/* * Stream management functions. * * Copyright 2000-2012 Willy Tarreau * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DECLARE_POOL(pool_head_stream, "stream", sizeof(struct stream)); DECLARE_POOL(pool_head_uniqueid, "uniqueid", UNIQUEID_LEN); struct list streams = LIST_HEAD_INIT(streams); __decl_spinlock(streams_lock); /* List of all use-service keywords. */ static struct list service_keywords = LIST_HEAD_INIT(service_keywords); /* trace source and events */ static void strm_trace(enum trace_level level, uint64_t mask, const struct trace_source *src, const struct ist where, const struct ist func, const void *a1, const void *a2, const void *a3, const void *a4); /* The event representation is split like this : * strm - stream * si - stream interface * http - http analyzis * tcp - tcp analyzis * * STRM_EV_* macros are defined in */ static const struct trace_event strm_trace_events[] = { { .mask = STRM_EV_STRM_NEW, .name = "strm_new", .desc = "new stream" }, { .mask = STRM_EV_STRM_FREE, .name = "strm_free", .desc = "release stream" }, { .mask = STRM_EV_STRM_ERR, .name = "strm_err", .desc = "error during stream processing" }, { .mask = STRM_EV_STRM_ANA, .name = "strm_ana", .desc = "stream analyzers" }, { .mask = STRM_EV_STRM_PROC, .name = "strm_proc", .desc = "stream processing" }, { .mask = STRM_EV_SI_ST, .name = "si_state", .desc = "processing stream-interface states" }, { .mask = STRM_EV_HTTP_ANA, .name = "http_ana", .desc = "HTTP analyzers" }, { .mask = STRM_EV_HTTP_ERR, .name = "http_err", .desc = "error during HTTP analyzis" }, { .mask = STRM_EV_TCP_ANA, .name = "tcp_ana", .desc = "TCP analyzers" }, { .mask = STRM_EV_TCP_ERR, .name = "tcp_err", .desc = "error during TCP analyzis" }, {} }; static const struct name_desc strm_trace_lockon_args[4] = { /* arg1 */ { /* already used by the stream */ }, /* arg2 */ { }, /* arg3 */ { }, /* arg4 */ { } }; static const struct name_desc strm_trace_decoding[] = { #define STRM_VERB_CLEAN 1 { .name="clean", .desc="only user-friendly stuff, generally suitable for level \"user\"" }, #define STRM_VERB_MINIMAL 2 { .name="minimal", .desc="report info on stream and stream-interfaces" }, #define STRM_VERB_SIMPLE 3 { .name="simple", .desc="add info on request and response channels" }, #define STRM_VERB_ADVANCED 4 { .name="advanced", .desc="add info on channel's buffer for data and developer levels only" }, #define STRM_VERB_COMPLETE 5 { .name="complete", .desc="add info on channel's buffer" }, { /* end */ } }; struct trace_source trace_strm = { .name = IST("stream"), .desc = "Applicative stream", .arg_def = TRC_ARG1_STRM, // TRACE()'s first argument is always a stream .default_cb = strm_trace, .known_events = strm_trace_events, .lockon_args = strm_trace_lockon_args, .decoding = strm_trace_decoding, .report_events = ~0, // report everything by default }; #define TRACE_SOURCE &trace_strm INITCALL1(STG_REGISTER, trace_register_source, TRACE_SOURCE); /* the stream traces always expect that arg1, if non-null, is of a stream (from * which we can derive everything), that arg2, if non-null, is an http * transaction, that arg3, if non-null, is an http message. */ static void strm_trace(enum trace_level level, uint64_t mask, const struct trace_source *src, const struct ist where, const struct ist func, const void *a1, const void *a2, const void *a3, const void *a4) { const struct stream *s = a1; const struct http_txn *txn = a2; const struct http_msg *msg = a3; struct task *task; const struct stream_interface *si_f, *si_b; const struct channel *req, *res; struct htx *htx; if (!s || src->verbosity < STRM_VERB_CLEAN) return; task = s->task; si_f = &s->si[0]; si_b = &s->si[1]; req = &s->req; res = &s->res; htx = (msg ? htxbuf(&msg->chn->buf) : NULL); /* General info about the stream (htx/tcp, id...) */ chunk_appendf(&trace_buf, " : [%u,%s]", s->uniq_id, ((s->flags & SF_HTX) ? "HTX" : "TCP")); if (isttest(s->unique_id)) { chunk_appendf(&trace_buf, " id="); b_putist(&trace_buf, s->unique_id); } /* Front and back stream-int state */ chunk_appendf(&trace_buf, " SI=(%s,%s)", si_state_str(si_f->state), si_state_str(si_b->state)); /* If txn is defined, HTTP req/rep states */ if (txn) chunk_appendf(&trace_buf, " HTTP=(%s,%s)", h1_msg_state_str(txn->req.msg_state), h1_msg_state_str(txn->rsp.msg_state)); if (msg) chunk_appendf(&trace_buf, " %s", ((msg->chn->flags & CF_ISRESP) ? "RESPONSE" : "REQUEST")); if (src->verbosity == STRM_VERB_CLEAN) return; /* If msg defined, display status-line if possible (verbosity > MINIMAL) */ if (src->verbosity > STRM_VERB_MINIMAL && htx && htx_nbblks(htx)) { const struct htx_blk *blk = htx_get_head_blk(htx); const struct htx_sl *sl = htx_get_blk_ptr(htx, blk); enum htx_blk_type type = htx_get_blk_type(blk); if (type == HTX_BLK_REQ_SL || type == HTX_BLK_RES_SL) chunk_appendf(&trace_buf, " - \"%.*s %.*s %.*s\"", HTX_SL_P1_LEN(sl), HTX_SL_P1_PTR(sl), HTX_SL_P2_LEN(sl), HTX_SL_P2_PTR(sl), HTX_SL_P3_LEN(sl), HTX_SL_P3_PTR(sl)); } /* If txn defined info about HTTP msgs, otherwise info about SI. */ if (txn) { chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x) txn.flags=0x%08x, http.flags=(0x%08x,0x%08x) status=%d", task, s, s->flags, txn->flags, txn->req.flags, txn->rsp.flags, txn->status); } else { chunk_appendf(&trace_buf, " - t=%p s=(%p,0x%08x) si_f=(%p,0x%08x,0x%x) si_b=(%p,0x%08x,0x%x) retries=%d", task, s, s->flags, si_f, si_f->flags, si_f->err_type, si_b, si_b->flags, si_b->err_type, si_b->conn_retries); } if (src->verbosity == STRM_VERB_MINIMAL) return; /* If txn defined, don't display all channel info */ if (src->verbosity == STRM_VERB_SIMPLE || txn) { chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))", req, req->flags, req->rex, req->wex, req->analyse_exp); chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .exp(r,w,a)=(%u,%u,%u))", res, res->flags, res->rex, res->wex, res->analyse_exp); } else { chunk_appendf(&trace_buf, " req=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)", req, req->flags, req->analysers, req->rex, req->wex, req->analyse_exp, (long)req->output, req->total, req->to_forward); chunk_appendf(&trace_buf, " res=(%p .fl=0x%08x .ana=0x%08x .exp(r,w,a)=(%u,%u,%u) .o=%lu .tot=%llu .to_fwd=%u)", res, res->flags, res->analysers, res->rex, res->wex, res->analyse_exp, (long)res->output, res->total, res->to_forward); } if (src->verbosity == STRM_VERB_SIMPLE || (src->verbosity == STRM_VERB_ADVANCED && src->level < TRACE_LEVEL_DATA)) return; /* channels' buffer info */ if (s->flags & SF_HTX) { struct htx *rqhtx = htxbuf(&req->buf); struct htx *rphtx = htxbuf(&res->buf); chunk_appendf(&trace_buf, " htx=(%u/%u#%u, %u/%u#%u)", rqhtx->data, rqhtx->size, htx_nbblks(rqhtx), rphtx->data, rphtx->size, htx_nbblks(rphtx)); } else { chunk_appendf(&trace_buf, " buf=(%u@%p+%u/%u, %u@%p+%u/%u)", (unsigned int)b_data(&req->buf), b_orig(&req->buf), (unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf), (unsigned int)b_data(&req->buf), b_orig(&req->buf), (unsigned int)b_head_ofs(&req->buf), (unsigned int)b_size(&req->buf)); } /* If msg defined, display htx info if defined (level > USER) */ if (src->level > TRACE_LEVEL_USER && htx && htx_nbblks(htx)) { int full = 0; /* Full htx info (level > STATE && verbosity > SIMPLE) */ if (src->level > TRACE_LEVEL_STATE) { if (src->verbosity == STRM_VERB_COMPLETE) full = 1; } chunk_memcat(&trace_buf, "\n\t", 2); htx_dump(&trace_buf, htx, full); } } /* Create a new stream for connection . Return < 0 on error. This is only * valid right after the handshake, before the connection's data layer is * initialized, because it relies on the session to be in conn->owner. */ int stream_create_from_cs(struct conn_stream *cs) { struct stream *strm; strm = stream_new(cs->conn->owner, &cs->obj_type); if (strm == NULL) return -1; task_wakeup(strm->task, TASK_WOKEN_INIT); return 0; } /* Callback used to wake up a stream when an input buffer is available. The * stream 's stream interfaces are checked for a failed buffer allocation * as indicated by the presence of the SI_FL_RXBLK_ROOM flag and the lack of a * buffer, and and input buffer is assigned there (at most one). The function * returns 1 and wakes the stream up if a buffer was taken, otherwise zero. * It's designed to be called from __offer_buffer(). */ int stream_buf_available(void *arg) { struct stream *s = arg; if (!s->req.buf.size && !s->req.pipe && (s->si[0].flags & SI_FL_RXBLK_BUFF) && b_alloc_margin(&s->req.buf, global.tune.reserved_bufs)) si_rx_buff_rdy(&s->si[0]); else if (!s->res.buf.size && !s->res.pipe && (s->si[1].flags & SI_FL_RXBLK_BUFF) && b_alloc_margin(&s->res.buf, 0)) si_rx_buff_rdy(&s->si[1]); else return 0; task_wakeup(s->task, TASK_WOKEN_RES); return 1; } /* This function is called from the session handler which detects the end of * handshake, in order to complete initialization of a valid stream. It must be * called with a completely initialized session. It returns the pointer to * the newly created stream, or NULL in case of fatal error. The client-facing * end point is assigned to , which must be valid. The stream's task * is configured with a nice value inherited from the listener's nice if any. * The task's context is set to the new stream, and its function is set to * process_stream(). Target and analysers are null. */ struct stream *stream_new(struct session *sess, enum obj_type *origin) { struct stream *s; struct task *t; struct conn_stream *cs = objt_cs(origin); struct appctx *appctx = objt_appctx(origin); const struct cs_info *csinfo; DBG_TRACE_ENTER(STRM_EV_STRM_NEW); if (unlikely((s = pool_alloc(pool_head_stream)) == NULL)) goto out_fail_alloc; /* minimum stream initialization required for an embryonic stream is * fairly low. We need very little to execute L4 ACLs, then we need a * task to make the client-side connection live on its own. * - flags * - stick-entry tracking */ s->flags = 0; s->logs.logwait = sess->fe->to_log; s->logs.level = 0; tv_zero(&s->logs.tv_request); s->logs.t_queue = -1; s->logs.t_connect = -1; s->logs.t_data = -1; s->logs.t_close = 0; s->logs.bytes_in = s->logs.bytes_out = 0; s->logs.prx_queue_pos = 0; /* we get the number of pending conns before us */ s->logs.srv_queue_pos = 0; /* we will get this number soon */ s->obj_type = OBJ_TYPE_STREAM; csinfo = si_get_cs_info(cs); if (csinfo) { s->logs.accept_date = csinfo->create_date; s->logs.tv_accept = csinfo->tv_create; s->logs.t_handshake = csinfo->t_handshake; s->logs.t_idle = csinfo->t_idle; } else { s->logs.accept_date = sess->accept_date; s->logs.tv_accept = sess->tv_accept; s->logs.t_handshake = sess->t_handshake; s->logs.t_idle = -1; } /* default logging function */ s->do_log = strm_log; /* default error reporting function, may be changed by analysers */ s->srv_error = default_srv_error; /* Initialise the current rule list pointer to NULL. We are sure that * any rulelist match the NULL pointer. */ s->current_rule_list = NULL; s->current_rule = NULL; /* Copy SC counters for the stream. We don't touch refcounts because * any reference we have is inherited from the session. Since the stream * doesn't exist without the session, the session's existence guarantees * we don't lose the entry. During the store operation, the stream won't * touch these ones. */ memcpy(s->stkctr, sess->stkctr, sizeof(s->stkctr)); s->sess = sess; s->si[0].flags = SI_FL_NONE; s->si[1].flags = SI_FL_ISBACK; s->uniq_id = _HA_ATOMIC_XADD(&global.req_count, 1); /* OK, we're keeping the stream, so let's properly initialize the stream */ LIST_INIT(&s->back_refs); MT_LIST_INIT(&s->buffer_wait.list); s->buffer_wait.target = s; s->buffer_wait.wakeup_cb = stream_buf_available; s->call_rate.curr_sec = s->call_rate.curr_ctr = s->call_rate.prev_ctr = 0; s->pcli_next_pid = 0; s->pcli_flags = 0; s->unique_id = IST_NULL; if ((t = task_new(tid_bit)) == NULL) goto out_fail_alloc; s->task = t; s->pending_events = 0; t->process = process_stream; t->context = s; t->expire = TICK_ETERNITY; if (sess->listener) t->nice = sess->listener->nice; /* Note: initially, the stream's backend points to the frontend. * This changes later when switching rules are executed or * when the default backend is assigned. */ s->be = sess->fe; s->req.buf = BUF_NULL; s->res.buf = BUF_NULL; s->req_cap = NULL; s->res_cap = NULL; /* Initialise all the variables contexts even if not used. * This permits to prune these contexts without errors. */ vars_init(&s->vars_txn, SCOPE_TXN); vars_init(&s->vars_reqres, SCOPE_REQ); /* this part should be common with other protocols */ if (si_reset(&s->si[0]) < 0) goto out_fail_alloc; si_set_state(&s->si[0], SI_ST_EST); s->si[0].hcto = sess->fe->timeout.clientfin; if (cs && cs->conn->mux) { if (cs->conn->mux->flags & MX_FL_CLEAN_ABRT) s->si[0].flags |= SI_FL_CLEAN_ABRT; if (cs->conn->mux->flags & MX_FL_HTX) s->flags |= SF_HTX; } /* Set SF_HTX flag for HTTP frontends. */ if (sess->fe->mode == PR_MODE_HTTP) s->flags |= SF_HTX; /* attach the incoming connection to the stream interface now. */ if (cs) si_attach_cs(&s->si[0], cs); else if (appctx) si_attach_appctx(&s->si[0], appctx); if (likely(sess->fe->options2 & PR_O2_INDEPSTR)) s->si[0].flags |= SI_FL_INDEP_STR; /* pre-initialize the other side's stream interface to an INIT state. The * callbacks will be initialized before attempting to connect. */ if (si_reset(&s->si[1]) < 0) goto out_fail_alloc_si1; s->si[1].hcto = TICK_ETERNITY; if (likely(sess->fe->options2 & PR_O2_INDEPSTR)) s->si[1].flags |= SI_FL_INDEP_STR; stream_init_srv_conn(s); s->target = sess->listener ? sess->listener->default_target : NULL; s->target_addr = NULL; s->pend_pos = NULL; s->priority_class = 0; s->priority_offset = 0; /* init store persistence */ s->store_count = 0; channel_init(&s->req); s->req.flags |= CF_READ_ATTACHED; /* the producer is already connected */ s->req.analysers = sess->listener ? sess->listener->analysers : 0; if (!sess->fe->fe_req_ana) { channel_auto_connect(&s->req); /* don't wait to establish connection */ channel_auto_close(&s->req); /* let the producer forward close requests */ } s->req.rto = sess->fe->timeout.client; s->req.wto = TICK_ETERNITY; s->req.rex = TICK_ETERNITY; s->req.wex = TICK_ETERNITY; s->req.analyse_exp = TICK_ETERNITY; channel_init(&s->res); s->res.flags |= CF_ISRESP; s->res.analysers = 0; if (sess->fe->options2 & PR_O2_NODELAY) { s->req.flags |= CF_NEVER_WAIT; s->res.flags |= CF_NEVER_WAIT; } s->res.wto = sess->fe->timeout.client; s->res.rto = TICK_ETERNITY; s->res.rex = TICK_ETERNITY; s->res.wex = TICK_ETERNITY; s->res.analyse_exp = TICK_ETERNITY; s->txn = NULL; s->hlua = NULL; s->dns_ctx.dns_requester = NULL; s->dns_ctx.hostname_dn = NULL; s->dns_ctx.hostname_dn_len = 0; s->dns_ctx.parent = NULL; HA_SPIN_LOCK(STRMS_LOCK, &streams_lock); LIST_ADDQ(&streams, &s->list); HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock); if (flt_stream_init(s) < 0 || flt_stream_start(s) < 0) goto out_fail_accept; s->si[1].l7_buffer = BUF_NULL; /* finish initialization of the accepted file descriptor */ if (appctx) si_want_get(&s->si[0]); if (sess->fe->accept && sess->fe->accept(s) < 0) goto out_fail_accept; /* it is important not to call the wakeup function directly but to * pass through task_wakeup(), because this one knows how to apply * priorities to tasks. Using multi thread we must be sure that * stream is fully initialized before calling task_wakeup. So * the caller must handle the task_wakeup */ DBG_TRACE_LEAVE(STRM_EV_STRM_NEW, s); return s; /* Error unrolling */ out_fail_accept: flt_stream_release(s, 0); task_destroy(t); tasklet_free(s->si[1].wait_event.tasklet); LIST_DEL(&s->list); out_fail_alloc_si1: tasklet_free(s->si[0].wait_event.tasklet); out_fail_alloc: pool_free(pool_head_stream, s); DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_NEW|STRM_EV_STRM_ERR); return NULL; } /* * frees the context associated to a stream. It must have been removed first. */ static void stream_free(struct stream *s) { struct session *sess = strm_sess(s); struct proxy *fe = sess->fe; struct bref *bref, *back; struct conn_stream *cli_cs = objt_cs(s->si[0].end); int must_free_sess; int i; DBG_TRACE_POINT(STRM_EV_STRM_FREE, s); /* detach the stream from its own task before even releasing it so * that walking over a task list never exhibits a dying stream. */ s->task->context = NULL; __ha_barrier_store(); pendconn_free(s); if (objt_server(s->target)) { /* there may be requests left pending in queue */ if (s->flags & SF_CURR_SESS) { s->flags &= ~SF_CURR_SESS; _HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1); } if (may_dequeue_tasks(objt_server(s->target), s->be)) process_srv_queue(objt_server(s->target), 0); } if (unlikely(s->srv_conn)) { /* the stream still has a reserved slot on a server, but * it should normally be only the same as the one above, * so this should not happen in fact. */ sess_change_server(s, NULL); } if (s->req.pipe) put_pipe(s->req.pipe); if (s->res.pipe) put_pipe(s->res.pipe); /* We may still be present in the buffer wait queue */ if (MT_LIST_ADDED(&s->buffer_wait.list)) MT_LIST_DEL(&s->buffer_wait.list); if (s->req.buf.size || s->res.buf.size) { b_free(&s->req.buf); b_free(&s->res.buf); offer_buffers(NULL, tasks_run_queue); } pool_free(pool_head_uniqueid, s->unique_id.ptr); s->unique_id = IST_NULL; hlua_ctx_destroy(s->hlua); s->hlua = NULL; if (s->txn) http_end_txn(s); /* ensure the client-side transport layer is destroyed */ if (cli_cs) cs_close(cli_cs); for (i = 0; i < s->store_count; i++) { if (!s->store[i].ts) continue; stksess_free(s->store[i].table, s->store[i].ts); s->store[i].ts = NULL; } if (s->txn) { pool_free(pool_head_http_txn, s->txn); s->txn = NULL; } if (s->dns_ctx.dns_requester) { __decl_thread(struct dns_resolvers *resolvers = s->dns_ctx.parent->arg.dns.resolvers); HA_SPIN_LOCK(DNS_LOCK, &resolvers->lock); free(s->dns_ctx.hostname_dn); s->dns_ctx.hostname_dn = NULL; s->dns_ctx.hostname_dn_len = 0; dns_unlink_resolution(s->dns_ctx.dns_requester); HA_SPIN_UNLOCK(DNS_LOCK, &resolvers->lock); pool_free(dns_requester_pool, s->dns_ctx.dns_requester); s->dns_ctx.dns_requester = NULL; } flt_stream_stop(s); flt_stream_release(s, 0); if (fe) { if (s->req_cap) { struct cap_hdr *h; for (h = fe->req_cap; h; h = h->next) pool_free(h->pool, s->req_cap[h->index]); } if (s->res_cap) { struct cap_hdr *h; for (h = fe->rsp_cap; h; h = h->next) pool_free(h->pool, s->res_cap[h->index]); } pool_free(fe->rsp_cap_pool, s->res_cap); pool_free(fe->req_cap_pool, s->req_cap); } /* Cleanup all variable contexts. */ if (!LIST_ISEMPTY(&s->vars_txn.head)) vars_prune(&s->vars_txn, s->sess, s); if (!LIST_ISEMPTY(&s->vars_reqres.head)) vars_prune(&s->vars_reqres, s->sess, s); stream_store_counters(s); HA_SPIN_LOCK(STRMS_LOCK, &streams_lock); list_for_each_entry_safe(bref, back, &s->back_refs, users) { /* we have to unlink all watchers. We must not relink them if * this stream was the last one in the list. */ LIST_DEL(&bref->users); LIST_INIT(&bref->users); if (s->list.n != &streams) LIST_ADDQ(&LIST_ELEM(s->list.n, struct stream *, list)->back_refs, &bref->users); bref->ref = s->list.n; } LIST_DEL(&s->list); HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock); /* applets do not release session yet */ must_free_sess = objt_appctx(sess->origin) && sess->origin == s->si[0].end; si_release_endpoint(&s->si[1]); si_release_endpoint(&s->si[0]); tasklet_free(s->si[0].wait_event.tasklet); tasklet_free(s->si[1].wait_event.tasklet); b_free(&s->si[1].l7_buffer); if (must_free_sess) { sess->origin = NULL; session_free(sess); } sockaddr_free(&s->target_addr); pool_free(pool_head_stream, s); /* We may want to free the maximum amount of pools if the proxy is stopping */ if (fe && unlikely(fe->state == PR_STSTOPPED)) { pool_flush(pool_head_buffer); pool_flush(pool_head_http_txn); pool_flush(pool_head_requri); pool_flush(pool_head_capture); pool_flush(pool_head_stream); pool_flush(pool_head_session); pool_flush(pool_head_connection); pool_flush(pool_head_pendconn); pool_flush(fe->req_cap_pool); pool_flush(fe->rsp_cap_pool); } } /* Allocates a work buffer for stream . It is meant to be called inside * process_stream(). It will only allocate the side needed for the function * to work fine, which is the response buffer so that an error message may be * built and returned. Response buffers may be allocated from the reserve, this * is critical to ensure that a response may always flow and will never block a * server from releasing a connection. Returns 0 in case of failure, non-zero * otherwise. */ static int stream_alloc_work_buffer(struct stream *s) { if (MT_LIST_ADDED(&s->buffer_wait.list)) MT_LIST_DEL(&s->buffer_wait.list); if (b_alloc_margin(&s->res.buf, 0)) return 1; MT_LIST_ADDQ(&buffer_wq, &s->buffer_wait.list); return 0; } /* releases unused buffers after processing. Typically used at the end of the * update() functions. It will try to wake up as many tasks/applets as the * number of buffers that it releases. In practice, most often streams are * blocked on a single buffer, so it makes sense to try to wake two up when two * buffers are released at once. */ void stream_release_buffers(struct stream *s) { int offer = 0; if (c_size(&s->req) && c_empty(&s->req)) { offer = 1; b_free(&s->req.buf); } if (c_size(&s->res) && c_empty(&s->res)) { offer = 1; b_free(&s->res.buf); } /* if we're certain to have at least 1 buffer available, and there is * someone waiting, we can wake up a waiter and offer them. */ if (offer) offer_buffers(s, tasks_run_queue); } void stream_process_counters(struct stream *s) { struct session *sess = s->sess; unsigned long long bytes; void *ptr1,*ptr2; struct stksess *ts; int i; bytes = s->req.total - s->logs.bytes_in; s->logs.bytes_in = s->req.total; if (bytes) { _HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_in, bytes); _HA_ATOMIC_ADD(&s->be->be_counters.bytes_in, bytes); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.bytes_in, bytes); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->bytes_in, bytes); for (i = 0; i < MAX_SESS_STKCTR; i++) { struct stkctr *stkctr = &s->stkctr[i]; ts = stkctr_entry(stkctr); if (!ts) { stkctr = &sess->stkctr[i]; ts = stkctr_entry(stkctr); if (!ts) continue; } HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); ptr1 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_IN_CNT); if (ptr1) stktable_data_cast(ptr1, bytes_in_cnt) += bytes; ptr2 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_IN_RATE); if (ptr2) update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_in_rate), stkctr->table->data_arg[STKTABLE_DT_BYTES_IN_RATE].u, bytes); HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); /* If data was modified, we need to touch to re-schedule sync */ if (ptr1 || ptr2) stktable_touch_local(stkctr->table, ts, 0); } } bytes = s->res.total - s->logs.bytes_out; s->logs.bytes_out = s->res.total; if (bytes) { _HA_ATOMIC_ADD(&sess->fe->fe_counters.bytes_out, bytes); _HA_ATOMIC_ADD(&s->be->be_counters.bytes_out, bytes); if (objt_server(s->target)) _HA_ATOMIC_ADD(&objt_server(s->target)->counters.bytes_out, bytes); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->bytes_out, bytes); for (i = 0; i < MAX_SESS_STKCTR; i++) { struct stkctr *stkctr = &s->stkctr[i]; ts = stkctr_entry(stkctr); if (!ts) { stkctr = &sess->stkctr[i]; ts = stkctr_entry(stkctr); if (!ts) continue; } HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); ptr1 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_OUT_CNT); if (ptr1) stktable_data_cast(ptr1, bytes_out_cnt) += bytes; ptr2 = stktable_data_ptr(stkctr->table, ts, STKTABLE_DT_BYTES_OUT_RATE); if (ptr2) update_freq_ctr_period(&stktable_data_cast(ptr2, bytes_out_rate), stkctr->table->data_arg[STKTABLE_DT_BYTES_OUT_RATE].u, bytes); HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); /* If data was modified, we need to touch to re-schedule sync */ if (ptr1 || ptr2) stktable_touch_local(stkctr->table, stkctr_entry(stkctr), 0); } } } /* * This function handles the transition between the SI_ST_CON state and the * SI_ST_EST state. It must only be called after switching from SI_ST_CON (or * SI_ST_INI or SI_ST_RDY) to SI_ST_EST, but only when a ->proto is defined. * Note that it will switch the interface to SI_ST_DIS if we already have * the CF_SHUTR flag, it means we were able to forward the request, and * receive the response, before process_stream() had the opportunity to * make the switch from SI_ST_CON to SI_ST_EST. When that happens, we want * to go through back_establish() anyway, to make sure the analysers run. * Timeouts are cleared. Error are reported on the channel so that analysers * can handle them. */ static void back_establish(struct stream *s) { struct stream_interface *si = &s->si[1]; struct conn_stream *srv_cs = objt_cs(si->end); struct connection *conn = srv_cs ? srv_cs->conn : objt_conn(si->end); struct channel *req = &s->req; struct channel *rep = &s->res; DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); /* First, centralize the timers information, and clear any irrelevant * timeout. */ s->logs.t_connect = tv_ms_elapsed(&s->logs.tv_accept, &now); si->exp = TICK_ETERNITY; si->flags &= ~SI_FL_EXP; /* errors faced after sending data need to be reported */ if (si->flags & SI_FL_ERR && req->flags & CF_WROTE_DATA) { /* Don't add CF_WRITE_ERROR if we're here because * early data were rejected by the server, or * http_wait_for_response() will never be called * to send a 425. */ if (conn && conn->err_code != CO_ER_SSL_EARLY_FAILED) req->flags |= CF_WRITE_ERROR; rep->flags |= CF_READ_ERROR; si->err_type = SI_ET_DATA_ERR; DBG_TRACE_STATE("read/write error", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); } if (objt_server(s->target)) health_adjust(objt_server(s->target), HANA_STATUS_L4_OK); if (s->be->mode == PR_MODE_TCP) { /* let's allow immediate data connection in this case */ /* if the user wants to log as soon as possible, without counting * bytes from the server, then this is the right moment. */ if (!LIST_ISEMPTY(&strm_fe(s)->logformat) && !(s->logs.logwait & LW_BYTES)) { /* note: no pend_pos here, session is established */ s->logs.t_close = s->logs.t_connect; /* to get a valid end date */ s->do_log(s); } } else { rep->flags |= CF_READ_DONTWAIT; /* a single read is enough to get response headers */ } rep->analysers |= strm_fe(s)->fe_rsp_ana | s->be->be_rsp_ana; /* Be sure to filter response headers if the backend is an HTTP proxy * and if there are filters attached to the stream. */ if (s->be->mode == PR_MODE_HTTP && HAS_FILTERS(s)) rep->analysers |= AN_RES_FLT_HTTP_HDRS; si_rx_endp_more(si); rep->flags |= CF_READ_ATTACHED; /* producer is now attached */ if (objt_cs(si->end)) { /* real connections have timeouts */ req->wto = s->be->timeout.server; rep->rto = s->be->timeout.server; /* The connection is now established, try to read data from the * underlying layer, and subscribe to recv events. We use a * delayed recv here to give a chance to the data to flow back * by the time we process other tasks. */ si_chk_rcv(si); } req->wex = TICK_ETERNITY; /* If we managed to get the whole response, and we don't have anything * left to send, or can't, switch to SI_ST_DIS now. */ if (rep->flags & (CF_SHUTR | CF_SHUTW)) { si->state = SI_ST_DIS; DBG_TRACE_STATE("response channel shutdwn for read/write", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s); } DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s); } /* Set correct stream termination flags in case no analyser has done it. It * also counts a failed request if the server state has not reached the request * stage. */ static void sess_set_term_flags(struct stream *s) { if (!(s->flags & SF_FINST_MASK)) { if (s->si[1].state == SI_ST_INI) { /* anything before REQ in fact */ _HA_ATOMIC_ADD(&strm_fe(s)->fe_counters.failed_req, 1); if (strm_li(s) && strm_li(s)->counters) _HA_ATOMIC_ADD(&strm_li(s)->counters->failed_req, 1); s->flags |= SF_FINST_R; } else if (s->si[1].state == SI_ST_QUE) s->flags |= SF_FINST_Q; else if (si_state_in(s->si[1].state, SI_SB_REQ|SI_SB_TAR|SI_SB_ASS|SI_SB_CON|SI_SB_CER|SI_SB_RDY)) s->flags |= SF_FINST_C; else if (s->si[1].state == SI_ST_EST || s->si[1].prev_state == SI_ST_EST) s->flags |= SF_FINST_D; else s->flags |= SF_FINST_L; } } /* This function parses the use-service action ruleset. It executes * the associated ACL and set an applet as a stream or txn final node. * it returns ACT_RET_ERR if an error occurs, the proxy left in * consistent state. It returns ACT_RET_STOP in success case because * use-service must be a terminal action. Returns ACT_RET_YIELD * if the initialisation function require more data. */ enum act_return process_use_service(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *s, int flags) { struct appctx *appctx; /* Initialises the applet if it is required. */ if (flags & ACT_OPT_FIRST) { /* Register applet. this function schedules the applet. */ s->target = &rule->applet.obj_type; if (unlikely(!si_register_handler(&s->si[1], objt_applet(s->target)))) return ACT_RET_ERR; /* Initialise the context. */ appctx = si_appctx(&s->si[1]); memset(&appctx->ctx, 0, sizeof(appctx->ctx)); appctx->rule = rule; } else appctx = si_appctx(&s->si[1]); /* Stops the applet scheduling, in case of the init function miss * some data. */ si_stop_get(&s->si[1]); /* Call initialisation. */ if (rule->applet.init) switch (rule->applet.init(appctx, px, s)) { case 0: return ACT_RET_ERR; case 1: break; default: return ACT_RET_YIELD; } if (rule->from != ACT_F_HTTP_REQ) { if (sess->fe == s->be) /* report it if the request was intercepted by the frontend */ _HA_ATOMIC_ADD(&sess->fe->fe_counters.intercepted_req, 1); /* The flag SF_ASSIGNED prevent from server assignment. */ s->flags |= SF_ASSIGNED; } /* Now we can schedule the applet. */ si_cant_get(&s->si[1]); appctx_wakeup(appctx); return ACT_RET_STOP; } /* This stream analyser checks the switching rules and changes the backend * if appropriate. The default_backend rule is also considered, then the * target backend's forced persistence rules are also evaluated last if any. * It returns 1 if the processing can continue on next analysers, or zero if it * either needs more data or wants to immediately abort the request. */ static int process_switching_rules(struct stream *s, struct channel *req, int an_bit) { struct persist_rule *prst_rule; struct session *sess = s->sess; struct proxy *fe = sess->fe; req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s); /* now check whether we have some switching rules for this request */ if (!(s->flags & SF_BE_ASSIGNED)) { struct switching_rule *rule; list_for_each_entry(rule, &fe->switching_rules, list) { int ret = 1; if (rule->cond) { ret = acl_exec_cond(rule->cond, fe, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* If the backend name is dynamic, try to resolve the name. * If we can't resolve the name, or if any error occurs, break * the loop and fallback to the default backend. */ struct proxy *backend = NULL; if (rule->dynamic) { struct buffer *tmp; tmp = alloc_trash_chunk(); if (!tmp) goto sw_failed; if (build_logline(s, tmp->area, tmp->size, &rule->be.expr)) backend = proxy_be_by_name(tmp->area); free_trash_chunk(tmp); tmp = NULL; if (!backend) break; } else backend = rule->be.backend; if (!stream_set_backend(s, backend)) goto sw_failed; break; } } /* To ensure correct connection accounting on the backend, we * have to assign one if it was not set (eg: a listen). This * measure also takes care of correctly setting the default * backend if any. */ if (!(s->flags & SF_BE_ASSIGNED)) if (!stream_set_backend(s, fe->defbe.be ? fe->defbe.be : s->be)) goto sw_failed; } /* we don't want to run the TCP or HTTP filters again if the backend has not changed */ if (fe == s->be) { s->req.analysers &= ~AN_REQ_INSPECT_BE; s->req.analysers &= ~AN_REQ_HTTP_PROCESS_BE; s->req.analysers &= ~AN_REQ_FLT_START_BE; } /* as soon as we know the backend, we must check if we have a matching forced or ignored * persistence rule, and report that in the stream. */ list_for_each_entry(prst_rule, &s->be->persist_rules, list) { int ret = 1; if (prst_rule->cond) { ret = acl_exec_cond(prst_rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (prst_rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { /* no rule, or the rule matches */ if (prst_rule->type == PERSIST_TYPE_FORCE) { s->flags |= SF_FORCE_PRST; } else { s->flags |= SF_IGNORE_PRST; } break; } } DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); return 1; sw_failed: /* immediately abort this request in case of allocation failure */ channel_abort(&s->req); channel_abort(&s->res); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_RESOURCE; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_R; if (s->txn) s->txn->status = 500; s->req.analysers &= AN_REQ_FLT_END; s->req.analyse_exp = TICK_ETERNITY; DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_ANA|STRM_EV_STRM_ERR, s); return 0; } /* This stream analyser works on a request. It applies all use-server rules on * it then returns 1. The data must already be present in the buffer otherwise * they won't match. It always returns 1. */ static int process_server_rules(struct stream *s, struct channel *req, int an_bit) { struct proxy *px = s->be; struct session *sess = s->sess; struct server_rule *rule; DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s); if (!(s->flags & SF_ASSIGNED)) { list_for_each_entry(rule, &px->server_rules, list) { int ret; ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; if (ret) { struct server *srv; if (rule->dynamic) { struct buffer *tmp = get_trash_chunk(); if (!build_logline(s, tmp->area, tmp->size, &rule->expr)) break; srv = findserver(s->be, tmp->area); if (!srv) break; } else srv = rule->srv.ptr; if ((srv->cur_state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) { s->flags |= SF_DIRECT | SF_ASSIGNED; s->target = &srv->obj_type; break; } /* if the server is not UP, let's go on with next rules * just in case another one is suited. */ } } } req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); return 1; } static inline void sticking_rule_find_target(struct stream *s, struct stktable *t, struct stksess *ts) { struct proxy *px = s->be; struct eb32_node *node; struct dict_entry *de; void *ptr; struct server *srv; /* Look for the server name previously stored in stick-table */ HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock); ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_NAME); de = stktable_data_cast(ptr, server_name); HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock); if (de) { struct ebpt_node *name; name = ebis_lookup(&px->conf.used_server_name, de->value.key); if (name) { srv = container_of(name, struct server, conf.name); goto found; } } /* Look for the server ID */ HA_RWLOCK_RDLOCK(STK_SESS_LOCK, &ts->lock); ptr = __stktable_data_ptr(t, ts, STKTABLE_DT_SERVER_ID); node = eb32_lookup(&px->conf.used_server_id, stktable_data_cast(ptr, server_id)); HA_RWLOCK_RDUNLOCK(STK_SESS_LOCK, &ts->lock); if (!node) return; srv = container_of(node, struct server, conf.id); found: if ((srv->cur_state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST) || (s->flags & SF_FORCE_PRST)) { s->flags |= SF_DIRECT | SF_ASSIGNED; s->target = &srv->obj_type; } } /* This stream analyser works on a request. It applies all sticking rules on * it then returns 1. The data must already be present in the buffer otherwise * they won't match. It always returns 1. */ static int process_sticking_rules(struct stream *s, struct channel *req, int an_bit) { struct proxy *px = s->be; struct session *sess = s->sess; struct sticking_rule *rule; DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s); list_for_each_entry(rule, &px->sticking_rules, list) { int ret = 1 ; int i; /* Only the first stick store-request of each table is applied * and other ones are ignored. The purpose is to allow complex * configurations which look for multiple entries by decreasing * order of precision and to stop at the first which matches. * An example could be a store of the IP address from an HTTP * header first, then from the source if not found. */ if (rule->flags & STK_IS_STORE) { for (i = 0; i < s->store_count; i++) { if (rule->table.t == s->store[i].table) break; } if (i != s->store_count) continue; } if (rule->cond) { ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { struct stktable_key *key; key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->expr, NULL); if (!key) continue; if (rule->flags & STK_IS_MATCH) { struct stksess *ts; if ((ts = stktable_lookup_key(rule->table.t, key)) != NULL) { if (!(s->flags & SF_ASSIGNED)) sticking_rule_find_target(s, rule->table.t, ts); stktable_touch_local(rule->table.t, ts, 1); } } if (rule->flags & STK_IS_STORE) { if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { struct stksess *ts; ts = stksess_new(rule->table.t, key); if (ts) { s->store[s->store_count].table = rule->table.t; s->store[s->store_count++].ts = ts; } } } } } req->analysers &= ~an_bit; req->analyse_exp = TICK_ETERNITY; DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); return 1; } /* This stream analyser works on a response. It applies all store rules on it * then returns 1. The data must already be present in the buffer otherwise * they won't match. It always returns 1. */ static int process_store_rules(struct stream *s, struct channel *rep, int an_bit) { struct proxy *px = s->be; struct session *sess = s->sess; struct sticking_rule *rule; int i; int nbreq = s->store_count; DBG_TRACE_ENTER(STRM_EV_STRM_ANA, s); list_for_each_entry(rule, &px->storersp_rules, list) { int ret = 1 ; /* Only the first stick store-response of each table is applied * and other ones are ignored. The purpose is to allow complex * configurations which look for multiple entries by decreasing * order of precision and to stop at the first which matches. * An example could be a store of a set-cookie value, with a * fallback to a parameter found in a 302 redirect. * * The store-response rules are not allowed to override the * store-request rules for the same table, but they may coexist. * Thus we can have up to one store-request entry and one store- * response entry for the same table at any time. */ for (i = nbreq; i < s->store_count; i++) { if (rule->table.t == s->store[i].table) break; } /* skip existing entries for this table */ if (i < s->store_count) continue; if (rule->cond) { ret = acl_exec_cond(rule->cond, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL); ret = acl_pass(ret); if (rule->cond->pol == ACL_COND_UNLESS) ret = !ret; } if (ret) { struct stktable_key *key; key = stktable_fetch_key(rule->table.t, px, sess, s, SMP_OPT_DIR_RES|SMP_OPT_FINAL, rule->expr, NULL); if (!key) continue; if (s->store_count < (sizeof(s->store) / sizeof(s->store[0]))) { struct stksess *ts; ts = stksess_new(rule->table.t, key); if (ts) { s->store[s->store_count].table = rule->table.t; s->store[s->store_count++].ts = ts; } } } } /* process store request and store response */ for (i = 0; i < s->store_count; i++) { struct stksess *ts; void *ptr; struct dict_entry *de; if (objt_server(s->target) && objt_server(s->target)->flags & SRV_F_NON_STICK) { stksess_free(s->store[i].table, s->store[i].ts); s->store[i].ts = NULL; continue; } ts = stktable_set_entry(s->store[i].table, s->store[i].ts); if (ts != s->store[i].ts) { /* the entry already existed, we can free ours */ stksess_free(s->store[i].table, s->store[i].ts); } s->store[i].ts = NULL; HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); ptr = __stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_ID); stktable_data_cast(ptr, server_id) = __objt_server(s->target)->puid; HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); HA_RWLOCK_WRLOCK(STK_SESS_LOCK, &ts->lock); de = dict_insert(&server_name_dict, __objt_server(s->target)->id); if (de) { ptr = __stktable_data_ptr(s->store[i].table, ts, STKTABLE_DT_SERVER_NAME); stktable_data_cast(ptr, server_name) = de; } HA_RWLOCK_WRUNLOCK(STK_SESS_LOCK, &ts->lock); stktable_touch_local(s->store[i].table, ts, 1); } s->store_count = 0; /* everything is stored */ rep->analysers &= ~an_bit; rep->analyse_exp = TICK_ETERNITY; DBG_TRACE_LEAVE(STRM_EV_STRM_ANA, s); return 1; } /* This macro is very specific to the function below. See the comments in * process_stream() below to understand the logic and the tests. */ #define UPDATE_ANALYSERS(real, list, back, flag) { \ list = (((list) & ~(flag)) | ~(back)) & (real); \ back = real; \ if (!(list)) \ break; \ if (((list) ^ ((list) & ((list) - 1))) < (flag)) \ continue; \ } /* These 2 following macros call an analayzer for the specified channel if the * right flag is set. The first one is used for "filterable" analyzers. If a * stream has some registered filters, pre and post analyaze callbacks are * called. The second are used for other analyzers (AN_REQ/RES_FLT_* and * AN_REQ/RES_HTTP_XFER_BODY) */ #define FLT_ANALYZE(strm, chn, fun, list, back, flag, ...) \ { \ if ((list) & (flag)) { \ if (HAS_FILTERS(strm)) { \ if (!flt_pre_analyze((strm), (chn), (flag))) \ break; \ if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ break; \ if (!flt_post_analyze((strm), (chn), (flag))) \ break; \ } \ else { \ if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ break; \ } \ UPDATE_ANALYSERS((chn)->analysers, (list), \ (back), (flag)); \ } \ } #define ANALYZE(strm, chn, fun, list, back, flag, ...) \ { \ if ((list) & (flag)) { \ if (!fun((strm), (chn), (flag), ##__VA_ARGS__)) \ break; \ UPDATE_ANALYSERS((chn)->analysers, (list), \ (back), (flag)); \ } \ } /* Processes the client, server, request and response jobs of a stream task, * then puts it back to the wait queue in a clean state, or cleans up its * resources if it must be deleted. Returns in the date the task wants * to be woken up, or TICK_ETERNITY. In order not to call all functions for * nothing too many times, the request and response buffers flags are monitored * and each function is called only if at least another function has changed at * least one flag it is interested in. */ struct task *process_stream(struct task *t, void *context, unsigned short state) { struct server *srv; struct stream *s = context; struct session *sess = s->sess; unsigned int rqf_last, rpf_last; unsigned int rq_prod_last, rq_cons_last; unsigned int rp_cons_last, rp_prod_last; unsigned int req_ana_back; struct channel *req, *res; struct stream_interface *si_f, *si_b; unsigned int rate; DBG_TRACE_ENTER(STRM_EV_STRM_PROC, s); activity[tid].stream_calls++; req = &s->req; res = &s->res; si_f = &s->si[0]; si_b = &s->si[1]; /* First, attempt to receive pending data from I/O layers */ si_sync_recv(si_f); si_sync_recv(si_b); rate = update_freq_ctr(&s->call_rate, 1); if (rate >= 100000 && s->call_rate.prev_ctr) { // make sure to wait at least a full second stream_dump_and_crash(&s->obj_type, read_freq_ctr(&s->call_rate)); } /* this data may be no longer valid, clear it */ if (s->txn) memset(&s->txn->auth, 0, sizeof(s->txn->auth)); /* This flag must explicitly be set every time */ req->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE); res->flags &= ~(CF_READ_NOEXP|CF_WAKE_WRITE); /* Keep a copy of req/rep flags so that we can detect shutdowns */ rqf_last = req->flags & ~CF_MASK_ANALYSER; rpf_last = res->flags & ~CF_MASK_ANALYSER; /* we don't want the stream interface functions to recursively wake us up */ si_f->flags |= SI_FL_DONT_WAKE; si_b->flags |= SI_FL_DONT_WAKE; /* update pending events */ s->pending_events |= (state & TASK_WOKEN_ANY); /* 1a: Check for low level timeouts if needed. We just set a flag on * stream interfaces when their timeouts have expired. */ if (unlikely(s->pending_events & TASK_WOKEN_TIMER)) { si_check_timeouts(si_f); si_check_timeouts(si_b); /* check channel timeouts, and close the corresponding stream interfaces * for future reads or writes. Note: this will also concern upper layers * but we do not touch any other flag. We must be careful and correctly * detect state changes when calling them. */ channel_check_timeouts(req); if (unlikely((req->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { si_b->flags |= SI_FL_NOLINGER; si_shutw(si_b); } if (unlikely((req->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { if (si_f->flags & SI_FL_NOHALF) si_f->flags |= SI_FL_NOLINGER; si_shutr(si_f); } channel_check_timeouts(res); if (unlikely((res->flags & (CF_SHUTW|CF_WRITE_TIMEOUT)) == CF_WRITE_TIMEOUT)) { si_f->flags |= SI_FL_NOLINGER; si_shutw(si_f); } if (unlikely((res->flags & (CF_SHUTR|CF_READ_TIMEOUT)) == CF_READ_TIMEOUT)) { if (si_b->flags & SI_FL_NOHALF) si_b->flags |= SI_FL_NOLINGER; si_shutr(si_b); } if (HAS_FILTERS(s)) flt_stream_check_timeouts(s); /* Once in a while we're woken up because the task expires. But * this does not necessarily mean that a timeout has been reached. * So let's not run a whole stream processing if only an expiration * timeout needs to be refreshed. */ if (!((req->flags | res->flags) & (CF_SHUTR|CF_READ_ACTIVITY|CF_READ_TIMEOUT|CF_SHUTW| CF_WRITE_ACTIVITY|CF_WRITE_TIMEOUT|CF_ANA_TIMEOUT)) && !((si_f->flags | si_b->flags) & (SI_FL_EXP|SI_FL_ERR)) && ((s->pending_events & TASK_WOKEN_ANY) == TASK_WOKEN_TIMER)) { si_f->flags &= ~SI_FL_DONT_WAKE; si_b->flags &= ~SI_FL_DONT_WAKE; goto update_exp_and_leave; } } resync_stream_interface: /* below we may emit error messages so we have to ensure that we have * our buffers properly allocated. */ if (!stream_alloc_work_buffer(s)) { /* No buffer available, we've been subscribed to the list of * buffer waiters, let's wait for our turn. */ si_f->flags &= ~SI_FL_DONT_WAKE; si_b->flags &= ~SI_FL_DONT_WAKE; goto update_exp_and_leave; } /* 1b: check for low-level errors reported at the stream interface. * First we check if it's a retryable error (in which case we don't * want to tell the buffer). Otherwise we report the error one level * upper by setting flags into the buffers. Note that the side towards * the client cannot have connect (hence retryable) errors. Also, the * connection setup code must be able to deal with any type of abort. */ srv = objt_server(s->target); if (unlikely(si_f->flags & SI_FL_ERR)) { if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS)) { si_shutr(si_f); si_shutw(si_f); si_report_error(si_f); if (!(req->analysers) && !(res->analysers)) { _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_CLICL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; } } } if (unlikely(si_b->flags & SI_FL_ERR)) { if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS)) { si_shutr(si_b); si_shutw(si_b); si_report_error(si_b); _HA_ATOMIC_ADD(&s->be->be_counters.failed_resp, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.failed_resp, 1); if (!(req->analysers) && !(res->analysers)) { _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); if (!(s->flags & SF_ERR_MASK)) s->flags |= SF_ERR_SRVCL; if (!(s->flags & SF_FINST_MASK)) s->flags |= SF_FINST_D; } } /* note: maybe we should process connection errors here ? */ } if (si_state_in(si_b->state, SI_SB_CON|SI_SB_RDY)) { /* we were trying to establish a connection on the server side, * maybe it succeeded, maybe it failed, maybe we timed out, ... */ if (si_b->state == SI_ST_RDY) back_handle_st_rdy(s); else if (si_b->state == SI_ST_CON) back_handle_st_con(s); if (si_b->state == SI_ST_CER) back_handle_st_cer(s); else if (si_b->state == SI_ST_EST) back_establish(s); /* state is now one of SI_ST_CON (still in progress), SI_ST_EST * (established), SI_ST_DIS (abort), SI_ST_CLO (last error), * SI_ST_ASS/SI_ST_TAR/SI_ST_REQ for retryable errors. */ } rq_prod_last = si_f->state; rq_cons_last = si_b->state; rp_cons_last = si_f->state; rp_prod_last = si_b->state; /* Check for connection closure */ DBG_TRACE_POINT(STRM_EV_STRM_PROC, s); /* nothing special to be done on client side */ if (unlikely(si_f->state == SI_ST_DIS)) si_f->state = SI_ST_CLO; /* When a server-side connection is released, we have to count it and * check for pending connections on this server. */ if (unlikely(si_b->state == SI_ST_DIS)) { si_b->state = SI_ST_CLO; srv = objt_server(s->target); if (srv) { if (s->flags & SF_CURR_SESS) { s->flags &= ~SF_CURR_SESS; _HA_ATOMIC_SUB(&srv->cur_sess, 1); } sess_change_server(s, NULL); if (may_dequeue_tasks(srv, s->be)) process_srv_queue(srv, 0); } } /* * Note: of the transient states (REQ, CER, DIS), only REQ may remain * at this point. */ resync_request: /* Analyse request */ if (((req->flags & ~rqf_last) & CF_MASK_ANALYSER) || ((req->flags ^ rqf_last) & CF_MASK_STATIC) || (req->analysers && (req->flags & CF_SHUTW)) || si_f->state != rq_prod_last || si_b->state != rq_cons_last || s->pending_events & TASK_WOKEN_MSG) { unsigned int flags = req->flags; if (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) { int max_loops = global.tune.maxpollevents; unsigned int ana_list; unsigned int ana_back; /* it's up to the analysers to stop new connections, * disable reading or closing. Note: if an analyser * disables any of these bits, it is responsible for * enabling them again when it disables itself, so * that other analysers are called in similar conditions. */ channel_auto_read(req); channel_auto_connect(req); channel_auto_close(req); /* We will call all analysers for which a bit is set in * req->analysers, following the bit order from LSB * to MSB. The analysers must remove themselves from * the list when not needed. Any analyser may return 0 * to break out of the loop, either because of missing * data to take a decision, or because it decides to * kill the stream. We loop at least once through each * analyser, and we may loop again if other analysers * are added in the middle. * * We build a list of analysers to run. We evaluate all * of these analysers in the order of the lower bit to * the higher bit. This ordering is very important. * An analyser will often add/remove other analysers, * including itself. Any changes to itself have no effect * on the loop. If it removes any other analysers, we * want those analysers not to be called anymore during * this loop. If it adds an analyser that is located * after itself, we want it to be scheduled for being * processed during the loop. If it adds an analyser * which is located before it, we want it to switch to * it immediately, even if it has already been called * once but removed since. * * In order to achieve this, we compare the analyser * list after the call with a copy of it before the * call. The work list is fed with analyser bits that * appeared during the call. Then we compare previous * work list with the new one, and check the bits that * appeared. If the lowest of these bits is lower than * the current bit, it means we have enabled a previous * analyser and must immediately loop again. */ ana_list = ana_back = req->analysers; while (ana_list && max_loops--) { /* Warning! ensure that analysers are always placed in ascending order! */ ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_FE); FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_FE); FLT_ANALYZE(s, req, http_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_HTTP); FLT_ANALYZE(s, req, http_wait_for_request_body, ana_list, ana_back, AN_REQ_HTTP_BODY); FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_FE, sess->fe); FLT_ANALYZE(s, req, process_switching_rules, ana_list, ana_back, AN_REQ_SWITCHING_RULES); ANALYZE (s, req, flt_start_analyze, ana_list, ana_back, AN_REQ_FLT_START_BE); FLT_ANALYZE(s, req, tcp_inspect_request, ana_list, ana_back, AN_REQ_INSPECT_BE); FLT_ANALYZE(s, req, http_process_req_common, ana_list, ana_back, AN_REQ_HTTP_PROCESS_BE, s->be); FLT_ANALYZE(s, req, http_process_tarpit, ana_list, ana_back, AN_REQ_HTTP_TARPIT); FLT_ANALYZE(s, req, process_server_rules, ana_list, ana_back, AN_REQ_SRV_RULES); FLT_ANALYZE(s, req, http_process_request, ana_list, ana_back, AN_REQ_HTTP_INNER); FLT_ANALYZE(s, req, tcp_persist_rdp_cookie, ana_list, ana_back, AN_REQ_PRST_RDP_COOKIE); FLT_ANALYZE(s, req, process_sticking_rules, ana_list, ana_back, AN_REQ_STICKING_RULES); ANALYZE (s, req, flt_analyze_http_headers, ana_list, ana_back, AN_REQ_FLT_HTTP_HDRS); ANALYZE (s, req, http_request_forward_body, ana_list, ana_back, AN_REQ_HTTP_XFER_BODY); ANALYZE (s, req, pcli_wait_for_request, ana_list, ana_back, AN_REQ_WAIT_CLI); ANALYZE (s, req, flt_xfer_data, ana_list, ana_back, AN_REQ_FLT_XFER_DATA); ANALYZE (s, req, flt_end_analyze, ana_list, ana_back, AN_REQ_FLT_END); break; } } rq_prod_last = si_f->state; rq_cons_last = si_b->state; req->flags &= ~CF_WAKE_ONCE; rqf_last = req->flags; if ((req->flags ^ flags) & (CF_SHUTR|CF_SHUTW)) goto resync_request; } /* we'll monitor the request analysers while parsing the response, * because some response analysers may indirectly enable new request * analysers (eg: HTTP keep-alive). */ req_ana_back = req->analysers; resync_response: /* Analyse response */ if (((res->flags & ~rpf_last) & CF_MASK_ANALYSER) || (res->flags ^ rpf_last) & CF_MASK_STATIC || (res->analysers && (res->flags & CF_SHUTW)) || si_f->state != rp_cons_last || si_b->state != rp_prod_last || s->pending_events & TASK_WOKEN_MSG) { unsigned int flags = res->flags; if (si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) { int max_loops = global.tune.maxpollevents; unsigned int ana_list; unsigned int ana_back; /* it's up to the analysers to stop disable reading or * closing. Note: if an analyser disables any of these * bits, it is responsible for enabling them again when * it disables itself, so that other analysers are called * in similar conditions. */ channel_auto_read(res); channel_auto_close(res); /* We will call all analysers for which a bit is set in * res->analysers, following the bit order from LSB * to MSB. The analysers must remove themselves from * the list when not needed. Any analyser may return 0 * to break out of the loop, either because of missing * data to take a decision, or because it decides to * kill the stream. We loop at least once through each * analyser, and we may loop again if other analysers * are added in the middle. */ ana_list = ana_back = res->analysers; while (ana_list && max_loops--) { /* Warning! ensure that analysers are always placed in ascending order! */ ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_FE); ANALYZE (s, res, flt_start_analyze, ana_list, ana_back, AN_RES_FLT_START_BE); FLT_ANALYZE(s, res, tcp_inspect_response, ana_list, ana_back, AN_RES_INSPECT); FLT_ANALYZE(s, res, http_wait_for_response, ana_list, ana_back, AN_RES_WAIT_HTTP); FLT_ANALYZE(s, res, process_store_rules, ana_list, ana_back, AN_RES_STORE_RULES); FLT_ANALYZE(s, res, http_process_res_common, ana_list, ana_back, AN_RES_HTTP_PROCESS_BE, s->be); ANALYZE (s, res, flt_analyze_http_headers, ana_list, ana_back, AN_RES_FLT_HTTP_HDRS); ANALYZE (s, res, http_response_forward_body, ana_list, ana_back, AN_RES_HTTP_XFER_BODY); ANALYZE (s, res, pcli_wait_for_response, ana_list, ana_back, AN_RES_WAIT_CLI); ANALYZE (s, res, flt_xfer_data, ana_list, ana_back, AN_RES_FLT_XFER_DATA); ANALYZE (s, res, flt_end_analyze, ana_list, ana_back, AN_RES_FLT_END); break; } } rp_cons_last = si_f->state; rp_prod_last = si_b->state; res->flags &= ~CF_WAKE_ONCE; rpf_last = res->flags; if ((res->flags ^ flags) & (CF_SHUTR|CF_SHUTW)) goto resync_response; } /* maybe someone has added some request analysers, so we must check and loop */ if (req->analysers & ~req_ana_back) goto resync_request; if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER) goto resync_request; /* FIXME: here we should call protocol handlers which rely on * both buffers. */ /* * Now we propagate unhandled errors to the stream. Normally * we're just in a data phase here since it means we have not * seen any analyser who could set an error status. */ srv = objt_server(s->target); if (unlikely(!(s->flags & SF_ERR_MASK))) { if (req->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { /* Report it if the client got an error or a read timeout expired */ req->analysers &= AN_REQ_FLT_END; if (req->flags & CF_READ_ERROR) { _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); s->flags |= SF_ERR_CLICL; } else if (req->flags & CF_READ_TIMEOUT) { _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); s->flags |= SF_ERR_CLITO; } else if (req->flags & CF_WRITE_ERROR) { _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); s->flags |= SF_ERR_SRVCL; } else { _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); s->flags |= SF_ERR_SRVTO; } sess_set_term_flags(s); /* Abort the request if a client error occurred while * the backend stream-interface is in the SI_ST_INI * state. It is switched into the SI_ST_CLO state and * the request channel is erased. */ if (si_b->state == SI_ST_INI) { si_b->state = SI_ST_CLO; channel_abort(req); if (IS_HTX_STRM(s)) channel_htx_erase(req, htxbuf(&req->buf)); else channel_erase(req); } } else if (res->flags & (CF_READ_ERROR|CF_READ_TIMEOUT|CF_WRITE_ERROR|CF_WRITE_TIMEOUT)) { /* Report it if the server got an error or a read timeout expired */ res->analysers &= AN_RES_FLT_END; if (res->flags & CF_READ_ERROR) { _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); s->flags |= SF_ERR_SRVCL; } else if (res->flags & CF_READ_TIMEOUT) { _HA_ATOMIC_ADD(&s->be->be_counters.srv_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.srv_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->srv_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.srv_aborts, 1); s->flags |= SF_ERR_SRVTO; } else if (res->flags & CF_WRITE_ERROR) { _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); s->flags |= SF_ERR_CLICL; } else { _HA_ATOMIC_ADD(&s->be->be_counters.cli_aborts, 1); _HA_ATOMIC_ADD(&sess->fe->fe_counters.cli_aborts, 1); if (sess->listener && sess->listener->counters) _HA_ATOMIC_ADD(&sess->listener->counters->cli_aborts, 1); if (srv) _HA_ATOMIC_ADD(&srv->counters.cli_aborts, 1); s->flags |= SF_ERR_CLITO; } sess_set_term_flags(s); } } /* * Here we take care of forwarding unhandled data. This also includes * connection establishments and shutdown requests. */ /* If noone is interested in analysing data, it's time to forward * everything. We configure the buffer to forward indefinitely. * Note that we're checking CF_SHUTR_NOW as an indication of a possible * recent call to channel_abort(). */ if (unlikely((!req->analysers || (req->analysers == AN_REQ_FLT_END && !(req->flags & CF_FLT_ANALYZE))) && !(req->flags & (CF_SHUTW|CF_SHUTR_NOW)) && (si_state_in(si_f->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO)) && (req->to_forward != CHN_INFINITE_FORWARD))) { /* This buffer is freewheeling, there's no analyser * attached to it. If any data are left in, we'll permit them to * move. */ channel_auto_read(req); channel_auto_connect(req); channel_auto_close(req); if (IS_HTX_STRM(s)) { struct htx *htx = htxbuf(&req->buf); /* We'll let data flow between the producer (if still connected) * to the consumer. */ co_set_data(req, htx->data); if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW))) channel_htx_forward_forever(req, htx); } else { /* We'll let data flow between the producer (if still connected) * to the consumer (which might possibly not be connected yet). */ c_adv(req, ci_data(req)); if (!(req->flags & (CF_SHUTR|CF_SHUTW_NOW))) channel_forward_forever(req); } } /* check if it is wise to enable kernel splicing to forward request data */ if (!(req->flags & (CF_KERN_SPLICING|CF_SHUTR)) && req->to_forward && (global.tune.options & GTUNE_USE_SPLICE) && (objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->rcv_pipe && __objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->rcv_pipe) && (objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->snd_pipe && __objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->snd_pipe) && (pipes_used < global.maxpipes) && (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_REQ) || (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && (req->flags & CF_STREAMER_FAST)))) { req->flags |= CF_KERN_SPLICING; } /* reflect what the L7 analysers have seen last */ rqf_last = req->flags; /* it's possible that an upper layer has requested a connection setup or abort. * There are 2 situations where we decide to establish a new connection : * - there are data scheduled for emission in the buffer * - the CF_AUTO_CONNECT flag is set (active connection) */ if (si_b->state == SI_ST_INI) { if (!(req->flags & CF_SHUTW)) { if ((req->flags & CF_AUTO_CONNECT) || !channel_is_empty(req)) { /* If we have an appctx, there is no connect method, so we * immediately switch to the connected state, otherwise we * perform a connection request. */ si_b->state = SI_ST_REQ; /* new connection requested */ si_b->conn_retries = s->be->conn_retries; if ((s->be->retry_type &~ PR_RE_CONN_FAILED) && (s->be->mode == PR_MODE_HTTP) && !(si_b->flags & SI_FL_D_L7_RETRY)) si_b->flags |= SI_FL_L7_RETRY; } } else { si_release_endpoint(si_b); si_b->state = SI_ST_CLO; /* shutw+ini = abort */ channel_shutw_now(req); /* fix buffer flags upon abort */ channel_shutr_now(res); } } /* we may have a pending connection request, or a connection waiting * for completion. */ if (si_state_in(si_b->state, SI_SB_REQ|SI_SB_QUE|SI_SB_TAR|SI_SB_ASS)) { /* prune the request variables and swap to the response variables. */ if (s->vars_reqres.scope != SCOPE_RES) { if (!LIST_ISEMPTY(&s->vars_reqres.head)) vars_prune(&s->vars_reqres, s->sess, s); vars_init(&s->vars_reqres, SCOPE_RES); } do { /* nb: step 1 might switch from QUE to ASS, but we first want * to give a chance to step 2 to perform a redirect if needed. */ if (si_b->state != SI_ST_REQ) back_try_conn_req(s); if (si_b->state == SI_ST_REQ) back_handle_st_req(s); /* get a chance to complete an immediate connection setup */ if (si_b->state == SI_ST_RDY) goto resync_stream_interface; /* applets directly go to the ESTABLISHED state. Similarly, * servers experience the same fate when their connection * is reused. */ if (unlikely(si_b->state == SI_ST_EST)) back_establish(s); srv = objt_server(s->target); if (si_b->state == SI_ST_ASS && srv && srv->rdr_len && (s->flags & SF_REDIRECTABLE)) http_perform_server_redirect(s, si_b); } while (si_b->state == SI_ST_ASS); } /* Let's see if we can send the pending request now */ si_sync_send(si_b); /* * Now forward all shutdown requests between both sides of the request buffer */ /* first, let's check if the request buffer needs to shutdown(write), which may * happen either because the input is closed or because we want to force a close * once the server has begun to respond. If a half-closed timeout is set, we adjust * the other side's timeout as well. */ if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == (CF_AUTO_CLOSE|CF_SHUTR))) { channel_shutw_now(req); } /* shutdown(write) pending */ if (unlikely((req->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && channel_is_empty(req))) { if (req->flags & CF_READ_ERROR) si_b->flags |= SI_FL_NOLINGER; si_shutw(si_b); } /* shutdown(write) done on server side, we must stop the client too */ if (unlikely((req->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW && !req->analysers)) channel_shutr_now(req); /* shutdown(read) pending */ if (unlikely((req->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { if (si_f->flags & SI_FL_NOHALF) si_f->flags |= SI_FL_NOLINGER; si_shutr(si_f); } /* Benchmarks have shown that it's optimal to do a full resync now */ if (si_f->state == SI_ST_DIS || si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) || (si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) || (si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO)) goto resync_stream_interface; /* otherwise we want to check if we need to resync the req buffer or not */ if ((req->flags ^ rqf_last) & (CF_SHUTR|CF_SHUTW)) goto resync_request; /* perform output updates to the response buffer */ /* If noone is interested in analysing data, it's time to forward * everything. We configure the buffer to forward indefinitely. * Note that we're checking CF_SHUTR_NOW as an indication of a possible * recent call to channel_abort(). */ if (unlikely((!res->analysers || (res->analysers == AN_RES_FLT_END && !(res->flags & CF_FLT_ANALYZE))) && !(res->flags & (CF_SHUTW|CF_SHUTR_NOW)) && si_state_in(si_b->state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) && (res->to_forward != CHN_INFINITE_FORWARD))) { /* This buffer is freewheeling, there's no analyser * attached to it. If any data are left in, we'll permit them to * move. */ channel_auto_read(res); channel_auto_close(res); if (IS_HTX_STRM(s)) { struct htx *htx = htxbuf(&res->buf); /* We'll let data flow between the producer (if still connected) * to the consumer. */ co_set_data(res, htx->data); if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW))) channel_htx_forward_forever(res, htx); } else { /* We'll let data flow between the producer (if still connected) * to the consumer. */ c_adv(res, ci_data(res)); if (!(res->flags & (CF_SHUTR|CF_SHUTW_NOW))) channel_forward_forever(res); } /* if we have no analyser anymore in any direction and have a * tunnel timeout set, use it now. Note that we must respect * the half-closed timeouts as well. */ if (!req->analysers && s->be->timeout.tunnel) { req->rto = req->wto = res->rto = res->wto = s->be->timeout.tunnel; if ((req->flags & CF_SHUTR) && tick_isset(sess->fe->timeout.clientfin)) res->wto = sess->fe->timeout.clientfin; if ((req->flags & CF_SHUTW) && tick_isset(s->be->timeout.serverfin)) res->rto = s->be->timeout.serverfin; if ((res->flags & CF_SHUTR) && tick_isset(s->be->timeout.serverfin)) req->wto = s->be->timeout.serverfin; if ((res->flags & CF_SHUTW) && tick_isset(sess->fe->timeout.clientfin)) req->rto = sess->fe->timeout.clientfin; req->rex = tick_add(now_ms, req->rto); req->wex = tick_add(now_ms, req->wto); res->rex = tick_add(now_ms, res->rto); res->wex = tick_add(now_ms, res->wto); } } /* check if it is wise to enable kernel splicing to forward response data */ if (!(res->flags & (CF_KERN_SPLICING|CF_SHUTR)) && res->to_forward && (global.tune.options & GTUNE_USE_SPLICE) && (objt_cs(si_f->end) && __objt_cs(si_f->end)->conn->xprt && __objt_cs(si_f->end)->conn->xprt->snd_pipe && __objt_cs(si_f->end)->conn->mux && __objt_cs(si_f->end)->conn->mux->snd_pipe) && (objt_cs(si_b->end) && __objt_cs(si_b->end)->conn->xprt && __objt_cs(si_b->end)->conn->xprt->rcv_pipe && __objt_cs(si_b->end)->conn->mux && __objt_cs(si_b->end)->conn->mux->rcv_pipe) && (pipes_used < global.maxpipes) && (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_RTR) || (((sess->fe->options2|s->be->options2) & PR_O2_SPLIC_AUT) && (res->flags & CF_STREAMER_FAST)))) { res->flags |= CF_KERN_SPLICING; } /* reflect what the L7 analysers have seen last */ rpf_last = res->flags; /* Let's see if we can send the pending response now */ si_sync_send(si_f); /* * Now forward all shutdown requests between both sides of the buffer */ /* * FIXME: this is probably where we should produce error responses. */ /* first, let's check if the response buffer needs to shutdown(write) */ if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW|CF_AUTO_CLOSE|CF_SHUTR)) == (CF_AUTO_CLOSE|CF_SHUTR))) { channel_shutw_now(res); } /* shutdown(write) pending */ if (unlikely((res->flags & (CF_SHUTW|CF_SHUTW_NOW)) == CF_SHUTW_NOW && channel_is_empty(res))) { si_shutw(si_f); } /* shutdown(write) done on the client side, we must stop the server too */ if (unlikely((res->flags & (CF_SHUTW|CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTW) && !res->analysers) channel_shutr_now(res); /* shutdown(read) pending */ if (unlikely((res->flags & (CF_SHUTR|CF_SHUTR_NOW)) == CF_SHUTR_NOW)) { if (si_b->flags & SI_FL_NOHALF) si_b->flags |= SI_FL_NOLINGER; si_shutr(si_b); } if (si_f->state == SI_ST_DIS || si_state_in(si_b->state, SI_SB_RDY|SI_SB_DIS) || (si_f->flags & SI_FL_ERR && si_f->state != SI_ST_CLO) || (si_b->flags & SI_FL_ERR && si_b->state != SI_ST_CLO)) goto resync_stream_interface; if ((req->flags & ~rqf_last) & CF_MASK_ANALYSER) goto resync_request; if ((res->flags ^ rpf_last) & CF_MASK_STATIC) goto resync_response; if (((req->flags ^ rqf_last) | (res->flags ^ rpf_last)) & CF_MASK_ANALYSER) goto resync_request; /* we're interested in getting wakeups again */ si_f->flags &= ~SI_FL_DONT_WAKE; si_b->flags &= ~SI_FL_DONT_WAKE; /* This is needed only when debugging is enabled, to indicate * client-side or server-side close. Please note that in the unlikely * event where both sides would close at once, the sequence is reported * on the server side first. */ if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { if (si_b->state == SI_ST_CLO && si_b->prev_state == SI_ST_EST) { chunk_printf(&trash, "%08x:%s.srvcls[%04x:%04x]\n", s->uniq_id, s->be->id, objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1, objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1); DISGUISE(write(1, trash.area, trash.data)); } if (si_f->state == SI_ST_CLO && si_f->prev_state == SI_ST_EST) { chunk_printf(&trash, "%08x:%s.clicls[%04x:%04x]\n", s->uniq_id, s->be->id, objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1, objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1); DISGUISE(write(1, trash.area, trash.data)); } } if (likely((si_f->state != SI_ST_CLO) || !si_state_in(si_b->state, SI_SB_INI|SI_SB_CLO) || (req->analysers & AN_REQ_FLT_END) || (res->analysers & AN_RES_FLT_END))) { if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && !(s->flags & SF_IGNORE)) stream_process_counters(s); si_update_both(si_f, si_b); /* Trick: if a request is being waiting for the server to respond, * and if we know the server can timeout, we don't want the timeout * to expire on the client side first, but we're still interested * in passing data from the client to the server (eg: POST). Thus, * we can cancel the client's request timeout if the server's * request timeout is set and the server has not yet sent a response. */ if ((res->flags & (CF_AUTO_CLOSE|CF_SHUTR)) == 0 && (tick_isset(req->wex) || tick_isset(res->rex))) { req->flags |= CF_READ_NOEXP; req->rex = TICK_ETERNITY; } /* Reset pending events now */ s->pending_events = 0; update_exp_and_leave: /* Note: please ensure that if you branch here you disable SI_FL_DONT_WAKE */ t->expire = tick_first((tick_is_expired(t->expire, now_ms) ? 0 : t->expire), tick_first(tick_first(req->rex, req->wex), tick_first(res->rex, res->wex))); if (!req->analysers) req->analyse_exp = TICK_ETERNITY; if ((sess->fe->options & PR_O_CONTSTATS) && (s->flags & SF_BE_ASSIGNED) && (!tick_isset(req->analyse_exp) || tick_is_expired(req->analyse_exp, now_ms))) req->analyse_exp = tick_add(now_ms, 5000); t->expire = tick_first(t->expire, req->analyse_exp); t->expire = tick_first(t->expire, res->analyse_exp); if (si_f->exp) t->expire = tick_first(t->expire, si_f->exp); if (si_b->exp) t->expire = tick_first(t->expire, si_b->exp); s->pending_events &= ~(TASK_WOKEN_TIMER | TASK_WOKEN_RES); stream_release_buffers(s); DBG_TRACE_DEVEL("queuing", STRM_EV_STRM_PROC, s); return t; /* nothing more to do */ } DBG_TRACE_DEVEL("releasing", STRM_EV_STRM_PROC, s); if (s->flags & SF_BE_ASSIGNED) _HA_ATOMIC_SUB(&s->be->beconn, 1); if (unlikely((global.mode & MODE_DEBUG) && (!(global.mode & MODE_QUIET) || (global.mode & MODE_VERBOSE)))) { chunk_printf(&trash, "%08x:%s.closed[%04x:%04x]\n", s->uniq_id, s->be->id, objt_cs(si_f->end) ? (unsigned short)objt_cs(si_f->end)->conn->handle.fd : -1, objt_cs(si_b->end) ? (unsigned short)objt_cs(si_b->end)->conn->handle.fd : -1); DISGUISE(write(1, trash.area, trash.data)); } s->logs.t_close = tv_ms_elapsed(&s->logs.tv_accept, &now); if (!(s->flags & SF_IGNORE)) stream_process_counters(s); if (s->txn && s->txn->status) { int n; n = s->txn->status / 100; if (n < 1 || n > 5) n = 0; if (sess->fe->mode == PR_MODE_HTTP) { _HA_ATOMIC_ADD(&sess->fe->fe_counters.p.http.rsp[n], 1); } if ((s->flags & SF_BE_ASSIGNED) && (s->be->mode == PR_MODE_HTTP)) { _HA_ATOMIC_ADD(&s->be->be_counters.p.http.rsp[n], 1); _HA_ATOMIC_ADD(&s->be->be_counters.p.http.cum_req, 1); } } /* let's do a final log if we need it */ if (!LIST_ISEMPTY(&sess->fe->logformat) && s->logs.logwait && !(s->flags & SF_MONITOR) && (!(sess->fe->options & PR_O_NULLNOLOG) || req->total)) { /* we may need to know the position in the queue */ pendconn_free(s); s->do_log(s); } /* update time stats for this stream */ stream_update_time_stats(s); /* the task MUST not be in the run queue anymore */ stream_free(s); task_destroy(t); return NULL; } /* Update the stream's backend and server time stats */ void stream_update_time_stats(struct stream *s) { int t_request; int t_queue; int t_connect; int t_data; int t_close; struct server *srv; unsigned int samples_window; t_request = 0; t_queue = s->logs.t_queue; t_connect = s->logs.t_connect; t_close = s->logs.t_close; t_data = s->logs.t_data; if (s->be->mode != PR_MODE_HTTP) t_data = t_connect; if (t_connect < 0 || t_data < 0) return; if (tv_isge(&s->logs.tv_request, &s->logs.tv_accept)) t_request = tv_ms_elapsed(&s->logs.tv_accept, &s->logs.tv_request); t_data -= t_connect; t_connect -= t_queue; t_queue -= t_request; srv = objt_server(s->target); if (srv) { samples_window = (((s->be->mode == PR_MODE_HTTP) ? srv->counters.p.http.cum_req : srv->counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0; swrate_add_dynamic(&srv->counters.q_time, samples_window, t_queue); swrate_add_dynamic(&srv->counters.c_time, samples_window, t_connect); swrate_add_dynamic(&srv->counters.d_time, samples_window, t_data); swrate_add_dynamic(&srv->counters.t_time, samples_window, t_close); HA_ATOMIC_UPDATE_MAX(&srv->counters.qtime_max, t_queue); HA_ATOMIC_UPDATE_MAX(&srv->counters.ctime_max, t_connect); HA_ATOMIC_UPDATE_MAX(&srv->counters.dtime_max, t_data); HA_ATOMIC_UPDATE_MAX(&srv->counters.ttime_max, t_close); } samples_window = (((s->be->mode == PR_MODE_HTTP) ? s->be->be_counters.p.http.cum_req : s->be->be_counters.cum_lbconn) > TIME_STATS_SAMPLES) ? TIME_STATS_SAMPLES : 0; swrate_add_dynamic(&s->be->be_counters.q_time, samples_window, t_queue); swrate_add_dynamic(&s->be->be_counters.c_time, samples_window, t_connect); swrate_add_dynamic(&s->be->be_counters.d_time, samples_window, t_data); swrate_add_dynamic(&s->be->be_counters.t_time, samples_window, t_close); HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.qtime_max, t_queue); HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ctime_max, t_connect); HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.dtime_max, t_data); HA_ATOMIC_UPDATE_MAX(&s->be->be_counters.ttime_max, t_close); } /* * This function adjusts sess->srv_conn and maintains the previous and new * server's served stream counts. Setting newsrv to NULL is enough to release * current connection slot. This function also notifies any LB algo which might * expect to be informed about any change in the number of active streams on a * server. */ void sess_change_server(struct stream *sess, struct server *newsrv) { if (sess->srv_conn == newsrv) return; if (sess->srv_conn) { _HA_ATOMIC_SUB(&sess->srv_conn->served, 1); _HA_ATOMIC_SUB(&sess->srv_conn->proxy->served, 1); __ha_barrier_atomic_store(); if (sess->srv_conn->proxy->lbprm.server_drop_conn) { HA_SPIN_LOCK(SERVER_LOCK, &sess->srv_conn->lock); sess->srv_conn->proxy->lbprm.server_drop_conn(sess->srv_conn); HA_SPIN_UNLOCK(SERVER_LOCK, &sess->srv_conn->lock); } stream_del_srv_conn(sess); } if (newsrv) { _HA_ATOMIC_ADD(&newsrv->served, 1); _HA_ATOMIC_ADD(&newsrv->proxy->served, 1); __ha_barrier_atomic_store(); if (newsrv->proxy->lbprm.server_take_conn) { HA_SPIN_LOCK(SERVER_LOCK, &newsrv->lock); newsrv->proxy->lbprm.server_take_conn(newsrv); HA_SPIN_UNLOCK(SERVER_LOCK, &newsrv->lock); } stream_add_srv_conn(sess, newsrv); } } /* Handle server-side errors for default protocols. It is called whenever a a * connection setup is aborted or a request is aborted in queue. It sets the * stream termination flags so that the caller does not have to worry about * them. It's installed as ->srv_error for the server-side stream_interface. */ void default_srv_error(struct stream *s, struct stream_interface *si) { int err_type = si->err_type; int err = 0, fin = 0; if (err_type & SI_ET_QUEUE_ABRT) { err = SF_ERR_CLICL; fin = SF_FINST_Q; } else if (err_type & SI_ET_CONN_ABRT) { err = SF_ERR_CLICL; fin = SF_FINST_C; } else if (err_type & SI_ET_QUEUE_TO) { err = SF_ERR_SRVTO; fin = SF_FINST_Q; } else if (err_type & SI_ET_QUEUE_ERR) { err = SF_ERR_SRVCL; fin = SF_FINST_Q; } else if (err_type & SI_ET_CONN_TO) { err = SF_ERR_SRVTO; fin = SF_FINST_C; } else if (err_type & SI_ET_CONN_ERR) { err = SF_ERR_SRVCL; fin = SF_FINST_C; } else if (err_type & SI_ET_CONN_RES) { err = SF_ERR_RESOURCE; fin = SF_FINST_C; } else /* SI_ET_CONN_OTHER and others */ { err = SF_ERR_INTERNAL; fin = SF_FINST_C; } if (!(s->flags & SF_ERR_MASK)) s->flags |= err; if (!(s->flags & SF_FINST_MASK)) s->flags |= fin; } /* kill a stream and set the termination flags to (one of SF_ERR_*) */ void stream_shutdown(struct stream *stream, int why) { if (stream->req.flags & (CF_SHUTW|CF_SHUTW_NOW)) return; channel_shutw_now(&stream->req); channel_shutr_now(&stream->res); stream->task->nice = 1024; if (!(stream->flags & SF_ERR_MASK)) stream->flags |= why; task_wakeup(stream->task, TASK_WOKEN_OTHER); } /* Appends a dump of the state of stream into buffer which must have * preliminary be prepared by its caller, with each line prepended by prefix * , and each line terminated by character . */ void stream_dump(struct buffer *buf, const struct stream *s, const char *pfx, char eol) { const struct conn_stream *csf, *csb; const struct connection *cof, *cob; const struct appctx *acf, *acb; const struct server *srv; const char *src = "unknown"; const char *dst = "unknown"; char pn[INET6_ADDRSTRLEN]; const struct channel *req, *res; const struct stream_interface *si_f, *si_b; if (!s) { chunk_appendf(buf, "%sstrm=%p%c", pfx, s, eol); return; } if (s->obj_type != OBJ_TYPE_STREAM) { chunk_appendf(buf, "%sstrm=%p [invalid type=%d(%s)]%c", pfx, s, s->obj_type, obj_type_name(&s->obj_type), eol); return; } si_f = &s->si[0]; si_b = &s->si[1]; req = &s->req; res = &s->res; csf = objt_cs(si_f->end); cof = cs_conn(csf); acf = objt_appctx(si_f->end); if (cof && cof->src && addr_to_str(cof->src, pn, sizeof(pn)) >= 0) src = pn; else if (acf) src = acf->applet->name; csb = objt_cs(si_b->end); cob = cs_conn(csb); acb = objt_appctx(si_b->end); srv = objt_server(s->target); if (srv) dst = srv->id; else if (acb) dst = acb->applet->name; chunk_appendf(buf, "%sstrm=%p,%x src=%s fe=%s be=%s dst=%s%c" "%stxn=%p,%x txn.req=%s,%x txn.rsp=%s,%x%c" "%srqf=%x rqa=%x rpf=%x rpa=%x sif=%s,%x sib=%s,%x%c" "%saf=%p,%u csf=%p,%x%c" "%sab=%p,%u csb=%p,%x%c" "%scof=%p,%x:%s(%p)/%s(%p)/%s(%d)%c" "%scob=%p,%x:%s(%p)/%s(%p)/%s(%d)%c" "", pfx, s, s->flags, src, s->sess->fe->id, s->be->id, dst, eol, pfx, s->txn, (s->txn ? s->txn->flags : 0), (s->txn ? h1_msg_state_str(s->txn->req.msg_state): "-"), (s->txn ? s->txn->req.flags : 0), (s->txn ? h1_msg_state_str(s->txn->rsp.msg_state): "-"), (s->txn ? s->txn->rsp.flags : 0), eol, pfx, req->flags, req->analysers, res->flags, res->analysers, si_state_str(si_f->state), si_f->flags, si_state_str(si_b->state), si_b->flags, eol, pfx, acf, acf ? acf->st0 : 0, csf, csf ? csf->flags : 0, eol, pfx, acb, acb ? acb->st0 : 0, csb, csb ? csb->flags : 0, eol, pfx, cof, cof ? cof->flags : 0, conn_get_mux_name(cof), cof?cof->ctx:0, conn_get_xprt_name(cof), cof ? cof->xprt_ctx : 0, conn_get_ctrl_name(cof), cof ? cof->handle.fd : 0, eol, pfx, cob, cob ? cob->flags : 0, conn_get_mux_name(cob), cob?cob->ctx:0, conn_get_xprt_name(cob), cob ? cob->xprt_ctx : 0, conn_get_ctrl_name(cob), cob ? cob->handle.fd : 0, eol); } /* dumps an error message for type at ptr related to stream , * having reached loop rate , then aborts hoping to retrieve a core. */ void stream_dump_and_crash(enum obj_type *obj, int rate) { const struct stream *s; char *msg = NULL; const void *ptr; ptr = s = objt_stream(obj); if (!s) { const struct appctx *appctx = objt_appctx(obj); if (!appctx) return; ptr = appctx; s = si_strm(appctx->owner); if (!s) return; } chunk_reset(&trash); stream_dump(&trash, s, "", ' '); chunk_appendf(&trash, "filters={"); if (HAS_FILTERS(s)) { struct filter *filter; list_for_each_entry(filter, &s->strm_flt.filters, list) { if (filter->list.p != &s->strm_flt.filters) chunk_appendf(&trash, ", "); chunk_appendf(&trash, "%p=\"%s\"", filter, FLT_ID(filter)); } } chunk_appendf(&trash, "}"); memprintf(&msg, "A bogus %s [%p] is spinning at %d calls per second and refuses to die, " "aborting now! Please report this error to developers " "[%s]\n", obj_type_name(obj), ptr, rate, trash.area); ha_alert("%s", msg); send_log(NULL, LOG_EMERG, "%s", msg); abort(); } /* Generates a unique ID based on the given , stores it in the given and * returns the unique ID. * If this function fails to allocate memory IST_NULL is returned. * * If an ID is already stored within the stream nothing happens existing unique ID is * returned. */ struct ist stream_generate_unique_id(struct stream *strm, struct list *format) { if (isttest(strm->unique_id)) { return strm->unique_id; } else { char *unique_id; int length; if ((unique_id = pool_alloc(pool_head_uniqueid)) == NULL) return IST_NULL; length = build_logline(strm, unique_id, UNIQUEID_LEN, format); strm->unique_id = ist2(unique_id, length); return strm->unique_id; } } /************************************************************************/ /* All supported ACL keywords must be declared here. */ /************************************************************************/ /* 0=OK, <0=Alert, >0=Warning */ static enum act_parse_ret stream_parse_use_service(const char **args, int *cur_arg, struct proxy *px, struct act_rule *rule, char **err) { struct action_kw *kw; /* Check if the service name exists. */ if (*(args[*cur_arg]) == 0) { memprintf(err, "'%s' expects a service name.", args[0]); return ACT_RET_PRS_ERR; } /* lookup for keyword corresponding to a service. */ kw = action_lookup(&service_keywords, args[*cur_arg]); if (!kw) { memprintf(err, "'%s' unknown service name.", args[1]); return ACT_RET_PRS_ERR; } (*cur_arg)++; /* executes specific rule parser. */ rule->kw = kw; if (kw->parse((const char **)args, cur_arg, px, rule, err) == ACT_RET_PRS_ERR) return ACT_RET_PRS_ERR; /* Register processing function. */ rule->action_ptr = process_use_service; rule->action = ACT_CUSTOM; return ACT_RET_PRS_OK; } void service_keywords_register(struct action_kw_list *kw_list) { LIST_ADDQ(&service_keywords, &kw_list->list); } struct action_kw *service_find(const char *kw) { return action_lookup(&service_keywords, kw); } /* Lists the known services on */ void list_services(FILE *out) { struct action_kw_list *kw_list; int found = 0; int i; fprintf(out, "Available services :"); list_for_each_entry(kw_list, &service_keywords, list) { for (i = 0; kw_list->kw[i].kw != NULL; i++) { found = 1; fprintf(out, " %s", kw_list->kw[i].kw); } } if (!found) fprintf(out, " none\n"); } /* This function dumps a complete stream state onto the stream interface's * read buffer. The stream has to be set in strm. It returns 0 if the output * buffer is full and it needs to be called again, otherwise non-zero. It is * designed to be called from stats_dump_strm_to_buffer() below. */ static int stats_dump_full_strm_to_buffer(struct stream_interface *si, struct stream *strm) { struct appctx *appctx = __objt_appctx(si->end); struct tm tm; extern const char *monthname[12]; char pn[INET6_ADDRSTRLEN]; struct conn_stream *cs; struct connection *conn; struct appctx *tmpctx; chunk_reset(&trash); if (appctx->ctx.sess.section > 0 && appctx->ctx.sess.uid != strm->uniq_id) { /* stream changed, no need to go any further */ chunk_appendf(&trash, " *** session terminated while we were watching it ***\n"); if (ci_putchk(si_ic(si), &trash) == -1) goto full; goto done; } switch (appctx->ctx.sess.section) { case 0: /* main status of the stream */ appctx->ctx.sess.uid = strm->uniq_id; appctx->ctx.sess.section = 1; /* fall through */ case 1: get_localtime(strm->logs.accept_date.tv_sec, &tm); chunk_appendf(&trash, "%p: [%02d/%s/%04d:%02d:%02d:%02d.%06d] id=%u proto=%s", strm, tm.tm_mday, monthname[tm.tm_mon], tm.tm_year+1900, tm.tm_hour, tm.tm_min, tm.tm_sec, (int)(strm->logs.accept_date.tv_usec), strm->uniq_id, strm_li(strm) ? strm_li(strm)->proto->name : "?"); conn = objt_conn(strm_orig(strm)); switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) { case AF_INET: case AF_INET6: chunk_appendf(&trash, " source=%s:%d\n", pn, get_host_port(conn->src)); break; case AF_UNIX: chunk_appendf(&trash, " source=unix:%d\n", strm_li(strm)->luid); break; default: /* no more information to print right now */ chunk_appendf(&trash, "\n"); break; } chunk_appendf(&trash, " flags=0x%x, conn_retries=%d, srv_conn=%p, pend_pos=%p waiting=%d\n", strm->flags, strm->si[1].conn_retries, strm->srv_conn, strm->pend_pos, MT_LIST_ADDED(&strm->buffer_wait.list)); chunk_appendf(&trash, " frontend=%s (id=%u mode=%s), listener=%s (id=%u)", strm_fe(strm)->id, strm_fe(strm)->uuid, strm_fe(strm)->mode ? "http" : "tcp", strm_li(strm) ? strm_li(strm)->name ? strm_li(strm)->name : "?" : "?", strm_li(strm) ? strm_li(strm)->luid : 0); switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) { case AF_INET: case AF_INET6: chunk_appendf(&trash, " addr=%s:%d\n", pn, get_host_port(conn->dst)); break; case AF_UNIX: chunk_appendf(&trash, " addr=unix:%d\n", strm_li(strm)->luid); break; default: /* no more information to print right now */ chunk_appendf(&trash, "\n"); break; } if (strm->be->cap & PR_CAP_BE) chunk_appendf(&trash, " backend=%s (id=%u mode=%s)", strm->be->id, strm->be->uuid, strm->be->mode ? "http" : "tcp"); else chunk_appendf(&trash, " backend= (id=-1 mode=-)"); cs = objt_cs(strm->si[1].end); conn = cs_conn(cs); switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) { case AF_INET: case AF_INET6: chunk_appendf(&trash, " addr=%s:%d\n", pn, get_host_port(conn->src)); break; case AF_UNIX: chunk_appendf(&trash, " addr=unix\n"); break; default: /* no more information to print right now */ chunk_appendf(&trash, "\n"); break; } if (strm->be->cap & PR_CAP_BE) chunk_appendf(&trash, " server=%s (id=%u)", objt_server(strm->target) ? objt_server(strm->target)->id : "", objt_server(strm->target) ? objt_server(strm->target)->puid : 0); else chunk_appendf(&trash, " server= (id=-1)"); switch (conn && conn_get_dst(conn) ? addr_to_str(conn->dst, pn, sizeof(pn)) : AF_UNSPEC) { case AF_INET: case AF_INET6: chunk_appendf(&trash, " addr=%s:%d\n", pn, get_host_port(conn->dst)); break; case AF_UNIX: chunk_appendf(&trash, " addr=unix\n"); break; default: /* no more information to print right now */ chunk_appendf(&trash, "\n"); break; } chunk_appendf(&trash, " task=%p (state=0x%02x nice=%d calls=%u rate=%u exp=%s tmask=0x%lx%s", strm->task, strm->task->state, strm->task->nice, strm->task->calls, read_freq_ctr(&strm->call_rate), strm->task->expire ? tick_is_expired(strm->task->expire, now_ms) ? "" : human_time(TICKS_TO_MS(strm->task->expire - now_ms), TICKS_TO_MS(1000)) : "", strm->task->thread_mask, task_in_rq(strm->task) ? ", running" : ""); chunk_appendf(&trash, " age=%s)\n", human_time(now.tv_sec - strm->logs.accept_date.tv_sec, 1)); if (strm->txn) chunk_appendf(&trash, " txn=%p flags=0x%x meth=%d status=%d req.st=%s rsp.st=%s req.f=0x%02x rsp.f=0x%02x\n", strm->txn, strm->txn->flags, strm->txn->meth, strm->txn->status, h1_msg_state_str(strm->txn->req.msg_state), h1_msg_state_str(strm->txn->rsp.msg_state), strm->txn->req.flags, strm->txn->rsp.flags); chunk_appendf(&trash, " si[0]=%p (state=%s flags=0x%02x endp0=%s:%p exp=%s et=0x%03x sub=%d)\n", &strm->si[0], si_state_str(strm->si[0].state), strm->si[0].flags, obj_type_name(strm->si[0].end), obj_base_ptr(strm->si[0].end), strm->si[0].exp ? tick_is_expired(strm->si[0].exp, now_ms) ? "" : human_time(TICKS_TO_MS(strm->si[0].exp - now_ms), TICKS_TO_MS(1000)) : "", strm->si[0].err_type, strm->si[0].wait_event.events); chunk_appendf(&trash, " si[1]=%p (state=%s flags=0x%02x endp1=%s:%p exp=%s et=0x%03x sub=%d)\n", &strm->si[1], si_state_str(strm->si[1].state), strm->si[1].flags, obj_type_name(strm->si[1].end), obj_base_ptr(strm->si[1].end), strm->si[1].exp ? tick_is_expired(strm->si[1].exp, now_ms) ? "" : human_time(TICKS_TO_MS(strm->si[1].exp - now_ms), TICKS_TO_MS(1000)) : "", strm->si[1].err_type, strm->si[1].wait_event.events); if ((cs = objt_cs(strm->si[0].end)) != NULL) { conn = cs->conn; chunk_appendf(&trash, " co0=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n", conn, conn_get_ctrl_name(conn), conn_get_xprt_name(conn), conn_get_mux_name(conn), cs_get_data_name(cs), obj_type_name(conn->target), obj_base_ptr(conn->target)); chunk_appendf(&trash, " flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n", conn->flags, conn->handle.fd, conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0, conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0, conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0); chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx); } else if ((tmpctx = objt_appctx(strm->si[0].end)) != NULL) { chunk_appendf(&trash, " app0=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n", tmpctx, tmpctx->st0, tmpctx->st1, tmpctx->st2, tmpctx->applet->name, tmpctx->thread_mask, tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate), (unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time); } if ((cs = objt_cs(strm->si[1].end)) != NULL) { conn = cs->conn; chunk_appendf(&trash, " co1=%p ctrl=%s xprt=%s mux=%s data=%s target=%s:%p\n", conn, conn_get_ctrl_name(conn), conn_get_xprt_name(conn), conn_get_mux_name(conn), cs_get_data_name(cs), obj_type_name(conn->target), obj_base_ptr(conn->target)); chunk_appendf(&trash, " flags=0x%08x fd=%d fd.state=%02x updt=%d fd.tmask=0x%lx\n", conn->flags, conn->handle.fd, conn->handle.fd >= 0 ? fdtab[conn->handle.fd].state : 0, conn->handle.fd >= 0 ? !!(fdtab[conn->handle.fd].update_mask & tid_bit) : 0, conn->handle.fd >= 0 ? fdtab[conn->handle.fd].thread_mask: 0); chunk_appendf(&trash, " cs=%p csf=0x%08x ctx=%p\n", cs, cs->flags, cs->ctx); } else if ((tmpctx = objt_appctx(strm->si[1].end)) != NULL) { chunk_appendf(&trash, " app1=%p st0=%d st1=%d st2=%d applet=%s tmask=0x%lx nice=%d calls=%u rate=%u cpu=%llu lat=%llu\n", tmpctx, tmpctx->st0, tmpctx->st1, tmpctx->st2, tmpctx->applet->name, tmpctx->thread_mask, tmpctx->t->nice, tmpctx->t->calls, read_freq_ctr(&tmpctx->call_rate), (unsigned long long)tmpctx->t->cpu_time, (unsigned long long)tmpctx->t->lat_time); } chunk_appendf(&trash, " req=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n" " an_exp=%s", &strm->req, strm->req.flags, strm->req.analysers, strm->req.pipe ? strm->req.pipe->data : 0, strm->req.to_forward, strm->req.total, strm->req.analyse_exp ? human_time(TICKS_TO_MS(strm->req.analyse_exp - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, " rex=%s", strm->req.rex ? human_time(TICKS_TO_MS(strm->req.rex - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, " wex=%s\n" " buf=%p data=%p o=%u p=%u i=%u size=%u\n", strm->req.wex ? human_time(TICKS_TO_MS(strm->req.wex - now_ms), TICKS_TO_MS(1000)) : "", &strm->req.buf, b_orig(&strm->req.buf), (unsigned int)co_data(&strm->req), (unsigned int)ci_head_ofs(&strm->req), (unsigned int)ci_data(&strm->req), (unsigned int)strm->req.buf.size); if (IS_HTX_STRM(strm)) { struct htx *htx = htxbuf(&strm->req.buf); chunk_appendf(&trash, " htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n", htx, htx->flags, htx->size, htx->data, htx_nbblks(htx), (htx->tail >= htx->head) ? "NO" : "YES", (unsigned long long)htx->extra); } chunk_appendf(&trash, " res=%p (f=0x%06x an=0x%x pipe=%d tofwd=%d total=%lld)\n" " an_exp=%s", &strm->res, strm->res.flags, strm->res.analysers, strm->res.pipe ? strm->res.pipe->data : 0, strm->res.to_forward, strm->res.total, strm->res.analyse_exp ? human_time(TICKS_TO_MS(strm->res.analyse_exp - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, " rex=%s", strm->res.rex ? human_time(TICKS_TO_MS(strm->res.rex - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, " wex=%s\n" " buf=%p data=%p o=%u p=%u i=%u size=%u\n", strm->res.wex ? human_time(TICKS_TO_MS(strm->res.wex - now_ms), TICKS_TO_MS(1000)) : "", &strm->res.buf, b_orig(&strm->res.buf), (unsigned int)co_data(&strm->res), (unsigned int)ci_head_ofs(&strm->res), (unsigned int)ci_data(&strm->res), (unsigned int)strm->res.buf.size); if (IS_HTX_STRM(strm)) { struct htx *htx = htxbuf(&strm->res.buf); chunk_appendf(&trash, " htx=%p flags=0x%x size=%u data=%u used=%u wrap=%s extra=%llu\n", htx, htx->flags, htx->size, htx->data, htx_nbblks(htx), (htx->tail >= htx->head) ? "NO" : "YES", (unsigned long long)htx->extra); } if (ci_putchk(si_ic(si), &trash) == -1) goto full; /* use other states to dump the contents */ } /* end of dump */ done: appctx->ctx.sess.uid = 0; appctx->ctx.sess.section = 0; return 1; full: return 0; } static int cli_parse_show_sess(char **args, char *payload, struct appctx *appctx, void *private) { if (!cli_has_level(appctx, ACCESS_LVL_OPER)) return 1; if (*args[2] && strcmp(args[2], "all") == 0) appctx->ctx.sess.target = (void *)-1; else if (*args[2]) appctx->ctx.sess.target = (void *)strtoul(args[2], NULL, 0); else appctx->ctx.sess.target = NULL; appctx->ctx.sess.section = 0; /* start with stream status */ appctx->ctx.sess.pos = 0; /* we need to put an end marker into the streams list. We're just moving * ourselves there, so that once we found ourselves we know we've reached * the end. Without this we can run forever if new streams arrive faster * than we can dump them. */ HA_SPIN_LOCK(STRMS_LOCK, &streams_lock); LIST_DEL(&si_strm(appctx->owner)->list); LIST_ADDQ(&streams, &si_strm(appctx->owner)->list); HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock); return 0; } /* This function dumps all streams' states onto the stream interface's * read buffer. It returns 0 if the output buffer is full and it needs * to be called again, otherwise non-zero. It proceeds in an isolated * thread so there is no thread safety issue here. */ static int cli_io_handler_dump_sess(struct appctx *appctx) { struct stream_interface *si = appctx->owner; struct connection *conn; thread_isolate(); if (unlikely(si_ic(si)->flags & (CF_WRITE_ERROR|CF_SHUTW))) { /* If we're forced to shut down, we might have to remove our * reference to the last stream being dumped. */ if (appctx->st2 == STAT_ST_LIST) { if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) { LIST_DEL(&appctx->ctx.sess.bref.users); LIST_INIT(&appctx->ctx.sess.bref.users); } } goto done; } chunk_reset(&trash); switch (appctx->st2) { case STAT_ST_INIT: /* the function had not been called yet, let's prepare the * buffer for a response. We initialize the current stream * pointer to the first in the global list. When a target * stream is being destroyed, it is responsible for updating * this pointer. We know we have reached the end when this * pointer points back to the head of the streams list. */ LIST_INIT(&appctx->ctx.sess.bref.users); appctx->ctx.sess.bref.ref = streams.n; appctx->st2 = STAT_ST_LIST; /* fall through */ case STAT_ST_LIST: /* first, let's detach the back-ref from a possible previous stream */ if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) { LIST_DEL(&appctx->ctx.sess.bref.users); LIST_INIT(&appctx->ctx.sess.bref.users); } /* and start from where we stopped, never going further than ourselves */ while (appctx->ctx.sess.bref.ref != si_strm(appctx->owner)->list.n) { char pn[INET6_ADDRSTRLEN]; struct stream *curr_strm; curr_strm = LIST_ELEM(appctx->ctx.sess.bref.ref, struct stream *, list); if (appctx->ctx.sess.target) { if (appctx->ctx.sess.target != (void *)-1 && appctx->ctx.sess.target != curr_strm) goto next_sess; LIST_ADDQ(&curr_strm->back_refs, &appctx->ctx.sess.bref.users); /* call the proper dump() function and return if we're missing space */ if (!stats_dump_full_strm_to_buffer(si, curr_strm)) goto full; /* stream dump complete */ LIST_DEL(&appctx->ctx.sess.bref.users); LIST_INIT(&appctx->ctx.sess.bref.users); if (appctx->ctx.sess.target != (void *)-1) { appctx->ctx.sess.target = NULL; break; } else goto next_sess; } chunk_appendf(&trash, "%p: proto=%s", curr_strm, strm_li(curr_strm) ? strm_li(curr_strm)->proto->name : "?"); conn = objt_conn(strm_orig(curr_strm)); switch (conn && conn_get_src(conn) ? addr_to_str(conn->src, pn, sizeof(pn)) : AF_UNSPEC) { case AF_INET: case AF_INET6: chunk_appendf(&trash, " src=%s:%d fe=%s be=%s srv=%s", pn, get_host_port(conn->src), strm_fe(curr_strm)->id, (curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "", objt_server(curr_strm->target) ? objt_server(curr_strm->target)->id : "" ); break; case AF_UNIX: chunk_appendf(&trash, " src=unix:%d fe=%s be=%s srv=%s", strm_li(curr_strm)->luid, strm_fe(curr_strm)->id, (curr_strm->be->cap & PR_CAP_BE) ? curr_strm->be->id : "", objt_server(curr_strm->target) ? objt_server(curr_strm->target)->id : "" ); break; } chunk_appendf(&trash, " ts=%02x age=%s calls=%u rate=%u cpu=%llu lat=%llu", curr_strm->task->state, human_time(now.tv_sec - curr_strm->logs.tv_accept.tv_sec, 1), curr_strm->task->calls, read_freq_ctr(&curr_strm->call_rate), (unsigned long long)curr_strm->task->cpu_time, (unsigned long long)curr_strm->task->lat_time); chunk_appendf(&trash, " rq[f=%06xh,i=%u,an=%02xh,rx=%s", curr_strm->req.flags, (unsigned int)ci_data(&curr_strm->req), curr_strm->req.analysers, curr_strm->req.rex ? human_time(TICKS_TO_MS(curr_strm->req.rex - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, ",wx=%s", curr_strm->req.wex ? human_time(TICKS_TO_MS(curr_strm->req.wex - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, ",ax=%s]", curr_strm->req.analyse_exp ? human_time(TICKS_TO_MS(curr_strm->req.analyse_exp - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, " rp[f=%06xh,i=%u,an=%02xh,rx=%s", curr_strm->res.flags, (unsigned int)ci_data(&curr_strm->res), curr_strm->res.analysers, curr_strm->res.rex ? human_time(TICKS_TO_MS(curr_strm->res.rex - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, ",wx=%s", curr_strm->res.wex ? human_time(TICKS_TO_MS(curr_strm->res.wex - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, ",ax=%s]", curr_strm->res.analyse_exp ? human_time(TICKS_TO_MS(curr_strm->res.analyse_exp - now_ms), TICKS_TO_MS(1000)) : ""); conn = cs_conn(objt_cs(curr_strm->si[0].end)); chunk_appendf(&trash, " s0=[%d,%1xh,fd=%d,ex=%s]", curr_strm->si[0].state, curr_strm->si[0].flags, conn ? conn->handle.fd : -1, curr_strm->si[0].exp ? human_time(TICKS_TO_MS(curr_strm->si[0].exp - now_ms), TICKS_TO_MS(1000)) : ""); conn = cs_conn(objt_cs(curr_strm->si[1].end)); chunk_appendf(&trash, " s1=[%d,%1xh,fd=%d,ex=%s]", curr_strm->si[1].state, curr_strm->si[1].flags, conn ? conn->handle.fd : -1, curr_strm->si[1].exp ? human_time(TICKS_TO_MS(curr_strm->si[1].exp - now_ms), TICKS_TO_MS(1000)) : ""); chunk_appendf(&trash, " exp=%s", curr_strm->task->expire ? human_time(TICKS_TO_MS(curr_strm->task->expire - now_ms), TICKS_TO_MS(1000)) : ""); if (task_in_rq(curr_strm->task)) chunk_appendf(&trash, " run(nice=%d)", curr_strm->task->nice); chunk_appendf(&trash, "\n"); if (ci_putchk(si_ic(si), &trash) == -1) { /* let's try again later from this stream. We add ourselves into * this stream's users so that it can remove us upon termination. */ LIST_ADDQ(&curr_strm->back_refs, &appctx->ctx.sess.bref.users); goto full; } next_sess: appctx->ctx.sess.bref.ref = curr_strm->list.n; } if (appctx->ctx.sess.target && appctx->ctx.sess.target != (void *)-1) { /* specified stream not found */ if (appctx->ctx.sess.section > 0) chunk_appendf(&trash, " *** session terminated while we were watching it ***\n"); else chunk_appendf(&trash, "Session not found.\n"); if (ci_putchk(si_ic(si), &trash) == -1) goto full; appctx->ctx.sess.target = NULL; appctx->ctx.sess.uid = 0; goto done; } /* fall through */ default: appctx->st2 = STAT_ST_FIN; goto done; } done: thread_release(); return 1; full: thread_release(); si_rx_room_blk(si); return 0; } static void cli_release_show_sess(struct appctx *appctx) { if (appctx->st2 == STAT_ST_LIST) { HA_SPIN_LOCK(STRMS_LOCK, &streams_lock); if (!LIST_ISEMPTY(&appctx->ctx.sess.bref.users)) LIST_DEL(&appctx->ctx.sess.bref.users); HA_SPIN_UNLOCK(STRMS_LOCK, &streams_lock); } } /* Parses the "shutdown session" directive, it always returns 1 */ static int cli_parse_shutdown_session(char **args, char *payload, struct appctx *appctx, void *private) { struct stream *strm, *ptr; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; if (!*args[2]) return cli_err(appctx, "Session pointer expected (use 'show sess').\n"); ptr = (void *)strtoul(args[2], NULL, 0); thread_isolate(); /* first, look for the requested stream in the stream table */ list_for_each_entry(strm, &streams, list) { if (strm == ptr) { stream_shutdown(strm, SF_ERR_KILLED); break; } } thread_release(); /* do we have the stream ? */ if (strm != ptr) return cli_err(appctx, "No such session (use 'show sess').\n"); return 1; } /* Parses the "shutdown session server" directive, it always returns 1 */ static int cli_parse_shutdown_sessions_server(char **args, char *payload, struct appctx *appctx, void *private) { struct server *sv; if (!cli_has_level(appctx, ACCESS_LVL_ADMIN)) return 1; sv = cli_find_server(appctx, args[3]); if (!sv) return 1; /* kill all the stream that are on this server */ HA_SPIN_LOCK(SERVER_LOCK, &sv->lock); srv_shutdown_streams(sv, SF_ERR_KILLED); HA_SPIN_UNLOCK(SERVER_LOCK, &sv->lock); return 1; } /* register cli keywords */ static struct cli_kw_list cli_kws = {{ },{ { { "show", "sess", NULL }, "show sess [id] : report the list of current sessions or dump this session", cli_parse_show_sess, cli_io_handler_dump_sess, cli_release_show_sess }, { { "shutdown", "session", NULL }, "shutdown session : kill a specific session", cli_parse_shutdown_session, NULL, NULL }, { { "shutdown", "sessions", "server" }, "shutdown sessions server : kill sessions on a server", cli_parse_shutdown_sessions_server, NULL, NULL }, {{},} }}; INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws); /* main configuration keyword registration. */ static struct action_kw_list stream_tcp_keywords = { ILH, { { "use-service", stream_parse_use_service }, { /* END */ } }}; INITCALL1(STG_REGISTER, tcp_req_cont_keywords_register, &stream_tcp_keywords); static struct action_kw_list stream_http_keywords = { ILH, { { "use-service", stream_parse_use_service }, { /* END */ } }}; INITCALL1(STG_REGISTER, http_req_keywords_register, &stream_http_keywords); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */