/* * Backend variables and functions. * * Copyright 2000-2013 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USE_OPENSSL #include #endif /* USE_OPENSSL */ int be_lastsession(const struct proxy *be) { if (be->be_counters.last_sess) return now.tv_sec - be->be_counters.last_sess; return -1; } /* helper function to invoke the correct hash method */ static unsigned int gen_hash(const struct proxy* px, const char* key, unsigned long len) { unsigned int hash; switch (px->lbprm.algo & BE_LB_HASH_FUNC) { case BE_LB_HFCN_DJB2: hash = hash_djb2(key, len); break; case BE_LB_HFCN_WT6: hash = hash_wt6(key, len); break; case BE_LB_HFCN_CRC32: hash = hash_crc32(key, len); break; case BE_LB_HFCN_SDBM: /* this is the default hash function */ default: hash = hash_sdbm(key, len); break; } return hash; } /* * This function recounts the number of usable active and backup servers for * proxy

. These numbers are returned into the p->srv_act and p->srv_bck. * This function also recomputes the total active and backup weights. However, * it does not update tot_weight nor tot_used. Use update_backend_weight() for * this. * This functions is designed to be called before server's weight and state * commit so it uses 'next' weight and states values. * * threads: this is the caller responsibility to lock data. For now, this * function is called from lb modules, so it should be ok. But if you need to * call it from another place, be careful (and update this comment). */ void recount_servers(struct proxy *px) { struct server *srv; px->srv_act = px->srv_bck = 0; px->lbprm.tot_wact = px->lbprm.tot_wbck = 0; px->lbprm.fbck = NULL; for (srv = px->srv; srv != NULL; srv = srv->next) { if (!srv_willbe_usable(srv)) continue; if (srv->flags & SRV_F_BACKUP) { if (!px->srv_bck && !(px->options & PR_O_USE_ALL_BK)) px->lbprm.fbck = srv; px->srv_bck++; srv->cumulative_weight = px->lbprm.tot_wbck; px->lbprm.tot_wbck += srv->next_eweight; } else { px->srv_act++; srv->cumulative_weight = px->lbprm.tot_wact; px->lbprm.tot_wact += srv->next_eweight; } } } /* This function simply updates the backend's tot_weight and tot_used values * after servers weights have been updated. It is designed to be used after * recount_servers() or equivalent. * * threads: this is the caller responsibility to lock data. For now, this * function is called from lb modules, so it should be ok. But if you need to * call it from another place, be careful (and update this comment). */ void update_backend_weight(struct proxy *px) { if (px->srv_act) { px->lbprm.tot_weight = px->lbprm.tot_wact; px->lbprm.tot_used = px->srv_act; } else if (px->lbprm.fbck) { /* use only the first backup server */ px->lbprm.tot_weight = px->lbprm.fbck->next_eweight; px->lbprm.tot_used = 1; } else { px->lbprm.tot_weight = px->lbprm.tot_wbck; px->lbprm.tot_used = px->srv_bck; } } /* * This function tries to find a running server for the proxy following * the source hash method. Depending on the number of active/backup servers, * it will either look for active servers, or for backup servers. * If any server is found, it will be returned. If no valid server is found, * NULL is returned. */ static struct server *get_server_sh(struct proxy *px, const char *addr, int len, const struct server *avoid) { unsigned int h, l; if (px->lbprm.tot_weight == 0) return NULL; l = h = 0; /* note: we won't hash if there's only one server left */ if (px->lbprm.tot_used == 1) goto hash_done; while ((l + sizeof (int)) <= len) { h ^= ntohl(*(unsigned int *)(&addr[l])); l += sizeof (int); } if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) h = full_hash(h); hash_done: if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) return chash_get_server_hash(px, h, avoid); else return map_get_server_hash(px, h); } /* * This function tries to find a running server for the proxy following * the URI hash method. In order to optimize cache hits, the hash computation * ends at the question mark. Depending on the number of active/backup servers, * it will either look for active servers, or for backup servers. * If any server is found, it will be returned. If no valid server is found, * NULL is returned. The lbprm.arg_opt{1,2,3} values correspond respectively to * the "whole" optional argument (boolean), the "len" argument (numeric) and * the "depth" argument (numeric). * * This code was contributed by Guillaume Dallaire, who also selected this hash * algorithm out of a tens because it gave him the best results. * */ static struct server *get_server_uh(struct proxy *px, char *uri, int uri_len, const struct server *avoid) { unsigned int hash = 0; int c; int slashes = 0; const char *start, *end; if (px->lbprm.tot_weight == 0) return NULL; /* note: we won't hash if there's only one server left */ if (px->lbprm.tot_used == 1) goto hash_done; if (px->lbprm.arg_opt2) // "len" uri_len = MIN(uri_len, px->lbprm.arg_opt2); start = end = uri; while (uri_len--) { c = *end; if (c == '/') { slashes++; if (slashes == px->lbprm.arg_opt3) /* depth+1 */ break; } else if (c == '?' && !px->lbprm.arg_opt1) // "whole" break; end++; } hash = gen_hash(px, start, (end - start)); if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) hash = full_hash(hash); hash_done: if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) return chash_get_server_hash(px, hash, avoid); else return map_get_server_hash(px, hash); } /* * This function tries to find a running server for the proxy following * the URL parameter hash method. It looks for a specific parameter in the * URL and hashes it to compute the server ID. This is useful to optimize * performance by avoiding bounces between servers in contexts where sessions * are shared but cookies are not usable. If the parameter is not found, NULL * is returned. If any server is found, it will be returned. If no valid server * is found, NULL is returned. */ static struct server *get_server_ph(struct proxy *px, const char *uri, int uri_len, const struct server *avoid) { unsigned int hash = 0; const char *start, *end; const char *p; const char *params; int plen; /* when tot_weight is 0 then so is srv_count */ if (px->lbprm.tot_weight == 0) return NULL; if ((p = memchr(uri, '?', uri_len)) == NULL) return NULL; p++; uri_len -= (p - uri); plen = px->lbprm.arg_len; params = p; while (uri_len > plen) { /* Look for the parameter name followed by an equal symbol */ if (params[plen] == '=') { if (memcmp(params, px->lbprm.arg_str, plen) == 0) { /* OK, we have the parameter here at , and * the value after the equal sign, at

* skip the equal symbol */ p += plen + 1; start = end = p; uri_len -= plen + 1; while (uri_len && *end != '&') { uri_len--; end++; } hash = gen_hash(px, start, (end - start)); if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) hash = full_hash(hash); if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) return chash_get_server_hash(px, hash, avoid); else return map_get_server_hash(px, hash); } } /* skip to next parameter */ p = memchr(params, '&', uri_len); if (!p) return NULL; p++; uri_len -= (p - params); params = p; } return NULL; } /* * this does the same as the previous server_ph, but check the body contents */ static struct server *get_server_ph_post(struct stream *s, const struct server *avoid) { unsigned int hash = 0; struct channel *req = &s->req; struct proxy *px = s->be; unsigned int plen = px->lbprm.arg_len; unsigned long len; const char *params, *p, *start, *end; if (px->lbprm.tot_weight == 0) return NULL; if (!IS_HTX_STRM(s)) { struct http_txn *txn = s->txn; struct http_msg *msg = &txn->req; len = http_body_bytes(msg); p = params = c_ptr(req, -http_data_rewind(msg)); if (len == 0) return NULL; if (len > b_wrap(&req->buf) - p) len = b_wrap(&req->buf) - p; } else { struct htx *htx = htxbuf(&req->buf); struct htx_blk *blk; p = params = NULL; len = 0; for (blk = htx_get_head_blk(htx); blk; blk = htx_get_next_blk(htx, blk)) { enum htx_blk_type type = htx_get_blk_type(blk); struct ist v; if (type != HTX_BLK_DATA) continue; v = htx_get_blk_value(htx, blk); p = params = v.ptr; len = v.len; break; } } while (len > plen) { /* Look for the parameter name followed by an equal symbol */ if (params[plen] == '=') { if (memcmp(params, px->lbprm.arg_str, plen) == 0) { /* OK, we have the parameter here at , and * the value after the equal sign, at

