/********************************************************************************************************* * Software License Agreement (BSD License) * * Author: Sebastien Decugis * * * * Copyright (c) 2019, WIDE Project and NICT * * All rights reserved. * * * * Redistribution and use of this software in source and binary forms, with or without modification, are * * permitted provided that the following conditions are met: * * * * * Redistributions of source code must retain the above * * copyright notice, this list of conditions and the * * following disclaimer. * * * * * Redistributions in binary form must reproduce the above * * copyright notice, this list of conditions and the * * following disclaimer in the documentation and/or other * * materials provided with the distribution. * * * * * Neither the name of the WIDE Project or NICT nor the * * names of its contributors may be used to endorse or * * promote products derived from this software without * * specific prior written permission of WIDE Project and * * NICT. * * * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED * * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF * * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *********************************************************************************************************/ /* Sessions module. * * Basic functionalities to help implementing User sessions state machines from RFC3588. */ #include "fdproto-internal.h" /*********************** Parameters **********************/ /* Size of the hash table containing the session objects (pow of 2. ex: 6 => 2^6 = 64). must be between 0 and 31. */ #ifndef SESS_HASH_SIZE #define SESS_HASH_SIZE 6 #endif /* SESS_HASH_SIZE */ /* Default lifetime of a session, in seconds. (31 days = 2678400 seconds) */ #ifndef SESS_DEFAULT_LIFETIME #define SESS_DEFAULT_LIFETIME 2678400 #endif /* SESS_DEFAULT_LIFETIME */ /********************** /Parameters **********************/ /* Eyescatchers definitions */ #define SH_EYEC 0x53554AD1 #define SD_EYEC 0x5355D474 #define SI_EYEC 0x53551D /* Macro to check an object is valid */ #define VALIDATE_SH( _obj ) ( ((_obj) != NULL) && ( ((struct session_handler *)(_obj))->eyec == SH_EYEC) ) #define VALIDATE_SI( _obj ) ( ((_obj) != NULL) && ( ((struct session *)(_obj))->eyec == SI_EYEC) ) /* Handlers registered by users of the session module */ struct session_handler { int eyec; /* An eye catcher also used to ensure the object is valid, must be SH_EYEC */ int id; /* A unique integer to identify this handler */ void (*cleanup)(struct sess_state *, os0_t, void *); /* The cleanup function to be called for cleaning a state */ session_state_dump state_dump; /* dumper function */ void *opaque; /* a value that is passed as is to the cleanup callback */ }; static int hdl_id = 0; /* A global counter to initialize the id field */ static pthread_mutex_t hdl_lock = PTHREAD_MUTEX_INITIALIZER; /* lock to protect hdl_id; we could use atomic operations otherwise (less portable) */ /* Data structures linked from the sessions, containing the applications states */ struct state { int eyec; /* Must be SD_EYEC */ struct sess_state *state; /* The state registered by the application, never NULL (or the whole object is deleted) */ struct fd_list chain; /* Chaining in the list of session's states ordered by hdl->id */ union { struct session_handler *hdl; /* The handler for which this state was registered */ os0_t sid; /* For deleted state, the sid of the session it belong to */ }; }; /* Session object, one for each value of Session-Id AVP */ struct session { int eyec; /* Eyecatcher, SI_EYEC */ os0_t sid; /* The \0-terminated Session-Id */ size_t sidlen; /* cached length of sid */ uint32_t hash; /* computed hash of sid */ struct fd_list chain_h;/* chaining in the hash table of sessions. */ struct timespec timeout;/* Timeout date for the session */ struct fd_list expire; /* List of expiring sessions, ordered by timeouts. */ pthread_mutex_t stlock; /* A lock to protect the list of states associated with this session */ struct fd_list states; /* Sentinel for the list of states of this session. */ int msg_cnt;/* Reference counter for the messages pointing to this session */ int is_destroyed; /* boolean telling if fd_sess_detroy has been called on this */ }; /* Sessions hash table, to allow fast sid to session retrieval */ static struct { struct fd_list sentinel; /* sentinel element for this sublist. The sublist is ordered by hash value, then fd_os_cmp(sid). */ pthread_mutex_t lock; /* the mutex for this sublist -- we might probably change it to rwlock for a little optimization */ } sess_hash [ 1 << SESS_HASH_SIZE ] ; #define H_MASK( __hash ) ((__hash) & (( 1 << SESS_HASH_SIZE ) - 1)) #define H_LIST( _hash ) (&(sess_hash[H_MASK(_hash)].sentinel)) #define H_LOCK( _hash ) (&(sess_hash[H_MASK(_hash)].lock )) static uint32_t sess_cnt = 0; /* counts all active session (that are in the expiry list) */ /* The following are used to generate sid values that are eternaly unique */ static uint32_t sid_h; /* initialized to the current time in fd_sess_init */ static uint32_t sid_l; /* incremented each time a session id is created */ static pthread_mutex_t sid_lock = PTHREAD_MUTEX_INITIALIZER; /* Expiring sessions management */ static struct fd_list exp_sentinel = FD_LIST_INITIALIZER(exp_sentinel); /* list of sessions ordered by their timeout date */ static pthread_mutex_t exp_lock = PTHREAD_MUTEX_INITIALIZER; /* lock protecting the list. */ static pthread_cond_t exp_cond = PTHREAD_COND_INITIALIZER; /* condvar used by the expiry mechainsm. */ static pthread_t exp_thr = (pthread_t)NULL; /* The expiry thread that handles cleanup of expired sessions */ /* Hierarchy of the locks, to avoid deadlocks: * hash lock > state lock > expiry lock * i.e. state lock can be taken while holding the hash lock, but not while holding the expiry lock. * As well, the hash lock cannot be taken while holding a state lock. */ /********************************************************************************************************/ /* Initialize a session object. It is not linked now. sid must be already malloc'ed. The hash has already been computed. */ static struct session * new_session(os0_t sid, size_t sidlen, uint32_t hash) { struct session * sess; TRACE_ENTRY("%p %zd", sid, sidlen); CHECK_PARAMS_DO( sid && sidlen, return NULL ); CHECK_MALLOC_DO( sess = malloc(sizeof(struct session)), return NULL ); memset(sess, 0, sizeof(struct session)); sess->eyec = SI_EYEC; sess->sid = sid; sess->sidlen = sidlen; sess->hash = hash; fd_list_init(&sess->chain_h, sess); CHECK_SYS_DO( clock_gettime(CLOCK_REALTIME, &sess->timeout), return NULL ); sess->timeout.tv_sec += SESS_DEFAULT_LIFETIME; fd_list_init(&sess->expire, sess); CHECK_POSIX_DO( pthread_mutex_init(&sess->stlock, NULL), return NULL ); fd_list_init(&sess->states, sess); return sess; } /* destroy the session object. It should really be already unlinked... */ static void del_session(struct session * s) { ASSERT(FD_IS_LIST_EMPTY(&s->states)); free(s->sid); fd_list_unlink(&s->chain_h); fd_list_unlink(&s->expire); CHECK_POSIX_DO( pthread_mutex_destroy(&s->stlock), /* continue */ ); free(s); } /* The expiry thread */ static void * exp_fct(void * arg) { fd_log_threadname ( "Session/expire" ); TRACE_ENTRY( "" ); do { struct timespec now; struct session * first; CHECK_POSIX_DO( pthread_mutex_lock(&exp_lock), break ); pthread_cleanup_push( fd_cleanup_mutex, &exp_lock ); again: /* Check if there are expiring sessions available */ if (FD_IS_LIST_EMPTY(&exp_sentinel)) { /* Just wait for a change or cancelation */ CHECK_POSIX_DO( pthread_cond_wait( &exp_cond, &exp_lock ), break /* this might not pop the cleanup handler, but since we ASSERT(0), it is not the big issue... */ ); /* Restart the loop on wakeup */ goto again; } /* Get the pointer to the session that expires first */ first = (struct session *)(exp_sentinel.next->o); ASSERT( VALIDATE_SI(first) ); /* Get the current time */ CHECK_SYS_DO( clock_gettime(CLOCK_REALTIME, &now), break ); /* If first session is not expired, we just wait until it happens */ if ( TS_IS_INFERIOR( &now, &first->timeout ) ) { int ret; ret = pthread_cond_timedwait(&exp_cond, &exp_lock, &first->timeout); switch (ret) { case 0: case ETIMEDOUT: /* on wakeup or time-out, loop */ goto again; case EINVAL: if (clock_gettime(CLOCK_REALTIME, &now) < 0) { break; } if (TS_IS_INFERIOR(&now, &first->timeout)) { TRACE_DEBUG(FULL, "'pthread_cond_timedwait(&exp_cond, &exp_lock, &first->timeout)' : timer expired before loop could start"); goto again; } /* FALLTHROUGH */ default: TRACE_ERROR("ERROR: in 'pthread_cond_timedwait(&exp_cond, &exp_lock, &first->timeout)' :\t%s", strerror(ret)); break; } } /* Now, the first session in the list is expired; destroy it */ pthread_cleanup_pop( 0 ); CHECK_POSIX_DO( pthread_mutex_unlock(&exp_lock), break ); CHECK_FCT_DO( fd_sess_destroy( &first ), break ); } while (1); TRACE_DEBUG(INFO, "A system error occurred in session module! Expiry thread is terminating..."); ASSERT(0); return NULL; } /********************************************************************************************************/ /* Initialize the session module */ int fd_sess_init(void) { int i; TRACE_ENTRY( "" ); /* Initialize the global counters */ sid_h = (uint32_t) time(NULL); sid_l = 0; /* Initialize the hash table */ for (i = 0; i < sizeof(sess_hash) / sizeof(sess_hash[0]); i++) { fd_list_init( &sess_hash[i].sentinel, NULL ); CHECK_POSIX( pthread_mutex_init(&sess_hash[i].lock, NULL) ); } return 0; } /* Run this when initializations are complete. */ int fd_sess_start(void) { /* Start session garbage collector (expiry) */ CHECK_POSIX( pthread_create(&exp_thr, NULL, exp_fct, NULL) ); return 0; } /* Terminate */ void fd_sess_fini(void) { TRACE_ENTRY(""); CHECK_FCT_DO( fd_thr_term(&exp_thr), /* continue */ ); /* Destroy all sessions in the hash table, and the hash table itself? -- How to do it without a race condition ? */ return; } /* Create a new handler */ int fd_sess_handler_create ( struct session_handler ** handler, void (*cleanup)(struct sess_state *, os0_t, void *), session_state_dump dumper, void * opaque ) { struct session_handler *new; TRACE_ENTRY("%p %p", handler, cleanup); CHECK_PARAMS( handler && cleanup ); CHECK_MALLOC( new = malloc(sizeof(struct session_handler)) ); memset(new, 0, sizeof(struct session_handler)); CHECK_POSIX( pthread_mutex_lock(&hdl_lock) ); new->id = ++hdl_id; CHECK_POSIX( pthread_mutex_unlock(&hdl_lock) ); new->eyec = SH_EYEC; new->cleanup = cleanup; new->state_dump = dumper; new->opaque = opaque; *handler = new; return 0; } /* Destroy a handler, and all states attached to this handler. This operation is very slow but we don't care since it's rarely used. * Note that it's better to call this function after all sessions have been deleted... */ int fd_sess_handler_destroy ( struct session_handler ** handler, void ** opaque ) { struct session_handler * del; /* place to save the list of states to be cleaned up. We do it after finding them to avoid deadlocks. the "o" field becomes a copy of the sid. */ struct fd_list deleted_states = FD_LIST_INITIALIZER( deleted_states ); int i; TRACE_ENTRY("%p", handler); CHECK_PARAMS( handler && VALIDATE_SH(*handler) ); del = *handler; *handler = NULL; del->eyec = 0xdead; /* The handler is not valid anymore for any other operation */ /* Now find all sessions with data registered for this handler, and move this data to the deleted_states list. */ for (i = 0; i < sizeof(sess_hash) / sizeof(sess_hash[0]); i++) { struct fd_list * li_si; CHECK_POSIX( pthread_mutex_lock(&sess_hash[i].lock) ); for (li_si = sess_hash[i].sentinel.next; li_si != &sess_hash[i].sentinel; li_si = li_si->next) { /* for each session in the hash line */ struct fd_list * li_st; struct session * sess = (struct session *)(li_si->o); CHECK_POSIX( pthread_mutex_lock(&sess->stlock) ); for (li_st = sess->states.next; li_st != &sess->states; li_st = li_st->next) { /* for each state in this session */ struct state * st = (struct state *)(li_st->o); /* The list is ordered */ if (st->hdl->id < del->id) continue; if (st->hdl->id == del->id) { /* This state belongs to the handler we are deleting, move the item to the deleted_states list */ fd_list_unlink(&st->chain); st->sid = sess->sid; fd_list_insert_before(&deleted_states, &st->chain); } break; } CHECK_POSIX( pthread_mutex_unlock(&sess->stlock) ); } CHECK_POSIX( pthread_mutex_unlock(&sess_hash[i].lock) ); } /* Now, delete all states after calling their cleanup handler */ while (!FD_IS_LIST_EMPTY(&deleted_states)) { struct state * st = (struct state *)(deleted_states.next->o); TRACE_DEBUG(FULL, "Calling cleanup handler for session '%s' and data %p", st->sid, st->state); (*del->cleanup)(st->state, st->sid, del->opaque); fd_list_unlink(&st->chain); free(st); } if (opaque) *opaque = del->opaque; /* Free the handler */ free(del); return 0; } /* Create a new session object with the default timeout value, and link it. The refcount is increased by 1, whether the session existed or not */ int fd_sess_new ( struct session ** session, DiamId_t diamid, size_t diamidlen, uint8_t * opt, size_t optlen ) { os0_t sid = NULL; size_t sidlen; uint32_t hash; struct session * sess; struct fd_list * li; int found = 0; int ret = 0; TRACE_ENTRY("%p %p %zd %p %zd", session, diamid, diamidlen, opt, optlen); CHECK_PARAMS( session && (diamid || opt) ); if (diamid) { if (!diamidlen) { diamidlen = strlen(diamid); } /* We check if the string is a valid DiameterIdentity */ CHECK_PARAMS( fd_os_is_valid_DiameterIdentity((uint8_t *)diamid, diamidlen) ); } else { diamidlen = 0; } if (opt) { if (!optlen) { optlen = strlen((char *)opt); } else { CHECK_PARAMS( fd_os_is_valid_os0(opt, optlen) ); } } else { optlen = 0; } /* Ok, first create the identifier for the string */ if (diamid == NULL) { /* opt is the full string */ CHECK_MALLOC( sid = os0dup(opt, optlen) ); sidlen = optlen; } else { uint32_t sid_h_cpy; uint32_t sid_l_cpy; /* ";;[;opt]" */ sidlen = diamidlen; sidlen += 22; /* max size of ';;' */ if (opt) sidlen += 1 + optlen; /* ';opt' */ sidlen++; /* space for the final \0 also */ CHECK_MALLOC( sid = malloc(sidlen) ); CHECK_POSIX( pthread_mutex_lock(&sid_lock) ); if ( ++sid_l == 0 ) /* overflow */ ++sid_h; sid_h_cpy = sid_h; sid_l_cpy = sid_l; CHECK_POSIX( pthread_mutex_unlock(&sid_lock) ); if (opt) { sidlen = snprintf((char*)sid, sidlen, "%.*s;%u;%u;%.*s", (int)diamidlen, diamid, sid_h_cpy, sid_l_cpy, (int)optlen, opt); } else { sidlen = snprintf((char*)sid, sidlen, "%.*s;%u;%u", (int)diamidlen, diamid, sid_h_cpy, sid_l_cpy); } } hash = fd_os_hash(sid, sidlen); /* Now find the place to add this object in the hash table. */ CHECK_POSIX( pthread_mutex_lock( H_LOCK(hash) ) ); pthread_cleanup_push( fd_cleanup_mutex, H_LOCK(hash) ); for (li = H_LIST(hash)->next; li != H_LIST(hash); li = li->next) { int cmp; struct session * s = (struct session *)(li->o); /* The list is ordered by hash and sid (in case of collisions) */ if (s->hash < hash) continue; if (s->hash > hash) break; cmp = fd_os_cmp(s->sid, s->sidlen, sid, sidlen); if (cmp < 0) continue; if (cmp > 0) break; /* A session with the same sid was already in the hash table */ found = 1; *session = s; break; } /* If the session did not exist, we can create it & link it in global tables */ if (!found) { CHECK_MALLOC_DO(sess = new_session(sid, sidlen, hash), { ret = ENOMEM; free(sid); goto out; } ); fd_list_insert_before(li, &sess->chain_h); /* hash table */ sess->msg_cnt++; } else { free(sid); CHECK_POSIX( pthread_mutex_lock(&(*session)->stlock) ); (*session)->msg_cnt++; CHECK_POSIX( pthread_mutex_unlock(&(*session)->stlock) ); /* it was found: was it previously destroyed? */ if ((*session)->is_destroyed == 0) { ret = EALREADY; goto out; } else { /* the session was marked destroyed, let's re-activate it. */ sess = *session; sess->is_destroyed = 0; /* update the expiry time */ CHECK_SYS_DO( clock_gettime(CLOCK_REALTIME, &sess->timeout), { ASSERT(0); } ); sess->timeout.tv_sec += SESS_DEFAULT_LIFETIME; } } /* We must insert in the expiry list */ CHECK_POSIX( pthread_mutex_lock( &exp_lock ) ); pthread_cleanup_push( fd_cleanup_mutex, &exp_lock ); /* Find the position in that list. We take it in reverse order */ for (li = exp_sentinel.prev; li != &exp_sentinel; li = li->prev) { struct session * s = (struct session *)(li->o); if (TS_IS_INFERIOR( &s->timeout, &sess->timeout ) ) break; } fd_list_insert_after( li, &sess->expire ); sess_cnt++; /* We added a new expiring element, we must signal */ if (li == &exp_sentinel) { CHECK_POSIX_DO( pthread_cond_signal(&exp_cond), { ASSERT(0); } ); /* if it fails, we might not pop the cleanup handlers, but this should not happen -- and we'd have a serious problem otherwise */ } /* We're done with the locked part */ pthread_cleanup_pop(0); CHECK_POSIX_DO( pthread_mutex_unlock( &exp_lock ), { ASSERT(0); } ); /* if it fails, we might not pop the cleanup handler, but this should not happen -- and we'd have a serious problem otherwise */ out: ; pthread_cleanup_pop(0); CHECK_POSIX( pthread_mutex_unlock( H_LOCK(hash) ) ); if (ret) /* in case of error */ return ret; *session = sess; return 0; } /* Find or create a session -- the msg refcount is increased */ int fd_sess_fromsid_msg ( uint8_t * sid, size_t len, struct session ** session, int * new) { int ret; TRACE_ENTRY("%p %zd %p %p", sid, len, session, new); CHECK_PARAMS( sid && session ); if (!fd_os_is_valid_os0(sid,len)) { TRACE_DEBUG(INFO, "Warning: a Session-Id value contains \\0 chars... (len:%zd, begin:'%.*s') => Debug messages may be truncated.", len, (int)len, sid); } /* All the work is done in sess_new */ ret = fd_sess_new ( session, NULL, 0, sid, len ); switch (ret) { case 0: case EALREADY: break; default: CHECK_FCT(ret); } if (new) *new = ret ? 0 : 1; return 0; } /* Get the sid of a session */ int fd_sess_getsid ( struct session * session, os0_t * sid, size_t * sidlen ) { TRACE_ENTRY("%p %p", session, sid); CHECK_PARAMS( VALIDATE_SI(session) && sid ); *sid = session->sid; if (sidlen) *sidlen = session->sidlen; return 0; } /* Change the timeout value of a session */ int fd_sess_settimeout( struct session * session, const struct timespec * timeout ) { struct fd_list * li; TRACE_ENTRY("%p %p", session, timeout); CHECK_PARAMS( VALIDATE_SI(session) && timeout ); /* Lock -- do we need to lock the hash table as well? I don't think so... */ CHECK_POSIX( pthread_mutex_lock( &exp_lock ) ); pthread_cleanup_push( fd_cleanup_mutex, &exp_lock ); /* Update the timeout */ fd_list_unlink(&session->expire); memcpy(&session->timeout, timeout, sizeof(struct timespec)); /* Find the new position in expire list. We take it in normal order */ for (li = exp_sentinel.next; li != &exp_sentinel; li = li->next) { struct session * s = (struct session *)(li->o); if (TS_IS_INFERIOR( &s->timeout, &session->timeout ) ) continue; break; } fd_list_insert_before( li, &session->expire ); /* We added a new expiring element, we must signal if it was in first position */ if (session->expire.prev == &exp_sentinel) { CHECK_POSIX_DO( pthread_cond_signal(&exp_cond), { ASSERT(0); /* so that we don't have a pending cancellation handler */ } ); } /* We're done */ pthread_cleanup_pop(0); CHECK_POSIX( pthread_mutex_unlock( &exp_lock ) ); return 0; } /* Destroy the states associated to a session, and mark it destroyed. */ int fd_sess_destroy ( struct session ** session ) { struct session * sess; int destroy_now; os0_t sid; int ret = 0; /* place to save the list of states to be cleaned up. We do it after finding them to avoid deadlocks. the "o" field becomes a copy of the sid. */ struct fd_list deleted_states = FD_LIST_INITIALIZER( deleted_states ); TRACE_ENTRY("%p", session); CHECK_PARAMS( session && VALIDATE_SI(*session) ); sess = *session; *session = NULL; /* Lock the hash line */ CHECK_POSIX( pthread_mutex_lock( H_LOCK(sess->hash) ) ); pthread_cleanup_push( fd_cleanup_mutex, H_LOCK(sess->hash) ); /* Unlink from the expiry list */ CHECK_POSIX_DO( pthread_mutex_lock( &exp_lock ), { ASSERT(0); /* otherwise cleanup handler is not pop'd */ } ); pthread_cleanup_push( fd_cleanup_mutex, &exp_lock ); if (!FD_IS_LIST_EMPTY(&sess->expire)) { sess_cnt--; fd_list_unlink( &sess->expire ); /* no need to signal the condition here */ } pthread_cleanup_pop(0); CHECK_POSIX_DO( pthread_mutex_unlock( &exp_lock ), { ASSERT(0); /* otherwise cleanup handler is not pop'd */ } ); /* Now move all states associated to this session into deleted_states */ CHECK_POSIX_DO( pthread_mutex_lock( &sess->stlock ), { ASSERT(0); /* otherwise cleanup handler is not pop'd */ } ); while (!FD_IS_LIST_EMPTY(&sess->states)) { struct state * st = (struct state *)(sess->states.next->o); fd_list_unlink(&st->chain); fd_list_insert_before(&deleted_states, &st->chain); } CHECK_POSIX_DO( pthread_mutex_unlock( &sess->stlock ), { ASSERT(0); /* otherwise cleanup handler is not pop'd */ } ); /* Mark the session as destroyed */ destroy_now = (sess->msg_cnt == 0); if (destroy_now) { fd_list_unlink( &sess->chain_h ); sid = sess->sid; } else { sess->is_destroyed = 1; CHECK_MALLOC_DO( sid = os0dup(sess->sid, sess->sidlen), ret = ENOMEM ); } pthread_cleanup_pop(0); CHECK_POSIX( pthread_mutex_unlock( H_LOCK(sess->hash) ) ); if (ret) return ret; /* Now, really delete the states */ while (!FD_IS_LIST_EMPTY(&deleted_states)) { struct state * st = (struct state *)(deleted_states.next->o); fd_list_unlink(&st->chain); TRACE_DEBUG(FULL, "Calling handler %p cleanup for state %p registered with session '%s'", st->hdl, st, sid); (*st->hdl->cleanup)(st->state, sid, st->hdl->opaque); free(st); } /* Finally, destroy the session itself, if it is not referrenced by any message anymore */ if (destroy_now) { del_session(sess); } else { free(sid); } return 0; } /* Destroy a session if it is not used */ int fd_sess_reclaim ( struct session ** session ) { struct session * sess; uint32_t hash; int destroy_now = 0; TRACE_ENTRY("%p", session); CHECK_PARAMS( session && VALIDATE_SI(*session) ); sess = *session; hash = sess->hash; *session = NULL; CHECK_POSIX( pthread_mutex_lock( H_LOCK(hash) ) ); pthread_cleanup_push( fd_cleanup_mutex, H_LOCK(hash) ); CHECK_POSIX_DO( pthread_mutex_lock( &sess->stlock ), { ASSERT(0); /* otherwise, cleanup not poped on FreeBSD */ } ); pthread_cleanup_push( fd_cleanup_mutex, &sess->stlock ); CHECK_POSIX_DO( pthread_mutex_lock( &exp_lock ), { ASSERT(0); /* otherwise, cleanup not poped on FreeBSD */ } ); pthread_cleanup_push( fd_cleanup_mutex, &exp_lock ); /* We only do something if the states list is empty */ if (FD_IS_LIST_EMPTY(&sess->states)) { /* In this case, we do as in destroy */ fd_list_unlink( &sess->expire ); destroy_now = (sess->msg_cnt == 0); if (destroy_now) { fd_list_unlink(&sess->chain_h); } else { /* just mark it as destroyed, it will be freed when the last message stops referencing it */ sess->is_destroyed = 1; } } pthread_cleanup_pop(0); CHECK_POSIX_DO( pthread_mutex_unlock( &exp_lock ), { ASSERT(0); /* otherwise, cleanup not poped on FreeBSD */ } ); pthread_cleanup_pop(0); CHECK_POSIX_DO( pthread_mutex_unlock( &sess->stlock ), { ASSERT(0); /* otherwise, cleanup not poped on FreeBSD */ } ); pthread_cleanup_pop(0); CHECK_POSIX( pthread_mutex_unlock( H_LOCK(hash) ) ); if (destroy_now) del_session(sess); return 0; } /* Save a state information with a session */ int fd_sess_state_store ( struct session_handler * handler, struct session * session, struct sess_state ** state ) { struct state *new; struct fd_list * li; int already = 0; int ret = 0; TRACE_ENTRY("%p %p %p", handler, session, state); CHECK_PARAMS( handler && VALIDATE_SH(handler) && session && VALIDATE_SI(session) && (!session->is_destroyed) && state ); /* Lock the session state list */ CHECK_POSIX( pthread_mutex_lock(&session->stlock) ); pthread_cleanup_push( fd_cleanup_mutex, &session->stlock ); /* Create the new state object */ CHECK_MALLOC_DO(new = malloc(sizeof(struct state)), { ret = ENOMEM; goto out; } ); memset(new, 0, sizeof(struct state)); new->eyec = SD_EYEC; new->state= *state; fd_list_init(&new->chain, new); new->hdl = handler; /* find place for this state in the list */ for (li = session->states.next; li != &session->states; li = li->next) { struct state * st = (struct state *)(li->o); /* The list is ordered by handler's id */ if (st->hdl->id < handler->id) continue; if (st->hdl->id == handler->id) { TRACE_DEBUG(INFO, "A state was already stored for session '%s' and handler '%p', at location %p", session->sid, st->hdl, st->state); already = EALREADY; } break; } if (!already) { fd_list_insert_before(li, &new->chain); *state = NULL; } else { free(new); } out: ; pthread_cleanup_pop(0); CHECK_POSIX( pthread_mutex_unlock(&session->stlock) ); return ret ?: already; } /* Get the data back */ int fd_sess_state_retrieve ( struct session_handler * handler, struct session * session, struct sess_state ** state ) { struct fd_list * li; struct state * st = NULL; TRACE_ENTRY("%p %p %p", handler, session, state); CHECK_PARAMS( handler && VALIDATE_SH(handler) && session && VALIDATE_SI(session) && state ); *state = NULL; /* Lock the session state list */ CHECK_POSIX( pthread_mutex_lock(&session->stlock) ); pthread_cleanup_push( fd_cleanup_mutex, &session->stlock ); /* find the state in the list */ for (li = session->states.next; li != &session->states; li = li->next) { st = (struct state *)(li->o); /* The list is ordered by handler's id */ if (st->hdl->id > handler->id) break; } /* If we found the state */ if (st && (st->hdl == handler)) { fd_list_unlink(&st->chain); *state = st->state; free(st); } pthread_cleanup_pop(0); CHECK_POSIX( pthread_mutex_unlock(&session->stlock) ); return 0; } /* For the messages module */ int fd_sess_fromsid ( uint8_t * sid, size_t len, struct session ** session, int * new) { TRACE_ENTRY("%p %zd %p %p", sid, len, session, new); CHECK_PARAMS( sid && len && session ); /* Get the session object */ CHECK_FCT( fd_sess_fromsid_msg ( sid, len, session, new) ); /* Decrease the refcount */ CHECK_POSIX( pthread_mutex_lock(&(*session)->stlock) ); (*session)->msg_cnt--; /* was increased in fd_sess_new */ CHECK_POSIX( pthread_mutex_unlock(&(*session)->stlock) ); /* Done */ return 0; } int fd_sess_ref_msg ( struct session * session ) { TRACE_ENTRY("%p", session); CHECK_PARAMS( VALIDATE_SI(session) ); /* Update the msg refcount */ CHECK_POSIX( pthread_mutex_lock(&session->stlock) ); session->msg_cnt++; CHECK_POSIX( pthread_mutex_unlock(&session->stlock) ); return 0; } int fd_sess_reclaim_msg ( struct session ** session ) { int reclaim; uint32_t hash; TRACE_ENTRY("%p", session); CHECK_PARAMS( session && VALIDATE_SI(*session) ); /* Lock the hash line to avoid possibility that session is freed while we are reclaiming */ hash = (*session)->hash; CHECK_POSIX( pthread_mutex_lock( H_LOCK(hash)) ); pthread_cleanup_push( fd_cleanup_mutex, H_LOCK(hash) ); /* Update the msg refcount */ CHECK_POSIX( pthread_mutex_lock(&(*session)->stlock) ); reclaim = (*session)->msg_cnt; (*session)->msg_cnt = reclaim - 1; CHECK_POSIX( pthread_mutex_unlock(&(*session)->stlock) ); /* Ok, now unlock the hash line */ pthread_cleanup_pop( 0 ); CHECK_POSIX( pthread_mutex_unlock( H_LOCK(hash) ) ); /* and reclaim if no message references the session anymore */ if (reclaim == 1) { CHECK_FCT(fd_sess_reclaim ( session )); } else { *session = NULL; } return 0; } /* Dump functions */ DECLARE_FD_DUMP_PROTOTYPE(fd_sess_dump, struct session * session, int with_states) { FD_DUMP_HANDLE_OFFSET(); CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "{session}(@%p): ", session), return NULL); if (!VALIDATE_SI(session)) { CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID/NULL"), return NULL); } else { char timebuf[30]; struct tm tm; strftime(timebuf, sizeof(timebuf), "%D,%T", localtime_r( &session->timeout.tv_sec , &tm )); CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "'%s'(%zd) h:%x m:%d d:%d to:%s.%06ld", session->sid, session->sidlen, session->hash, session->msg_cnt, session->is_destroyed, timebuf, session->timeout.tv_nsec/1000), return NULL); if (with_states) { struct fd_list * li; CHECK_POSIX_DO( pthread_mutex_lock(&session->stlock), /* ignore */ ); pthread_cleanup_push( fd_cleanup_mutex, &session->stlock ); for (li = session->states.next; li != &session->states; li = li->next) { struct state * st = (struct state *)(li->o); CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "\n {state i:%d}(@%p): ", st->hdl->id, st), return NULL); if (st->hdl->state_dump) { CHECK_MALLOC_DO( (*st->hdl->state_dump)( FD_DUMP_STD_PARAMS, st->state), fd_dump_extend( FD_DUMP_STD_PARAMS, "[dumper error]")); } else { CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "<%p>", st->state), return NULL); } } pthread_cleanup_pop(0); CHECK_POSIX_DO( pthread_mutex_unlock(&session->stlock), /* ignore */ ); } } return *buf; } DECLARE_FD_DUMP_PROTOTYPE(fd_sess_dump_hdl, struct session_handler * handler) { FD_DUMP_HANDLE_OFFSET(); CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "{sesshdl}(@%p): ", handler), return NULL); if (!VALIDATE_SH(handler)) { CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "INVALID/NULL"), return NULL); } else { CHECK_MALLOC_DO( fd_dump_extend( FD_DUMP_STD_PARAMS, "i:%d cl:%p d:%p o:%p", handler->id, handler->cleanup, handler->state_dump, handler->opaque), return NULL); } return *buf; } int fd_sess_getcount(uint32_t *cnt) { CHECK_PARAMS(cnt); CHECK_POSIX( pthread_mutex_lock( &exp_lock ) ); *cnt = sess_cnt; CHECK_POSIX( pthread_mutex_unlock( &exp_lock ) ); return 0; }