multipart_t tmp; zmq::decode(encoded, std::back_inserter(tmp)); return tmp; } #endif private: // Disable implicit copying (moving is more efficient) multipart_t(const multipart_t &other) ZMQ_DELETED_FUNCTION; void operator=(const multipart_t &other) ZMQ_DELETED_FUNCTION; }; // class multipart_t inline std::ostream &operator<<(std::ostream &os, const multipart_t &msg) { return os << msg.str(); } #endif // ZMQ_HAS_RVALUE_REFS #if defined(ZMQ_BUILD_DRAFT_API) && defined(ZMQ_CPP11) && defined(ZMQ_HAVE_POLLER) class active_poller_t { public: active_poller_t() = default; ~active_poller_t() = default; active_poller_t(const active_poller_t &) = delete; active_poller_t &operator=(const active_poller_t &) = delete; active_poller_t(active_poller_t &&src) = default; active_poller_t &operator=(active_poller_t &&src) = default; using handler_type = std::function; void add(zmq::socket_ref socket, event_flags events, handler_type handler) { if (!handler) throw std::invalid_argument("null handler in active_poller_t::add"); auto ret = handlers.emplace( socket, std::make_shared(std::move(handler))); if (!ret.second) throw error_t(EINVAL); // already added try { base_poller.add(socket, events, ret.first->second.get()); need_rebuild = true; } catch (...) { // rollback handlers.erase(socket); throw; } } void remove(zmq::socket_ref socket) { base_poller.remove(socket); handlers.erase(socket); need_rebuild = true; } void modify(zmq::socket_ref socket, event_flags events) { base_poller.modify(socket, events); } size_t wait(std::chrono::milliseconds timeout) { if (need_rebuild) { poller_events.resize(handlers.size()); poller_handlers.clear(); poller_handlers.reserve(handlers.size()); for (const auto &handler : handlers) { poller_handlers.push_back(handler.second); } need_rebuild = false; } const auto count = base_poller.wait_all(poller_events, timeout); std::for_each(poller_events.begin(), poller_events.begin() + static_cast(count), [](decltype(base_poller)::event_type &event) { assert(event.user_data != nullptr); (*event.user_data)(event.events); }); return count; } ZMQ_NODISCARD bool empty() const noexcept { return handlers.empty(); } size_t size() const noexcept { return handlers.size(); } private: bool need_rebuild{false}; poller_t base_poller{}; std::unordered_map> handlers{}; std::vector poller_events{}; std::vector> poller_handlers{}; }; // class active_poller_t #endif // defined(ZMQ_BUILD_DRAFT_API) && defined(ZMQ_CPP11) && defined(ZMQ_HAVE_POLLER) } // namespace zmq #endif // __ZMQ_ADDON_HPP_INCLUDED__