* skip the equal symbol */ p += plen + 1; start = end = p; len -= plen + 1; while (len && *end != '&') { if (unlikely(!HTTP_IS_TOKEN(*p))) { /* if in a POST, body must be URI encoded or it's not a URI. * Do not interpret any possible binary data as a parameter. */ if (likely(HTTP_IS_LWS(*p))) /* eol, uncertain uri len */ break; return NULL; /* oh, no; this is not uri-encoded. * This body does not contain parameters. */ } len--; end++; /* should we break if vlen exceeds limit? */ } hash = gen_hash(px, start, (end - start)); if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) hash = full_hash(hash); if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) return chash_get_server_hash(px, hash, avoid); else return map_get_server_hash(px, hash); } } /* skip to next parameter */ p = memchr(params, '&', len); if (!p) return NULL; p++; len -= (p - params); params = p; } return NULL; } /* * This function tries to find a running server for the proxy following * the Header parameter hash method. It looks for a specific parameter in the * URL and hashes it to compute the server ID. This is useful to optimize * performance by avoiding bounces between servers in contexts where sessions * are shared but cookies are not usable. If the parameter is not found, NULL * is returned. If any server is found, it will be returned. If no valid server * is found, NULL is returned. When lbprm.arg_opt1 is set, the hash will only * apply to the middle part of a domain name ("use_domain_only" option). */ static struct server *get_server_hh(struct stream *s, const struct server *avoid) { unsigned int hash = 0; struct proxy *px = s->be; unsigned int plen = px->lbprm.arg_len; unsigned long len; const char *p; const char *start, *end; /* tot_weight appears to mean srv_count */ if (px->lbprm.tot_weight == 0) return NULL; /* note: we won't hash if there's only one server left */ if (px->lbprm.tot_used == 1) goto hash_done; if (!IS_HTX_STRM(s)) { struct http_txn *txn = s->txn; struct hdr_ctx ctx = { .idx = 0 }; /* if the message is chunked, we skip the chunk size, but use the value as len */ http_find_header2(px->lbprm.arg_str, plen, c_ptr(&s->req, -http_hdr_rewind(&txn->req)), &txn->hdr_idx, &ctx); /* if the header is not found or empty, let's fallback to round robin */ if (!ctx.idx || !ctx.vlen) return NULL; /* Found the param_name in the headers. * we will compute the hash based on this value ctx.val. */ len = ctx.vlen; p = (char *)ctx.line + ctx.val; } else { struct htx *htx = htxbuf(&s->req.buf); struct http_hdr_ctx ctx = { .blk = NULL }; http_find_header(htx, ist2(px->lbprm.arg_str, plen), &ctx, 0); /* if the header is not found or empty, let's fallback to round robin */ if (!ctx.blk || !ctx.value.len) return NULL; /* Found a the param_name in the headers. * we will compute the hash based on this value ctx.val. */ len = ctx.value.len; p = ctx.value.ptr; } if (!px->lbprm.arg_opt1) { hash = gen_hash(px, p, len); } else { int dohash = 0; p += len; /* special computation, use only main domain name, not tld/host * going back from the end of string, start hashing at first * dot stop at next. * This is designed to work with the 'Host' header, and requires * a special option to activate this. */ end = p; while (len) { if (dohash) { /* Rewind the pointer until the previous char * is a dot, this will allow to set the start * position of the domain. */ if (*(p - 1) == '.') break; } else if (*p == '.') { /* The pointer is rewinded to the dot before the * tld, we memorize the end of the domain and * can enter the domain processing. */ end = p; dohash = 1; } p--; len--; } start = p; hash = gen_hash(px, start, (end - start)); } if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) hash = full_hash(hash); hash_done: if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) return chash_get_server_hash(px, hash, avoid); else return map_get_server_hash(px, hash); } /* RDP Cookie HASH. */ static struct server *get_server_rch(struct stream *s, const struct server *avoid) { unsigned int hash = 0; struct proxy *px = s->be; unsigned long len; int ret; struct sample smp; int rewind; /* tot_weight appears to mean srv_count */ if (px->lbprm.tot_weight == 0) return NULL; memset(&smp, 0, sizeof(smp)); rewind = co_data(&s->req); c_rew(&s->req, rewind); ret = fetch_rdp_cookie_name(s, &smp, px->lbprm.arg_str, px->lbprm.arg_len); len = smp.data.u.str.data; c_adv(&s->req, rewind); if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || len == 0) return NULL; /* note: we won't hash if there's only one server left */ if (px->lbprm.tot_used == 1) goto hash_done; /* Found the param_name in the headers. * we will compute the hash based on this value ctx.val. */ hash = gen_hash(px, smp.data.u.str.area, len); if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL) hash = full_hash(hash); hash_done: if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) return chash_get_server_hash(px, hash, avoid); else return map_get_server_hash(px, hash); } /* random value */ static struct server *get_server_rnd(struct stream *s, const struct server *avoid) { unsigned int hash = 0; struct proxy *px = s->be; /* tot_weight appears to mean srv_count */ if (px->lbprm.tot_weight == 0) return NULL; /* ensure all 32 bits are covered as long as RAND_MAX >= 65535 */ hash = ((uint64_t)random() * ((uint64_t)RAND_MAX + 1)) ^ random(); return chash_get_server_hash(px, hash, avoid); } /* * This function applies the load-balancing algorithm to the stream, as * defined by the backend it is assigned to. The stream is then marked as * 'assigned'. * * This function MAY NOT be called with SF_ASSIGNED already set. If the stream * had a server previously assigned, it is rebalanced, trying to avoid the same * server, which should still be present in target_srv(&s->target) before the call. * The function tries to keep the original connection slot if it reconnects to * the same server, otherwise it releases it and tries to offer it. * * It is illegal to call this function with a stream in a queue. * * It may return : * SRV_STATUS_OK if everything is OK. ->srv and ->target are assigned. * SRV_STATUS_NOSRV if no server is available. Stream is not ASSIGNED * SRV_STATUS_FULL if all servers are saturated. Stream is not ASSIGNED * SRV_STATUS_INTERNAL for other unrecoverable errors. * * Upon successful return, the stream flag SF_ASSIGNED is set to indicate that * it does not need to be called anymore. This means that target_srv(&s->target) * can be trusted in balance and direct modes. * */ int assign_server(struct stream *s) { struct connection *conn = NULL; struct server *conn_slot; struct server *srv = NULL, *prev_srv; int err; DPRINTF(stderr,"assign_server : s=%p\n",s); err = SRV_STATUS_INTERNAL; if (unlikely(s->pend_pos || s->flags & SF_ASSIGNED)) goto out_err; prev_srv = objt_server(s->target); conn_slot = s->srv_conn; /* We have to release any connection slot before applying any LB algo, * otherwise we may erroneously end up with no available slot. */ if (conn_slot) sess_change_server(s, NULL); /* We will now try to find the good server and store it into target)>. * Note that target)> may be NULL in case of dispatch or proxy mode, * as well as if no server is available (check error code). */ srv = NULL; s->target = NULL; if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI && ((s->sess->flags & SESS_FL_PREFER_LAST) || (s->be->options & PR_O_PREF_LAST))) { struct sess_srv_list *srv_list; list_for_each_entry(srv_list, &s->sess->srv_list, srv_list) { struct server *tmpsrv = objt_server(srv_list->target); if (tmpsrv && tmpsrv->proxy == s->be && ((s->sess->flags & SESS_FL_PREFER_LAST) || (!s->be->max_ka_queue || server_has_room(tmpsrv) || ( tmpsrv->nbpend + 1 < s->be->max_ka_queue))) && srv_currently_usable(tmpsrv)) { list_for_each_entry(conn, &srv_list->conn_list, session_list) { if (conn->flags & CO_FL_CONNECTED) { srv = tmpsrv; s->target = &srv->obj_type; if (conn->flags & CO_FL_SESS_IDLE) { conn->flags &= ~CO_FL_SESS_IDLE; s->sess->idle_conns--; } goto out_ok; } } } } } if (s->be->lbprm.algo & BE_LB_KIND) { /* we must check if we have at least one server available */ if (!s->be->lbprm.tot_weight) { err = SRV_STATUS_NOSRV; goto out; } /* First check whether we need to fetch some data or simply call * the LB lookup function. Only the hashing functions will need * some input data in fact, and will support multiple algorithms. */ switch (s->be->lbprm.algo & BE_LB_LKUP) { case BE_LB_LKUP_RRTREE: srv = fwrr_get_next_server(s->be, prev_srv); break; case BE_LB_LKUP_FSTREE: srv = fas_get_next_server(s->be, prev_srv); break; case BE_LB_LKUP_LCTREE: srv = fwlc_get_next_server(s->be, prev_srv); break; case BE_LB_LKUP_CHTREE: case BE_LB_LKUP_MAP: if ((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR) { if ((s->be->lbprm.algo & BE_LB_PARM) == BE_LB_RR_RANDOM) srv = get_server_rnd(s, prev_srv); else if ((s->be->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) srv = chash_get_next_server(s->be, prev_srv); else srv = map_get_server_rr(s->be, prev_srv); break; } else if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI) { /* unknown balancing algorithm */ err = SRV_STATUS_INTERNAL; goto out; } switch (s->be->lbprm.algo & BE_LB_PARM) { case BE_LB_HASH_SRC: conn = objt_conn(strm_orig(s)); if (conn && conn->addr.from.ss_family == AF_INET) { srv = get_server_sh(s->be, (void *)&((struct sockaddr_in *)&conn->addr.from)->sin_addr, 4, prev_srv); } else if (conn && conn->addr.from.ss_family == AF_INET6) { srv = get_server_sh(s->be, (void *)&((struct sockaddr_in6 *)&conn->addr.from)->sin6_addr, 16, prev_srv); } else { /* unknown IP family */ err = SRV_STATUS_INTERNAL; goto out; } break; case BE_LB_HASH_URI: /* URI hashing */ if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY) break; if (!IS_HTX_STRM(s)) srv = get_server_uh(s->be, c_ptr(&s->req, -http_uri_rewind(&s->txn->req)), s->txn->req.sl.rq.u_l, prev_srv); else { struct ist uri; uri = htx_sl_req_uri(http_find_stline(htxbuf(&s->req.buf))); srv = get_server_uh(s->be, uri.ptr, uri.len, prev_srv); } break; case BE_LB_HASH_PRM: /* URL Parameter hashing */ if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY) break; if (!IS_HTX_STRM(s)) srv = get_server_ph(s->be, c_ptr(&s->req, -http_uri_rewind(&s->txn->req)), s->txn->req.sl.rq.u_l, prev_srv); else { struct ist uri; uri = htx_sl_req_uri(http_find_stline(htxbuf(&s->req.buf))); srv = get_server_ph(s->be, uri.ptr, uri.len, prev_srv); } if (!srv && s->txn->meth == HTTP_METH_POST) srv = get_server_ph_post(s, prev_srv); break; case BE_LB_HASH_HDR: /* Header Parameter hashing */ if (!s->txn || s->txn->req.msg_state < HTTP_MSG_BODY) break; srv = get_server_hh(s, prev_srv); break; case BE_LB_HASH_RDP: /* RDP Cookie hashing */ srv = get_server_rch(s, prev_srv); break; default: /* unknown balancing algorithm */ err = SRV_STATUS_INTERNAL; goto out; } /* If the hashing parameter was not found, let's fall * back to round robin on the map. */ if (!srv) { if ((s->be->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE) srv = chash_get_next_server(s->be, prev_srv); else srv = map_get_server_rr(s->be, prev_srv); } /* end of map-based LB */ break; default: /* unknown balancing algorithm */ err = SRV_STATUS_INTERNAL; goto out; } if (!srv) { err = SRV_STATUS_FULL; goto out; } else if (srv != prev_srv) { HA_ATOMIC_ADD(&s->be->be_counters.cum_lbconn, 1); HA_ATOMIC_ADD(&srv->counters.cum_lbconn, 1); } s->target = &srv->obj_type; } else if (s->be->options & (PR_O_DISPATCH | PR_O_TRANSP)) { s->target = &s->be->obj_type; } else if ((s->be->options & PR_O_HTTP_PROXY)) { conn = cs_conn(objt_cs(s->si[1].end)); if (conn && is_addr(&conn->addr.to)) { /* in proxy mode, we need a valid destination address */ s->target = &s->be->obj_type; } else { err = SRV_STATUS_NOSRV; goto out; } } else { err = SRV_STATUS_NOSRV; goto out; } out_ok: s->flags |= SF_ASSIGNED; err = SRV_STATUS_OK; out: /* Either we take back our connection slot, or we offer it to someone * else if we don't need it anymore. */ if (conn_slot) { if (conn_slot == srv) { sess_change_server(s, srv); } else { if (may_dequeue_tasks(conn_slot, s->be)) process_srv_queue(conn_slot); } } out_err: return err; } /* * This function assigns a server address to a stream, and sets SF_ADDR_SET. * The address is taken from the currently assigned server, or from the * dispatch or transparent address. * * It may return : * SRV_STATUS_OK if everything is OK. * SRV_STATUS_INTERNAL for other unrecoverable errors. * * Upon successful return, the stream flag SF_ADDR_SET is set. This flag is * not cleared, so it's to the caller to clear it if required. * * The caller is responsible for having already assigned a connection * to si->end. * */ int assign_server_address(struct stream *s, struct connection *srv_conn) { struct connection *cli_conn = objt_conn(strm_orig(s)); DPRINTF(stderr,"assign_server_address : s=%p\n",s); if ((s->flags & SF_DIRECT) || (s->be->lbprm.algo & BE_LB_KIND)) { /* A server is necessarily known for this stream */ if (!(s->flags & SF_ASSIGNED)) return SRV_STATUS_INTERNAL; srv_conn->addr.to = __objt_server(s->target)->addr; set_host_port(&srv_conn->addr.to, __objt_server(s->target)->svc_port); if (!is_addr(&srv_conn->addr.to) && cli_conn) { /* if the server has no address, we use the same address * the client asked, which is handy for remapping ports * locally on multiple addresses at once. Nothing is done * for AF_UNIX addresses. */ conn_get_to_addr(cli_conn); if (cli_conn->addr.to.ss_family == AF_INET) { ((struct sockaddr_in *)&srv_conn->addr.to)->sin_addr = ((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr; } else if (cli_conn->addr.to.ss_family == AF_INET6) { ((struct sockaddr_in6 *)&srv_conn->addr.to)->sin6_addr = ((struct sockaddr_in6 *)&cli_conn->addr.to)->sin6_addr; } } /* if this server remaps proxied ports, we'll use * the port the client connected to with an offset. */ if ((__objt_server(s->target)->flags & SRV_F_MAPPORTS) && cli_conn) { int base_port; conn_get_to_addr(cli_conn); /* First, retrieve the port from the incoming connection */ base_port = get_host_port(&cli_conn->addr.to); /* Second, assign the outgoing connection's port */ base_port += get_host_port(&srv_conn->addr.to); set_host_port(&srv_conn->addr.to, base_port); } } else if (s->be->options & PR_O_DISPATCH) { /* connect to the defined dispatch addr */ srv_conn->addr.to = s->be->dispatch_addr; } else if ((s->be->options & PR_O_TRANSP) && cli_conn) { /* in transparent mode, use the original dest addr if no dispatch specified */ conn_get_to_addr(cli_conn); if (cli_conn->addr.to.ss_family == AF_INET || cli_conn->addr.to.ss_family == AF_INET6) srv_conn->addr.to = cli_conn->addr.to; } else if (s->be->options & PR_O_HTTP_PROXY) { /* If HTTP PROXY option is set, then server is already assigned * during incoming client request parsing. */ } else { /* no server and no LB algorithm ! */ return SRV_STATUS_INTERNAL; } /* Copy network namespace from client connection */ srv_conn->proxy_netns = cli_conn ? cli_conn->proxy_netns : NULL; s->flags |= SF_ADDR_SET; return SRV_STATUS_OK; } /* This function assigns a server to stream if required, and can add the * connection to either the assigned server's queue or to the proxy's queue. * If ->srv_conn is set, the stream is first released from the server. * It may also be called with SF_DIRECT and/or SF_ASSIGNED though. It will * be called before any connection and after any retry or redispatch occurs. * * It is not allowed to call this function with a stream in a queue. * * Returns : * * SRV_STATUS_OK if everything is OK. * SRV_STATUS_NOSRV if no server is available. objt_server(s->target) = NULL. * SRV_STATUS_QUEUED if the connection has been queued. * SRV_STATUS_FULL if the server(s) is/are saturated and the * connection could not be queued at the server's, * which may be NULL if we queue on the backend. * SRV_STATUS_INTERNAL for other unrecoverable errors. * */ int assign_server_and_queue(struct stream *s) { struct pendconn *p; struct server *srv; int err; if (s->pend_pos) return SRV_STATUS_INTERNAL; err = SRV_STATUS_OK; if (!(s->flags & SF_ASSIGNED)) { struct server *prev_srv = objt_server(s->target); err = assign_server(s); if (prev_srv) { /* This stream was previously assigned to a server. We have to * update the stream's and the server's stats : * - if the server changed : * - set TX_CK_DOWN if txn.flags was TX_CK_VALID * - set SF_REDISP if it was successfully redispatched * - increment srv->redispatches and be->redispatches * - if the server remained the same : update retries. */ if (prev_srv != objt_server(s->target)) { if (s->txn && (s->txn->flags & TX_CK_MASK) == TX_CK_VALID) { s->txn->flags &= ~TX_CK_MASK; s->txn->flags |= TX_CK_DOWN; } s->flags |= SF_REDISP; HA_ATOMIC_ADD(&prev_srv->counters.redispatches, 1); HA_ATOMIC_ADD(&s->be->be_counters.redispatches, 1); } else { HA_ATOMIC_ADD(&prev_srv->counters.retries, 1); HA_ATOMIC_ADD(&s->be->be_counters.retries, 1); } } } switch (err) { case SRV_STATUS_OK: /* we have SF_ASSIGNED set */ srv = objt_server(s->target); if (!srv) return SRV_STATUS_OK; /* dispatch or proxy mode */ /* If we already have a connection slot, no need to check any queue */ if (s->srv_conn == srv) return SRV_STATUS_OK; /* OK, this stream already has an assigned server, but no * connection slot yet. Either it is a redispatch, or it was * assigned from persistence information (direct mode). */ if ((s->flags & SF_REDIRECTABLE) && srv->rdr_len) { /* server scheduled for redirection, and already assigned. We * don't want to go further nor check the queue. */ sess_change_server(s, srv); /* not really needed in fact */ return SRV_STATUS_OK; } /* We might have to queue this stream if the assigned server is full. * We know we have to queue it into the server's queue, so if a maxqueue * is set on the server, we must also check that the server's queue is * not full, in which case we have to return FULL. */ if (srv->maxconn && (srv->nbpend || srv->served >= srv_dynamic_maxconn(srv))) { if (srv->maxqueue > 0 && srv->nbpend >= srv->maxqueue) return SRV_STATUS_FULL; p = pendconn_add(s); if (p) return SRV_STATUS_QUEUED; else return SRV_STATUS_INTERNAL; } /* OK, we can use this server. Let's reserve our place */ sess_change_server(s, srv); return SRV_STATUS_OK; case SRV_STATUS_FULL: /* queue this stream into the proxy's queue */ p = pendconn_add(s); if (p) return SRV_STATUS_QUEUED; else return SRV_STATUS_INTERNAL; case SRV_STATUS_NOSRV: return err; case SRV_STATUS_INTERNAL: return err; default: return SRV_STATUS_INTERNAL; } } /* If an explicit source binding is specified on the server and/or backend, and * this source makes use of the transparent proxy, then it is extracted now and * assigned to the stream's pending connection. This function assumes that an * outgoing connection has already been assigned to s->si[1].end. */ static void assign_tproxy_address(struct stream *s) { #if defined(CONFIG_HAP_TRANSPARENT) struct server *srv = objt_server(s->target); struct conn_src *src; struct connection *cli_conn; struct connection *srv_conn; if (objt_cs(s->si[1].end)) srv_conn = cs_conn(__objt_cs(s->si[1].end)); else srv_conn = objt_conn(s->si[1].end); if (srv && srv->conn_src.opts & CO_SRC_BIND) src = &srv->conn_src; else if (s->be->conn_src.opts & CO_SRC_BIND) src = &s->be->conn_src; else return; switch (src->opts & CO_SRC_TPROXY_MASK) { case CO_SRC_TPROXY_ADDR: srv_conn->addr.from = src->tproxy_addr; break; case CO_SRC_TPROXY_CLI: case CO_SRC_TPROXY_CIP: /* FIXME: what can we do if the client connects in IPv6 or unix socket ? */ cli_conn = objt_conn(strm_orig(s)); if (cli_conn) srv_conn->addr.from = cli_conn->addr.from; else memset(&srv_conn->addr.from, 0, sizeof(srv_conn->addr.from)); break; case CO_SRC_TPROXY_DYN: if (src->bind_hdr_occ && s->txn) { char *vptr; size_t vlen; /* bind to the IP in a header */ ((struct sockaddr_in *)&srv_conn->addr.from)->sin_family = AF_INET; ((struct sockaddr_in *)&srv_conn->addr.from)->sin_port = 0; ((struct sockaddr_in *)&srv_conn->addr.from)->sin_addr.s_addr = 0; if (!IS_HTX_STRM(s)) { int rewind; c_rew(&s->req, rewind = http_hdr_rewind(&s->txn->req)); if (http_get_hdr(&s->txn->req, src->bind_hdr_name, src->bind_hdr_len, &s->txn->hdr_idx, src->bind_hdr_occ, NULL, &vptr, &vlen)) { ((struct sockaddr_in *)&srv_conn->addr.from)->sin_addr.s_addr = htonl(inetaddr_host_lim(vptr, vptr + vlen)); } c_adv(&s->req, rewind); } else { if (http_get_htx_hdr(htxbuf(&s->req.buf), ist2(src->bind_hdr_name, src->bind_hdr_len), src->bind_hdr_occ, NULL, &vptr, &vlen)) { ((struct sockaddr_in *)&srv_conn->addr.from)->sin_addr.s_addr = htonl(inetaddr_host_lim(vptr, vptr + vlen)); } } } break; default: memset(&srv_conn->addr.from, 0, sizeof(srv_conn->addr.from)); } #endif } #if defined(USE_OPENSSL) && defined(TLSEXT_TYPE_application_layer_protocol_negotiation) /* * Pick the right mux once the connection is established, we should now have * an alpn if available, so we are now able to choose. In this specific case * the connection's context is &si[i].end. */ static int conn_complete_server(struct connection *conn) { struct conn_stream *cs = NULL; struct stream *s = container_of(conn->ctx, struct stream, si[1].end); struct server *srv; task_wakeup(s->task, TASK_WOKEN_IO); conn_clear_xprt_done_cb(conn); /* Verify if the connection just established. */ if (unlikely(!(conn->flags & (CO_FL_WAIT_L4_CONN | CO_FL_WAIT_L6_CONN | CO_FL_CONNECTED)))) conn->flags |= CO_FL_CONNECTED; if (conn->flags & CO_FL_ERROR) goto fail; si_detach_endpoint(&s->si[1]); cs = si_alloc_cs(&s->si[1], conn); if (!cs) goto fail; if (conn_install_mux_be(conn, cs, s->sess) < 0) goto fail; srv = objt_server(s->target); if (srv && ((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR) && conn->mux->avail_streams(conn) > 0) LIST_ADD(&srv->idle_conns[tid], &conn->list); return 0; fail: si_detach_endpoint(&s->si[1]); if (cs) cs_free(cs); /* kill the connection now */ conn_stop_tracking(conn); conn_full_close(conn); conn_free(conn); /* Let process_stream know it went wrong */ s->si[1].flags |= SI_FL_ERR; return -1; } #endif /* * This function initiates a connection to the server assigned to this stream * (s->target, s->si[1].addr.to). It will assign a server if none * is assigned yet. * It can return one of : * - SF_ERR_NONE if everything's OK * - SF_ERR_SRVTO if there are no more servers * - SF_ERR_SRVCL if the connection was refused by the server * - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn) * - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...) * - SF_ERR_INTERNAL for any other purely internal errors * Additionally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted. * The server-facing stream interface is expected to hold a pre-allocated connection * in s->si[1].conn. */ int connect_server(struct stream *s) { struct connection *cli_conn = NULL; struct connection *srv_conn = NULL; struct connection *old_conn = NULL; struct conn_stream *srv_cs = NULL; struct server *srv; int reuse = 0; int reuse_orphan = 0; int init_mux = 0; int alloced_cs = 0; int err; /* Some, such as http_proxy and the LUA, create their connection and * conn_stream manually, so if we already have a conn_stream, try * to use it. */ srv_cs = objt_cs(s->si[1].end); if (!srv_cs) srv_conn = objt_conn(s->si[1].end); else srv_conn = cs_conn(srv_cs); if (srv_conn) { if (!srv_conn->target || srv_conn->target == s->target) { srv_conn->flags &= ~(CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH); if (srv_cs) srv_cs->flags &= ~(CS_FL_ERROR | CS_FL_EOS | CS_FL_REOS); reuse = 1; old_conn = srv_conn; } else { srv_conn = NULL; srv_cs = NULL; si_release_endpoint(&s->si[1]); } } if (!old_conn) { struct sess_srv_list *srv_list; list_for_each_entry(srv_list, &s->sess->srv_list, srv_list) { if (srv_list->target == s->target) { list_for_each_entry(srv_conn, &srv_list->conn_list, session_list) { if (conn_xprt_ready(srv_conn) && srv_conn->mux && (srv_conn->mux->avail_streams(srv_conn) > 0)) { reuse = 1; break; } } break; } } if (reuse == 0) { srv_conn = NULL; if (!LIST_ISEMPTY(&s->sess->srv_list)) { srv_list = LIST_ELEM(s->sess->srv_list.n, struct sess_srv_list *, srv_list); if (!LIST_ISEMPTY(&srv_list->conn_list)) srv_conn = LIST_ELEM(srv_list->conn_list.n, struct connection *, session_list); } } } old_conn = srv_conn; srv = objt_server(s->target); if (srv && !reuse) { srv_conn = NULL; /* Below we pick connections from the safe or idle lists based * on the strategy, the fact that this is a first or second * (retryable) request, with the indicated priority (1 or 2) : * * SAFE AGGR ALWS * * +-----+-----+ +-----+-----+ +-----+-----+ * req| 1st | 2nd | req| 1st | 2nd | req| 1st | 2nd | * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ * safe| - | 2 | safe| 1 | 2 | safe| 1 | 2 | * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ * idle| - | 1 | idle| - | 1 | idle| 2 | 1 | * ----+-----+-----+ ----+-----+-----+ ----+-----+-----+ */ if (srv->idle_conns && !LIST_ISEMPTY(&srv->idle_conns[tid]) && ((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR && s->txn && (s->txn->flags & TX_NOT_FIRST))) { srv_conn = LIST_ELEM(srv->idle_conns[tid].n, struct connection *, list); } else if (srv->safe_conns && !LIST_ISEMPTY(&srv->safe_conns[tid]) && ((s->txn && (s->txn->flags & TX_NOT_FIRST)) || (s->be->options & PR_O_REUSE_MASK) >= PR_O_REUSE_AGGR)) { srv_conn = LIST_ELEM(srv->safe_conns[tid].n, struct connection *, list); } else if (srv->idle_conns && !LIST_ISEMPTY(&srv->idle_conns[tid]) && (s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) { srv_conn = LIST_ELEM(srv->idle_conns[tid].n, struct connection *, list); } else if (srv->idle_orphan_conns && !LIST_ISEMPTY(&srv->idle_orphan_conns[tid]) && (((s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) || (((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR) && s->txn && (s->txn->flags & TX_NOT_FIRST)))) { srv_conn = LIST_ELEM(srv->idle_orphan_conns[tid].n, struct connection *, list); reuse_orphan = 1; } /* If we've picked a connection from the pool, we now have to * detach it. We may have to get rid of the previous idle * connection we had, so for this we try to swap it with the * other owner's. That way it may remain alive for others to * pick. */ if (srv_conn) reuse = 1; } if (reuse) { /* Disable connection reuse if a dynamic source is used. * As long as we don't share connections between servers, * we don't need to disable connection reuse on no-idempotent * requests nor when PROXY protocol is used. */ if (srv && srv->conn_src.opts & CO_SRC_BIND) { if ((srv->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN) reuse = 0; } else if (s->be->conn_src.opts & CO_SRC_BIND) { if ((s->be->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN) reuse = 0; } } /* If we're really reusing the connection, remove it from the orphan * list and add it back to the idle list. */ if (reuse && reuse_orphan) { LIST_DEL(&srv_conn->list); srv_conn->idle_time = 0; HA_ATOMIC_SUB(&srv->curr_idle_conns, 1); srv->curr_idle_thr[tid]--; LIST_ADDQ(&srv->idle_conns[tid], &srv_conn->list); if (LIST_ISEMPTY(&srv->idle_orphan_conns[tid])) task_unlink_wq(srv->idle_task[tid]); } else if (reuse) { if (srv_conn->flags & CO_FL_SESS_IDLE) { struct session *sess = srv_conn->owner; srv_conn->flags &= ~CO_FL_SESS_IDLE; sess->idle_conns--; } } /* We're about to use another connection, let the mux know we're * done with this one */ if (old_conn != srv_conn && old_conn && reuse && !reuse_orphan) { struct session *sess = srv_conn->owner; if (sess) { if (old_conn && !(old_conn->flags & CO_FL_PRIVATE) && old_conn->mux != NULL) { if (old_conn->flags & CO_FL_SESS_IDLE) s->sess->idle_conns--; session_unown_conn(s->sess, old_conn); old_conn->owner = sess; if (!session_add_conn(sess, old_conn, old_conn->target)) { old_conn->flags &= ~CO_FL_SESS_IDLE; old_conn->owner = NULL; old_conn->mux->destroy(old_conn); } else session_check_idle_conn(sess, old_conn); } } } if (reuse) { /* We already created a cs earlier when using http_proxy, so * only create a new one if we don't have one already. */ if (!srv_cs && srv_conn->mux) { int avail = srv_conn->mux->avail_streams(srv_conn); if (avail <= 1) { /* No more streams available, remove it from the list */ LIST_DEL(&srv_conn->list); LIST_INIT(&srv_conn->list); } if (avail >= 1) { srv_cs = srv_conn->mux->attach(srv_conn, s->sess); if (srv_cs) { alloced_cs = 1; si_attach_cs(&s->si[1], srv_cs); } else srv_conn = NULL; } else srv_conn = NULL; } /* otherwise srv_conn is left intact */ } else srv_conn = NULL; /* no reuse or failed to reuse the connection above, pick a new one */ if (!srv_conn) { srv_conn = conn_new(); if (srv_conn) srv_conn->target = s->target; srv_cs = NULL; } if (srv_conn && old_conn != srv_conn) { if (srv_conn->owner) session_unown_conn(srv_conn->owner, srv_conn); srv_conn->owner = s->sess; if (!session_add_conn(s->sess, srv_conn, srv_conn->target)) { /* If we failed to attach the connection, detach the * conn_stream, possibly destroying the connection */ if (alloced_cs) si_release_endpoint(&s->si[1]); srv_conn->owner = NULL; if (srv_conn->mux && !srv_add_to_idle_list(objt_server(srv_conn->target), srv_conn)) /* The server doesn't want it, let's kill the connection right away */ srv_conn->mux->destroy(srv_conn); srv_conn = NULL; } } if (!srv_conn) { if (srv_conn) conn_free(srv_conn); return SF_ERR_RESOURCE; } if (!(s->flags & SF_ADDR_SET)) { err = assign_server_address(s, srv_conn); if (err != SRV_STATUS_OK) { conn_free(srv_conn); return SF_ERR_INTERNAL; } } if (!conn_xprt_ready(srv_conn) && !srv_conn->mux) { /* set the correct protocol on the output stream interface */ if (srv) conn_prepare(srv_conn, protocol_by_family(srv_conn->addr.to.ss_family), srv->xprt); else if (obj_type(s->target) == OBJ_TYPE_PROXY) { /* proxies exclusively run on raw_sock right now */ conn_prepare(srv_conn, protocol_by_family(srv_conn->addr.to.ss_family), xprt_get(XPRT_RAW)); if (!(srv_conn->ctrl)) { conn_free(srv_conn); return SF_ERR_INTERNAL; } } else { conn_free(srv_conn); return SF_ERR_INTERNAL; /* how did we get there ? */ } #if defined(USE_OPENSSL) && defined(TLSEXT_TYPE_application_layer_protocol_negotiation) if (!srv || ((!(srv->ssl_ctx.alpn_str) && !(srv->ssl_ctx.npn_str)) || srv->mux_proto || s->be->mode != PR_MODE_HTTP)) #endif { srv_cs = objt_cs(s->si[1].end); if (!srv_cs || srv_cs->conn != srv_conn) srv_cs = si_alloc_cs(&s->si[1], srv_conn); if (!srv_cs) { conn_free(srv_conn); return SF_ERR_RESOURCE; } init_mux = 1; } #if defined(USE_OPENSSL) && defined(TLSEXT_TYPE_application_layer_protocol_negotiation) else { srv_conn->ctx = &s->si[1].end; /* Store the connection into the stream interface, * while we still don't have a mux, so that if the * stream is destroyed before the connection is * established, we have a chance to destroy it even * if it is no longer referenced in the session. */ s->si[1].end = &srv_conn->obj_type; conn_set_xprt_done_cb(srv_conn, conn_complete_server); } #endif /* process the case where the server requires the PROXY protocol to be sent */ srv_conn->send_proxy_ofs = 0; cli_conn = objt_conn(strm_orig(s)); if (srv && srv->pp_opts) { srv_conn->flags |= CO_FL_PRIVATE; srv_conn->send_proxy_ofs = 1; /* must compute size */ if (cli_conn) conn_get_to_addr(cli_conn); } assign_tproxy_address(s); } else if (!srv_conn->mux) { /* No mux? We possibly asked for ALPN during a first failed * attempt and are trying to start again from this connection, * thus we have nothing to do. */ } else if (!conn_xprt_ready(srv_conn)) { if (srv_conn->mux->reset) srv_conn->mux->reset(srv_conn); } else { /* Only consider we're doing reuse if the connection was * ready. */ if (srv_conn->mux->ctl(srv_conn, MUX_STATUS, NULL) & MUX_STATUS_READY) s->flags |= SF_SRV_REUSED; } /* flag for logging source ip/port */ if (strm_fe(s)->options2 & PR_O2_SRC_ADDR) s->si[1].flags |= SI_FL_SRC_ADDR; /* disable lingering */ if (s->be->options & PR_O_TCP_NOLING) s->si[1].flags |= SI_FL_NOLINGER; if (s->flags & SF_SRV_REUSED) { HA_ATOMIC_ADD(&s->be->be_counters.reuse, 1); if (srv) HA_ATOMIC_ADD(&srv->counters.reuse, 1); } else { HA_ATOMIC_ADD(&s->be->be_counters.connect, 1); if (srv) HA_ATOMIC_ADD(&srv->counters.connect, 1); } err = si_connect(&s->si[1], srv_conn); if (err != SF_ERR_NONE) return err; /* We have to defer the mux initialization until after si_connect() * has been called, as we need the xprt to have been properly * initialized, or any attempt to recv during the mux init may * fail, and flag the connection as CO_FL_ERROR. */ if (init_mux) { if (conn_install_mux_be(srv_conn, srv_cs, s->sess) < 0) { conn_full_close(srv_conn); return SF_ERR_INTERNAL; } /* If we're doing http-reuse always, and the connection * is an http2 connection, add it to the available list, * so that others can use it right away. */ if (srv && ((s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) && srv_conn->mux->avail_streams(srv_conn) > 0) LIST_ADD(&srv->idle_conns[tid], &srv_conn->list); } #if USE_OPENSSL && (defined(OPENSSL_IS_BORINGSSL) || \ ((OPENSSL_VERSION_NUMBER >= 0x10101000L) && !defined(LIBRESSL_VERSION_NUMBER))) if (!reuse && cli_conn && srv && srv_conn->mux && (srv->ssl_ctx.options & SRV_SSL_O_EARLY_DATA) && (cli_conn->flags & CO_FL_EARLY_DATA) && !channel_is_empty(si_oc(&s->si[1])) && srv_conn->flags & CO_FL_SSL_WAIT_HS) srv_conn->flags &= ~(CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN); #endif /* set connect timeout */ s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.connect); if (srv) { int count; s->flags |= SF_CURR_SESS; count = HA_ATOMIC_ADD(&srv->cur_sess, 1); HA_ATOMIC_UPDATE_MAX(&srv->counters.cur_sess_max, count); if (s->be->lbprm.server_take_conn) s->be->lbprm.server_take_conn(srv); #ifdef USE_OPENSSL if (srv->ssl_ctx.sni) { struct sample *smp; int rewind; if (!IS_HTX_STRM(s)) { /* Tricky case : we have already scheduled the pending * HTTP request or TCP data for leaving. So in HTTP we * rewind exactly the headers, otherwise we rewind the * output data. */ rewind = s->txn ? http_hdr_rewind(&s->txn->req) : co_data(&s->req); c_rew(&s->req, rewind); smp = sample_fetch_as_type(s->be, s->sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, srv->ssl_ctx.sni, SMP_T_STR); /* restore the pointers */ c_adv(&s->req, rewind); } else { /* rewind the output data. */ rewind = co_data(&s->req); c_rew(&s->req, rewind); smp = sample_fetch_as_type(s->be, s->sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL, srv->ssl_ctx.sni, SMP_T_STR); /* restore the pointers */ c_adv(&s->req, rewind); } if (smp_make_safe(smp)) { ssl_sock_set_servername(srv_conn, smp->data.u.str.area); srv_conn->flags |= CO_FL_PRIVATE; } } #endif /* USE_OPENSSL */ } return SF_ERR_NONE; /* connection is OK */ } /* This function performs the "redispatch" part of a connection attempt. It * will assign a server if required, queue the connection if required, and * handle errors that might arise at this level. It can change the server * state. It will return 1 if it encounters an error, switches the server * state, or has to queue a connection. Otherwise, it will return 0 indicating * that the connection is ready to use. */ int srv_redispatch_connect(struct stream *s) { struct server *srv; int conn_err; /* We know that we don't have any connection pending, so we will * try to get a new one, and wait in this state if it's queued */ redispatch: conn_err = assign_server_and_queue(s); srv = objt_server(s->target); switch (conn_err) { case SRV_STATUS_OK: break; case SRV_STATUS_FULL: /* The server has reached its maxqueue limit. Either PR_O_REDISP is set * and we can redispatch to another server, or it is not and we return * 503. This only makes sense in DIRECT mode however, because normal LB * algorithms would never select such a server, and hash algorithms * would bring us on the same server again. Note that s->target is set * in this case. */ if (((s->flags & (SF_DIRECT|SF_FORCE_PRST)) == SF_DIRECT) && (s->be->options & PR_O_REDISP)) { s->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET); goto redispatch; } if (!s->si[1].err_type) { s->si[1].err_type = SI_ET_QUEUE_ERR; } HA_ATOMIC_ADD(&srv->counters.failed_conns, 1); HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); return 1; case SRV_STATUS_NOSRV: /* note: it is guaranteed that srv == NULL here */ if (!s->si[1].err_type) { s->si[1].err_type = SI_ET_CONN_ERR; } HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); return 1; case SRV_STATUS_QUEUED: s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.queue); s->si[1].state = SI_ST_QUE; /* do nothing else and do not wake any other stream up */ return 1; case SRV_STATUS_INTERNAL: default: if (!s->si[1].err_type) { s->si[1].err_type = SI_ET_CONN_OTHER; } if (srv) srv_inc_sess_ctr(srv); if (srv) srv_set_sess_last(srv); if (srv) HA_ATOMIC_ADD(&srv->counters.failed_conns, 1); HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1); /* release other streams waiting for this server */ if (may_dequeue_tasks(srv, s->be)) process_srv_queue(srv); return 1; } /* if we get here, it's because we got SRV_STATUS_OK, which also * means that the connection has not been queued. */ return 0; } /* sends a log message when a backend goes down, and also sets last * change date. */ void set_backend_down(struct proxy *be) { be->last_change = now.tv_sec; HA_ATOMIC_ADD(&be->down_trans, 1); if (!(global.mode & MODE_STARTING)) { ha_alert("%s '%s' has no server available!\n", proxy_type_str(be), be->id); send_log(be, LOG_EMERG, "%s %s has no server available!\n", proxy_type_str(be), be->id); } } /* Apply RDP cookie persistence to the current stream. For this, the function * tries to extract an RDP cookie from the request buffer, and look for the * matching server in the list. If the server is found, it is assigned to the * stream. This always returns 1, and the analyser removes itself from the * list. Nothing is performed if a server was already assigned. */ int tcp_persist_rdp_cookie(struct stream *s, struct channel *req, int an_bit) { struct proxy *px = s->be; int ret; struct sample smp; struct server *srv = px->srv; uint16_t port; uint32_t addr; char *p; DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%lu analysers=%02x\n", now_ms, __FUNCTION__, s, req, req->rex, req->wex, req->flags, ci_data(req), req->analysers); if (s->flags & SF_ASSIGNED) goto no_cookie; memset(&smp, 0, sizeof(smp)); ret = fetch_rdp_cookie_name(s, &smp, s->be->rdp_cookie_name, s->be->rdp_cookie_len); if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || smp.data.u.str.data == 0) goto no_cookie; /* Considering an rdp cookie detected using acl, str ended with and should return. * The cookie format is "." where "ip" is the integer corresponding to the * server's IP address in network order, and "port" is the integer corresponding to the * server's port in network order. Comments please Emeric. */ addr = strtoul(smp.data.u.str.area, &p, 10); if (*p != '.') goto no_cookie; p++; port = ntohs(strtoul(p, &p, 10)); if (*p != '.') goto no_cookie; s->target = NULL; while (srv) { if (srv->addr.ss_family == AF_INET && port == srv->svc_port && addr == ((struct sockaddr_in *)&srv->addr)->sin_addr.s_addr) { if ((srv->cur_state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST)) { /* we found the server and it is usable */ s->flags |= SF_DIRECT | SF_ASSIGNED; s->target = &srv->obj_type; break; } } srv = srv->next; } no_cookie: req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; return 1; } int be_downtime(struct proxy *px) { if (px->lbprm.tot_weight && px->last_change < now.tv_sec) // ignore negative time return px->down_time; return now.tv_sec - px->last_change + px->down_time; } /* * This function returns a string containing the balancing * mode of the proxy in a format suitable for stats. */ const char *backend_lb_algo_str(int algo) { if (algo == BE_LB_ALGO_RR) return "roundrobin"; else if (algo == BE_LB_ALGO_SRR) return "static-rr"; else if (algo == BE_LB_ALGO_FAS) return "first"; else if (algo == BE_LB_ALGO_LC) return "leastconn"; else if (algo == BE_LB_ALGO_SH) return "source"; else if (algo == BE_LB_ALGO_UH) return "uri"; else if (algo == BE_LB_ALGO_PH) return "url_param"; else if (algo == BE_LB_ALGO_HH) return "hdr"; else if (algo == BE_LB_ALGO_RCH) return "rdp-cookie"; else if (algo == BE_LB_ALGO_NONE) return "none"; else return "unknown"; } /* This function parses a "balance" statement in a backend section describing * . It returns -1 if there is any error, otherwise zero. If it * returns -1, it will write an error message into the buffer which will * automatically be allocated and must be passed as NULL. The trailing '\n' * will not be written. The function must be called with pointing to the * first word after "balance". */ int backend_parse_balance(const char **args, char **err, struct proxy *curproxy) { if (!*(args[0])) { /* if no option is set, use round-robin by default */ curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_RR; return 0; } if (!strcmp(args[0], "roundrobin")) { curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_RR; } else if (!strcmp(args[0], "static-rr")) { curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_SRR; } else if (!strcmp(args[0], "first")) { curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_FAS; } else if (!strcmp(args[0], "leastconn")) { curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_LC; } else if (!strcmp(args[0], "random")) { curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_RND; } else if (!strcmp(args[0], "source")) { curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_SH; } else if (!strcmp(args[0], "uri")) { int arg = 1; curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_UH; curproxy->lbprm.arg_opt1 = 0; // "whole" curproxy->lbprm.arg_opt2 = 0; // "len" curproxy->lbprm.arg_opt3 = 0; // "depth" while (*args[arg]) { if (!strcmp(args[arg], "len")) { if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) { memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]); return -1; } curproxy->lbprm.arg_opt2 = atoi(args[arg+1]); arg += 2; } else if (!strcmp(args[arg], "depth")) { if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) { memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]); return -1; } /* hint: we store the position of the ending '/' (depth+1) so * that we avoid a comparison while computing the hash. */ curproxy->lbprm.arg_opt3 = atoi(args[arg+1]) + 1; arg += 2; } else if (!strcmp(args[arg], "whole")) { curproxy->lbprm.arg_opt1 = 1; arg += 1; } else { memprintf(err, "%s only accepts parameters 'len', 'depth', and 'whole' (got '%s').", args[0], args[arg]); return -1; } } } else if (!strcmp(args[0], "url_param")) { if (!*args[1]) { memprintf(err, "%s requires an URL parameter name.", args[0]); return -1; } curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_PH; free(curproxy->lbprm.arg_str); curproxy->lbprm.arg_str = strdup(args[1]); curproxy->lbprm.arg_len = strlen(args[1]); if (*args[2]) { if (strcmp(args[2], "check_post")) { memprintf(err, "%s only accepts 'check_post' modifier (got '%s').", args[0], args[2]); return -1; } } } else if (!strncmp(args[0], "hdr(", 4)) { const char *beg, *end; beg = args[0] + 4; end = strchr(beg, ')'); if (!end || end == beg) { memprintf(err, "hdr requires an http header field name."); return -1; } curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_HH; free(curproxy->lbprm.arg_str); curproxy->lbprm.arg_len = end - beg; curproxy->lbprm.arg_str = my_strndup(beg, end - beg); curproxy->lbprm.arg_opt1 = 0; if (*args[1]) { if (strcmp(args[1], "use_domain_only")) { memprintf(err, "%s only accepts 'use_domain_only' modifier (got '%s').", args[0], args[1]); return -1; } curproxy->lbprm.arg_opt1 = 1; } } else if (!strncmp(args[0], "rdp-cookie", 10)) { curproxy->lbprm.algo &= ~BE_LB_ALGO; curproxy->lbprm.algo |= BE_LB_ALGO_RCH; if ( *(args[0] + 10 ) == '(' ) { /* cookie name */ const char *beg, *end; beg = args[0] + 11; end = strchr(beg, ')'); if (!end || end == beg) { memprintf(err, "rdp-cookie : missing cookie name."); return -1; } free(curproxy->lbprm.arg_str); curproxy->lbprm.arg_str = my_strndup(beg, end - beg); curproxy->lbprm.arg_len = end - beg; } else if ( *(args[0] + 10 ) == '\0' ) { /* default cookie name 'mstshash' */ free(curproxy->lbprm.arg_str); curproxy->lbprm.arg_str = strdup("mstshash"); curproxy->lbprm.arg_len = strlen(curproxy->lbprm.arg_str); } else { /* syntax */ memprintf(err, "rdp-cookie : missing cookie name."); return -1; } } else { memprintf(err, "only supports 'roundrobin', 'static-rr', 'leastconn', 'source', 'uri', 'url_param', 'hdr(name)' and 'rdp-cookie(name)' options."); return -1; } return 0; } /************************************************************************/ /* All supported sample and ACL keywords must be declared here. */ /************************************************************************/ /* set temp integer to the number of enabled servers on the proxy. * Accepts exactly 1 argument. Argument is a backend, other types will lead to * undefined behaviour. */ static int smp_fetch_nbsrv(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct proxy *px; smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; px = args->data.prx; smp->data.u.sint = be_usable_srv(px); return 1; } /* report in smp->flags a success or failure depending on the designated * server's state. There is no match function involved since there's no pattern. * Accepts exactly 1 argument. Argument is a server, other types will lead to * undefined behaviour. */ static int smp_fetch_srv_is_up(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct server *srv = args->data.srv; smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_BOOL; if (!(srv->cur_admin & SRV_ADMF_MAINT) && (!(srv->check.state & CHK_ST_CONFIGURED) || (srv->cur_state != SRV_ST_STOPPED))) smp->data.u.sint = 1; else smp->data.u.sint = 0; return 1; } /* set temp integer to the number of enabled servers on the proxy. * Accepts exactly 1 argument. Argument is a backend, other types will lead to * undefined behaviour. */ static int smp_fetch_connslots(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct server *iterator; smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; smp->data.u.sint = 0; for (iterator = args->data.prx->srv; iterator; iterator = iterator->next) { if (iterator->cur_state == SRV_ST_STOPPED) continue; if (iterator->maxconn == 0 || iterator->maxqueue == 0) { /* configuration is stupid */ smp->data.u.sint = -1; /* FIXME: stupid value! */ return 1; } smp->data.u.sint += (iterator->maxconn - iterator->cur_sess) + (iterator->maxqueue - iterator->nbpend); } return 1; } /* set temp integer to the id of the backend */ static int smp_fetch_be_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!smp->strm) return 0; smp->flags = SMP_F_VOL_TXN; smp->data.type = SMP_T_SINT; smp->data.u.sint = smp->strm->be->uuid; return 1; } /* set string to the name of the backend */ static int smp_fetch_be_name(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!smp->strm) return 0; smp->data.u.str.area = (char *)smp->strm->be->id; if (!smp->data.u.str.area) return 0; smp->data.type = SMP_T_STR; smp->flags = SMP_F_CONST; smp->data.u.str.data = strlen(smp->data.u.str.area); return 1; } /* set temp integer to the id of the server */ static int smp_fetch_srv_id(const struct arg *args, struct sample *smp, const char *kw, void *private) { if (!smp->strm) return 0; if (!objt_server(smp->strm->target)) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = __objt_server(smp->strm->target)->puid; return 1; } /* set temp integer to the number of connections per second reaching the backend. * Accepts exactly 1 argument. Argument is a backend, other types will lead to * undefined behaviour. */ static int smp_fetch_be_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; smp->data.u.sint = read_freq_ctr(&args->data.prx->be_sess_per_sec); return 1; } /* set temp integer to the number of concurrent connections on the backend. * Accepts exactly 1 argument. Argument is a backend, other types will lead to * undefined behaviour. */ static int smp_fetch_be_conn(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; smp->data.u.sint = args->data.prx->beconn; return 1; } /* set temp integer to the number of available connections across available * servers on the backend. * Accepts exactly 1 argument. Argument is a backend, other types will lead to * undefined behaviour. */ static int smp_fetch_be_conn_free(const struct arg *args, struct sample *smp, const char *kw, void *private) { struct server *iterator; struct proxy *px; unsigned int maxconn; smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; smp->data.u.sint = 0; for (iterator = args->data.prx->srv; iterator; iterator = iterator->next) { if (iterator->cur_state == SRV_ST_STOPPED) continue; px = iterator->proxy; if (!srv_currently_usable(iterator) || ((iterator->flags & SRV_F_BACKUP) && (px->srv_act || (iterator != px->lbprm.fbck && !(px->options & PR_O_USE_ALL_BK))))) continue; if (iterator->maxconn == 0) { /* one active server is unlimited, return -1 */ smp->data.u.sint = -1; return 1; } maxconn = srv_dynamic_maxconn(iterator); if (maxconn > iterator->cur_sess) smp->data.u.sint += maxconn - iterator->cur_sess; } return 1; } /* set temp integer to the total number of queued connections on the backend. * Accepts exactly 1 argument. Argument is a backend, other types will lead to * undefined behaviour. */ static int smp_fetch_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; smp->data.u.sint = args->data.prx->totpend; return 1; } /* set temp integer to the total number of queued connections on the backend divided * by the number of running servers and rounded up. If there is no running * server, we return twice the total, just as if we had half a running server. * This is more or less correct anyway, since we expect the last server to come * back soon. * Accepts exactly 1 argument. Argument is a backend, other types will lead to * undefined behaviour. */ static int smp_fetch_avg_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private) { int nbsrv; struct proxy *px; smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; px = args->data.prx; nbsrv = be_usable_srv(px); if (nbsrv > 0) smp->data.u.sint = (px->totpend + nbsrv - 1) / nbsrv; else smp->data.u.sint = px->totpend * 2; return 1; } /* set temp integer to the number of concurrent connections on the server in the backend. * Accepts exactly 1 argument. Argument is a server, other types will lead to * undefined behaviour. */ static int smp_fetch_srv_conn(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; smp->data.u.sint = args->data.srv->cur_sess; return 1; } /* set temp integer to the number of available connections on the server in the backend. * Accepts exactly 1 argument. Argument is a server, other types will lead to * undefined behaviour. */ static int smp_fetch_srv_conn_free(const struct arg *args, struct sample *smp, const char *kw, void *private) { unsigned int maxconn; smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; if (args->data.srv->maxconn == 0) { /* one active server is unlimited, return -1 */ smp->data.u.sint = -1; return 1; } maxconn = srv_dynamic_maxconn(args->data.srv); if (maxconn > args->data.srv->cur_sess) smp->data.u.sint = maxconn - args->data.srv->cur_sess; else smp->data.u.sint = 0; return 1; } /* set temp integer to the number of connections pending in the server's queue. * Accepts exactly 1 argument. Argument is a server, other types will lead to * undefined behaviour. */ static int smp_fetch_srv_queue(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; smp->data.u.sint = args->data.srv->nbpend; return 1; } /* set temp integer to the number of enabled servers on the proxy. * Accepts exactly 1 argument. Argument is a server, other types will lead to * undefined behaviour. */ static int smp_fetch_srv_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private) { smp->flags = SMP_F_VOL_TEST; smp->data.type = SMP_T_SINT; smp->data.u.sint = read_freq_ctr(&args->data.srv->sess_per_sec); return 1; } static int sample_conv_nbsrv(const struct arg *args, struct sample *smp, void *private) { struct proxy *px; if (!smp_make_safe(smp)) return 0; px = proxy_find_by_name(smp->data.u.str.area, PR_CAP_BE, 0); if (!px) return 0; smp->data.type = SMP_T_SINT; smp->data.u.sint = be_usable_srv(px); return 1; } /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct sample_fetch_kw_list smp_kws = {ILH, { { "avg_queue", smp_fetch_avg_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "be_conn", smp_fetch_be_conn, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "be_conn_free", smp_fetch_be_conn_free, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "be_id", smp_fetch_be_id, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, }, { "be_name", smp_fetch_be_name, 0, NULL, SMP_T_STR, SMP_USE_BKEND, }, { "be_sess_rate", smp_fetch_be_sess_rate, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "connslots", smp_fetch_connslots, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "nbsrv", smp_fetch_nbsrv, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "queue", smp_fetch_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "srv_conn", smp_fetch_srv_conn, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "srv_conn_free", smp_fetch_srv_conn_free, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "srv_id", smp_fetch_srv_id, 0, NULL, SMP_T_SINT, SMP_USE_SERVR, }, { "srv_is_up", smp_fetch_srv_is_up, ARG1(1,SRV), NULL, SMP_T_BOOL, SMP_USE_INTRN, }, { "srv_queue", smp_fetch_srv_queue, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { "srv_sess_rate", smp_fetch_srv_sess_rate, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, }, { /* END */ }, }}; INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws); /* Note: must not be declared as its list will be overwritten */ static struct sample_conv_kw_list sample_conv_kws = {ILH, { { "nbsrv", sample_conv_nbsrv, 0, NULL, SMP_T_STR, SMP_T_SINT }, { /* END */ }, }}; INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws); /* Note: must not be declared as its list will be overwritten. * Please take care of keeping this list alphabetically sorted. */ static struct acl_kw_list acl_kws = {ILH, { { /* END */ }, }}; INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */