//! parsers recognizing numbers, complete input version use crate::internal::*; use crate::error::ParseError; use crate::traits::{AsChar, InputIter, InputLength, InputTakeAtPosition}; use crate::lib::std::ops::{RangeFrom, RangeTo}; use crate::traits::{Offset, Slice}; use crate::error::{ErrorKind, make_error}; use crate::character::complete::{char, digit1}; use crate::combinator::{opt, cut, map, recognize}; use crate::branch::alt; use crate::sequence::{tuple, pair}; /// Recognizes an unsigned 1 byte integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_u8; /// /// let parser = |s| { /// be_u8(s) /// }; /// /// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"\x03abcefg"[..], 0x00))); /// assert_eq!(parser(b""), Err(Err::Error((&[][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_u8<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u8, E> { if i.len() < 1 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { Ok((&i[1..], i[0])) } } /// Recognizes a big endian unsigned 2 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_u16; /// /// let parser = |s| { /// be_u16(s) /// }; /// /// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"abcefg"[..], 0x0003))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_u16<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u16, E> { if i.len() < 2 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[0] as u16) << 8) + i[1] as u16; Ok((&i[2..], res)) } } /// Recognizes a big endian unsigned 3 byte integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_u24; /// /// let parser = |s| { /// be_u24(s) /// }; /// /// assert_eq!(parser(b"\x00\x03\x05abcefg"), Ok((&b"abcefg"[..], 0x000305))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_u24<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u32, E> { if i.len() < 3 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[0] as u32) << 16) + ((i[1] as u32) << 8) + (i[2] as u32); Ok((&i[3..], res)) } } /// Recognizes a big endian unsigned 4 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_u32; /// /// let parser = |s| { /// be_u32(s) /// }; /// /// assert_eq!(parser(b"\x00\x03\x05\x07abcefg"), Ok((&b"abcefg"[..], 0x00030507))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_u32<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u32, E> { if i.len() < 4 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[0] as u32) << 24) + ((i[1] as u32) << 16) + ((i[2] as u32) << 8) + i[3] as u32; Ok((&i[4..], res)) } } /// Recognizes a big endian unsigned 8 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_u64; /// /// let parser = |s| { /// be_u64(s) /// }; /// /// assert_eq!(parser(b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"), Ok((&b"abcefg"[..], 0x0001020304050607))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_u64<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u64, E> { if i.len() < 8 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[0] as u64) << 56) + ((i[1] as u64) << 48) + ((i[2] as u64) << 40) + ((i[3] as u64) << 32) + ((i[4] as u64) << 24) + ((i[5] as u64) << 16) + ((i[6] as u64) << 8) + i[7] as u64; Ok((&i[8..], res)) } } /// Recognizes a big endian unsigned 16 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_u128; /// /// let parser = |s| { /// be_u128(s) /// }; /// /// assert_eq!(parser(b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"), Ok((&b"abcefg"[..], 0x00010203040506070001020304050607))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] #[cfg(stable_i128)] pub fn be_u128<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u128, E> { if i.len() < 16 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[0] as u128) << 120) + ((i[1] as u128) << 112) + ((i[2] as u128) << 104) + ((i[3] as u128) << 96) + ((i[4] as u128) << 88) + ((i[5] as u128) << 80) + ((i[6] as u128) << 72) + ((i[7] as u128) << 64) + ((i[8] as u128) << 56) + ((i[9] as u128) << 48) + ((i[10] as u128) << 40) + ((i[11] as u128) << 32) + ((i[12] as u128) << 24) + ((i[13] as u128) << 16) + ((i[14] as u128) << 8) + i[15] as u128; Ok((&i[16..], res)) } } /// Recognizes a signed 1 byte integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_i8; /// /// let parser = |s| { /// be_i8(s) /// }; /// /// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"\x03abcefg"[..], 0x00))); /// assert_eq!(parser(b""), Err(Err::Error((&[][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_i8<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i8, E> { map!(i, be_u8, |x| x as i8) } /// Recognizes a big endian signed 2 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_i16; /// /// let parser = |s| { /// be_i16(s) /// }; /// /// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"abcefg"[..], 0x0003))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_i16<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i16, E> { map!(i, be_u16, |x| x as i16) } /// Recognizes a big endian signed 3 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_i24; /// /// let parser = |s| { /// be_i24(s) /// }; /// /// assert_eq!(parser(b"\x00\x03\x05abcefg"), Ok((&b"abcefg"[..], 0x000305))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_i24<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i32, E> { // Same as the unsigned version but we need to sign-extend manually here map!(i, be_u24, |x| if x & 0x80_00_00 != 0 { (x | 0xff_00_00_00) as i32 } else { x as i32 }) } /// Recognizes a big endian signed 4 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_i32; /// /// let parser = |s| { /// be_i32(s) /// }; /// /// assert_eq!(parser(b"\x00\x03\x05\x07abcefg"), Ok((&b"abcefg"[..], 0x00030507))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_i32<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i32, E> { map!(i, be_u32, |x| x as i32) } /// Recognizes a big endian signed 8 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_i64; /// /// let parser = |s| { /// be_i64(s) /// }; /// /// assert_eq!(parser(b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"), Ok((&b"abcefg"[..], 0x0001020304050607))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_i64<'a, E: ParseError<&'a[u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i64, E> { map!(i, be_u64, |x| x as i64) } /// Recognizes a big endian signed 16 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_i128; /// /// let parser = |s| { /// be_i128(s) /// }; /// /// assert_eq!(parser(b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"), Ok((&b"abcefg"[..], 0x00010203040506070001020304050607))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] #[cfg(stable_i128)] pub fn be_i128<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i128, E> { map!(i, be_u128, |x| x as i128) } /// Recognizes an unsigned 1 byte integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_u8; /// /// let parser = |s| { /// le_u8(s) /// }; /// /// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"\x03abcefg"[..], 0x00))); /// assert_eq!(parser(b""), Err(Err::Error((&[][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_u8<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u8, E> { if i.len() < 1 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { Ok((&i[1..], i[0])) } } /// Recognizes a little endian unsigned 2 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_u16; /// /// let parser = |s| { /// le_u16(s) /// }; /// /// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"abcefg"[..], 0x0300))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_u16<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u16, E> { if i.len() < 2 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[1] as u16) << 8) + i[0] as u16; Ok((&i[2..], res)) } } /// Recognizes a little endian unsigned 3 byte integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_u24; /// /// let parser = |s| { /// le_u24(s) /// }; /// /// assert_eq!(parser(b"\x00\x03\x05abcefg"), Ok((&b"abcefg"[..], 0x050300))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_u24<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u32, E> { if i.len() < 3 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = (i[0] as u32) + ((i[1] as u32) << 8) + ((i[2] as u32) << 16); Ok((&i[3..], res)) } } /// Recognizes a little endian unsigned 4 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_u32; /// /// let parser = |s| { /// le_u32(s) /// }; /// /// assert_eq!(parser(b"\x00\x03\x05\x07abcefg"), Ok((&b"abcefg"[..], 0x07050300))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_u32<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u32, E> { if i.len() < 4 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[3] as u32) << 24) + ((i[2] as u32) << 16) + ((i[1] as u32) << 8) + i[0] as u32; Ok((&i[4..], res)) } } /// Recognizes a little endian unsigned 8 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_u64; /// /// let parser = |s| { /// le_u64(s) /// }; /// /// assert_eq!(parser(b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"), Ok((&b"abcefg"[..], 0x0706050403020100))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_u64<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u64, E> { if i.len() < 8 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[7] as u64) << 56) + ((i[6] as u64) << 48) + ((i[5] as u64) << 40) + ((i[4] as u64) << 32) + ((i[3] as u64) << 24) + ((i[2] as u64) << 16) + ((i[1] as u64) << 8) + i[0] as u64; Ok((&i[8..], res)) } } /// Recognizes a little endian unsigned 16 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_u128; /// /// let parser = |s| { /// le_u128(s) /// }; /// /// assert_eq!(parser(b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"), Ok((&b"abcefg"[..], 0x07060504030201000706050403020100))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] #[cfg(stable_i128)] pub fn le_u128<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], u128, E> { if i.len() < 16 { Err(Err::Error(make_error(i, ErrorKind::Eof))) } else { let res = ((i[15] as u128) << 120) + ((i[14] as u128) << 112) + ((i[13] as u128) << 104) + ((i[12] as u128) << 96) + ((i[11] as u128) << 88) + ((i[10] as u128) << 80) + ((i[9] as u128) << 72) + ((i[8] as u128) << 64) + ((i[7] as u128) << 56) + ((i[6] as u128) << 48) + ((i[5] as u128) << 40) + ((i[4] as u128) << 32) + ((i[3] as u128) << 24) + ((i[2] as u128) << 16) + ((i[1] as u128) << 8) + i[0] as u128; Ok((&i[16..], res)) } } /// Recognizes a signed 1 byte integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_i8; /// /// let parser = |s| { /// le_i8(s) /// }; /// /// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"\x03abcefg"[..], 0x00))); /// assert_eq!(parser(b""), Err(Err::Error((&[][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_i8<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i8, E> { map!(i, le_u8, |x| x as i8) } /// Recognizes a little endian signed 2 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_i16; /// /// let parser = |s| { /// le_i16(s) /// }; /// /// assert_eq!(parser(b"\x00\x03abcefg"), Ok((&b"abcefg"[..], 0x0300))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_i16<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i16, E> { map!(i, le_u16, |x| x as i16) } /// Recognizes a little endian signed 3 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_i24; /// /// let parser = |s| { /// le_i24(s) /// }; /// /// assert_eq!(parser(b"\x00\x03\x05abcefg"), Ok((&b"abcefg"[..], 0x050300))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_i24<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i32, E> { // Same as the unsigned version but we need to sign-extend manually here map!(i, le_u24, |x| if x & 0x80_00_00 != 0 { (x | 0xff_00_00_00) as i32 } else { x as i32 }) } /// Recognizes a little endian signed 4 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_i32; /// /// let parser = |s| { /// le_i32(s) /// }; /// /// assert_eq!(parser(b"\x00\x03\x05\x07abcefg"), Ok((&b"abcefg"[..], 0x07050300))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_i32<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i32, E> { map!(i, le_u32, |x| x as i32) } /// Recognizes a little endian signed 8 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_i64; /// /// let parser = |s| { /// le_i64(s) /// }; /// /// assert_eq!(parser(b"\x00\x01\x02\x03\x04\x05\x06\x07abcefg"), Ok((&b"abcefg"[..], 0x0706050403020100))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_i64<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i64, E> { map!(i, le_u64, |x| x as i64) } /// Recognizes a little endian signed 16 bytes integer /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_i128; /// /// let parser = |s| { /// le_i128(s) /// }; /// /// assert_eq!(parser(b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07abcefg"), Ok((&b"abcefg"[..], 0x07060504030201000706050403020100))); /// assert_eq!(parser(b"\x01"), Err(Err::Error((&[0x01][..], ErrorKind::Eof)))); /// ``` #[inline] #[cfg(stable_i128)] pub fn le_i128<'a, E: ParseError<&'a [u8]>>(i: &'a[u8]) -> IResult<&'a[u8], i128, E> { map!(i, le_u128, |x| x as i128) } /// Recognizes a big endian 4 bytes floating point number /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_f32; /// /// let parser = |s| { /// be_f32(s) /// }; /// /// assert_eq!(parser(&[0x41, 0x48, 0x00, 0x00][..]), Ok((&b""[..], 12.5))); /// assert_eq!(parser(b"abc"), Err(Err::Error((&b"abc"[..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_f32<'a, E: ParseError<&'a [u8]>>(input: &'a[u8]) -> IResult<&'a[u8], f32, E> { match be_u32(input) { Err(e) => Err(e), Ok((i, o)) => Ok((i, f32::from_bits(o))), } } /// Recognizes a big endian 8 bytes floating point number /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::be_f64; /// /// let parser = |s| { /// be_f64(s) /// }; /// /// assert_eq!(parser(&[0x40, 0x29, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00][..]), Ok((&b""[..], 12.5))); /// assert_eq!(parser(b"abc"), Err(Err::Error((&b"abc"[..], ErrorKind::Eof)))); /// ``` #[inline] pub fn be_f64<'a, E: ParseError<&'a [u8]>>(input: &'a[u8]) -> IResult<&'a[u8], f64, E> { match be_u64(input) { Err(e) => Err(e), Ok((i, o)) => Ok((i, f64::from_bits(o))), } } /// Recognizes a little endian 4 bytes floating point number /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_f32; /// /// let parser = |s| { /// le_f32(s) /// }; /// /// assert_eq!(parser(&[0x00, 0x00, 0x48, 0x41][..]), Ok((&b""[..], 12.5))); /// assert_eq!(parser(b"abc"), Err(Err::Error((&b"abc"[..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_f32<'a, E: ParseError<&'a [u8]>>(input: &'a[u8]) -> IResult<&'a[u8], f32, E> { match le_u32(input) { Err(e) => Err(e), Ok((i, o)) => Ok((i, f32::from_bits(o))), } } /// Recognizes a little endian 8 bytes floating point number /// /// *complete version*: returns an error if there is not enough input data /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::le_f64; /// /// let parser = |s| { /// le_f64(s) /// }; /// /// assert_eq!(parser(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x29, 0x40][..]), Ok((&b""[..], 12.5))); /// assert_eq!(parser(b"abc"), Err(Err::Error((&b"abc"[..], ErrorKind::Eof)))); /// ``` #[inline] pub fn le_f64<'a, E: ParseError<&'a [u8]>>(input: &'a[u8]) -> IResult<&'a[u8], f64, E> { match le_u64(input) { Err(e) => Err(e), Ok((i, o)) => Ok((i, f64::from_bits(o))), } } /// Recognizes a hex-encoded integer /// /// *complete version*: will parse until the end of input if it has less than 8 bytes /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::hex_u32; /// /// let parser = |s| { /// hex_u32(s) /// }; /// /// assert_eq!(parser(b"01AE"), Ok((&b""[..], 0x01AE))); /// assert_eq!(parser(b"abc"), Ok((&b""[..], 0x0ABC))); /// assert_eq!(parser(b"ggg"), Err(Err::Error((&b"ggg"[..], ErrorKind::IsA)))); /// ``` #[inline] pub fn hex_u32<'a, E: ParseError<&'a [u8]>>(input: &'a[u8]) -> IResult<&'a[u8], u32, E> { let (i, o) = crate::bytes::complete::is_a(&b"0123456789abcdefABCDEF"[..])(input)?; // Do not parse more than 8 characters for a u32 let (parsed, remaining) = if o.len() <= 8 { (o, i) } else { (&input[..8], &input[8..]) }; let res = parsed .iter() .rev() .enumerate() .map(|(k, &v)| { let digit = v as char; digit.to_digit(16).unwrap_or(0) << (k * 4) }) .sum(); Ok((remaining, res)) } /// Recognizes floating point number in a byte string and returns the corresponding slice /// /// *complete version*: can parse until the end of input /// /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::recognize_float; /// /// let parser = |s| { /// recognize_float(s) /// }; /// /// assert_eq!(parser("11e-1"), Ok(("", "11e-1"))); /// assert_eq!(parser("123E-02"), Ok(("", "123E-02"))); /// assert_eq!(parser("123K-01"), Ok(("K-01", "123"))); /// assert_eq!(parser("abc"), Err(Err::Error(("abc", ErrorKind::Char)))); /// ``` #[allow(unused_imports)] #[cfg_attr(rustfmt, rustfmt_skip)] pub fn recognize_float>(input: T) -> IResult where T: Slice> + Slice>, T: Clone + Offset, T: InputIter, ::Item: AsChar, T: InputTakeAtPosition, ::Item: AsChar, { recognize( tuple(( opt(alt((char('+'), char('-')))), alt(( map(tuple((digit1, opt(pair(char('.'), opt(digit1))))), |_| ()), map(tuple((char('.'), digit1)), |_| ()) )), opt(tuple(( alt((char('e'), char('E'))), opt(alt((char('+'), char('-')))), cut(digit1) ))) )) )(input) } /// Recognizes floating point number in a byte string and returns a f32 /// /// *complete version*: can parse until the end of input /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::float; /// /// let parser = |s| { /// float(s) /// }; /// /// assert_eq!(parser("11e-1"), Ok(("", 1.1))); /// assert_eq!(parser("123E-02"), Ok(("", 1.23))); /// assert_eq!(parser("123K-01"), Ok(("K-01", 123.0))); /// assert_eq!(parser("abc"), Err(Err::Error(("abc", ErrorKind::Char)))); /// ``` #[cfg(not(feature = "lexical"))] pub fn float>(input: T) -> IResult where T: Slice> + Slice>, T: Clone + Offset, T: InputIter + InputLength + crate::traits::ParseTo, ::Item: AsChar, T: InputTakeAtPosition, ::Item: AsChar { match recognize_float(input) { Err(e) => Err(e), Ok((i, s)) => match s.parse_to() { Some(n) => Ok((i, n)), None => Err(Err::Error(E::from_error_kind(i, ErrorKind::Float))) } } } /// Recognizes floating point number in a byte string and returns a f32 /// /// *complete version*: can parse until the end of input /// /// this function uses the lexical-core crate for float parsing by default, you /// can deactivate it by removing the "lexical" feature /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::float; /// /// let parser = |s| { /// float(s) /// }; /// /// assert_eq!(parser("1.1"), Ok(("", 1.1))); /// assert_eq!(parser("123E-02"), Ok(("", 1.23))); /// assert_eq!(parser("123K-01"), Ok(("K-01", 123.0))); /// assert_eq!(parser("abc"), Err(Err::Error(("abc", ErrorKind::Float)))); /// ``` #[cfg(feature = "lexical")] pub fn float>(input: T) -> IResult where T: crate::traits::AsBytes + InputLength + Slice>, { match ::lexical_core::parse_partial(input.as_bytes()) { Ok((value, processed)) => Ok((input.slice(processed..), value)), Err(_) => Err(Err::Error(E::from_error_kind(input, ErrorKind::Float))) } } /// Recognizes floating point number in a byte string and returns a f64 /// /// *complete version*: can parse until the end of input /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::double; /// /// let parser = |s| { /// double(s) /// }; /// /// assert_eq!(parser("11e-1"), Ok(("", 1.1))); /// assert_eq!(parser("123E-02"), Ok(("", 1.23))); /// assert_eq!(parser("123K-01"), Ok(("K-01", 123.0))); /// assert_eq!(parser("abc"), Err(Err::Error(("abc", ErrorKind::Char)))); /// ``` #[cfg(not(feature = "lexical"))] pub fn double>(input: T) -> IResult where T: Slice> + Slice>, T: Clone + Offset, T: InputIter + InputLength + crate::traits::ParseTo, ::Item: AsChar, T: InputTakeAtPosition, ::Item: AsChar { match recognize_float(input) { Err(e) => Err(e), Ok((i, s)) => match s.parse_to() { Some(n) => Ok((i, n)), None => Err(Err::Error(E::from_error_kind(i, ErrorKind::Float))) } } } /// Recognizes floating point number in a byte string and returns a f64 /// /// *complete version*: can parse until the end of input /// /// this function uses the lexical-core crate for float parsing by default, you /// can deactivate it by removing the "lexical" feature /// ```rust /// # use nom::{Err, error::ErrorKind, Needed}; /// # use nom::Needed::Size; /// use nom::number::complete::double; /// /// let parser = |s| { /// double(s) /// }; /// /// assert_eq!(parser("1.1"), Ok(("", 1.1))); /// assert_eq!(parser("123E-02"), Ok(("", 1.23))); /// assert_eq!(parser("123K-01"), Ok(("K-01", 123.0))); /// assert_eq!(parser("abc"), Err(Err::Error(("abc", ErrorKind::Float)))); /// ``` #[cfg(feature = "lexical")] pub fn double>(input: T) -> IResult where T: crate::traits::AsBytes + InputLength + Slice>, { match ::lexical_core::parse_partial(input.as_bytes()) { Ok((value, processed)) => Ok((input.slice(processed..), value)), Err(_) => Err(Err::Error(E::from_error_kind(input, ErrorKind::Float))) } } #[cfg(test)] mod tests { use super::*; use crate::internal::Err; use crate::error::ErrorKind; macro_rules! assert_parse( ($left: expr, $right: expr) => { let res: $crate::IResult<_, _, (_, ErrorKind)> = $left; assert_eq!(res, $right); }; ); #[test] fn i8_tests() { assert_parse!(be_i8(&[0x00]), Ok((&b""[..], 0))); assert_parse!(be_i8(&[0x7f]), Ok((&b""[..], 127))); assert_parse!(be_i8(&[0xff]), Ok((&b""[..], -1))); assert_parse!(be_i8(&[0x80]), Ok((&b""[..], -128))); } #[test] fn i16_tests() { assert_parse!(be_i16(&[0x00, 0x00]), Ok((&b""[..], 0))); assert_parse!(be_i16(&[0x7f, 0xff]), Ok((&b""[..], 32_767_i16))); assert_parse!(be_i16(&[0xff, 0xff]), Ok((&b""[..], -1))); assert_parse!(be_i16(&[0x80, 0x00]), Ok((&b""[..], -32_768_i16))); } #[test] fn u24_tests() { assert_parse!(be_u24(&[0x00, 0x00, 0x00]), Ok((&b""[..], 0))); assert_parse!(be_u24(&[0x00, 0xFF, 0xFF]), Ok((&b""[..], 65_535_u32))); assert_parse!(be_u24(&[0x12, 0x34, 0x56]), Ok((&b""[..], 1_193_046_u32))); } #[test] fn i24_tests() { assert_parse!(be_i24(&[0xFF, 0xFF, 0xFF]), Ok((&b""[..], -1_i32))); assert_parse!(be_i24(&[0xFF, 0x00, 0x00]), Ok((&b""[..], -65_536_i32))); assert_parse!(be_i24(&[0xED, 0xCB, 0xAA]), Ok((&b""[..], -1_193_046_i32))); } #[test] fn i32_tests() { assert_parse!(be_i32(&[0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0))); assert_parse!( be_i32(&[0x7f, 0xff, 0xff, 0xff]), Ok((&b""[..], 2_147_483_647_i32)) ); assert_parse!(be_i32(&[0xff, 0xff, 0xff, 0xff]), Ok((&b""[..], -1))); assert_parse!( be_i32(&[0x80, 0x00, 0x00, 0x00]), Ok((&b""[..], -2_147_483_648_i32)) ); } #[test] fn i64_tests() { assert_parse!( be_i64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0)) ); assert_parse!( be_i64(&[0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]), Ok((&b""[..], 9_223_372_036_854_775_807_i64)) ); assert_parse!( be_i64(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]), Ok((&b""[..], -1)) ); assert_parse!( be_i64(&[0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], -9_223_372_036_854_775_808_i64)) ); } #[test] #[cfg(stable_i128)] fn i128_tests() { assert_parse!( be_i128(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0)) ); assert_parse!( be_i128(&[0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]), Ok((&b""[..], 170_141_183_460_469_231_731_687_303_715_884_105_727_i128)) ); assert_parse!( be_i128(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]), Ok((&b""[..], -1)) ); assert_parse!( be_i128(&[0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], -170_141_183_460_469_231_731_687_303_715_884_105_728_i128)) ); } #[test] fn le_i8_tests() { assert_parse!(le_i8(&[0x00]), Ok((&b""[..], 0))); assert_parse!(le_i8(&[0x7f]), Ok((&b""[..], 127))); assert_parse!(le_i8(&[0xff]), Ok((&b""[..], -1))); assert_parse!(le_i8(&[0x80]), Ok((&b""[..], -128))); } #[test] fn le_i16_tests() { assert_parse!(le_i16(&[0x00, 0x00]), Ok((&b""[..], 0))); assert_parse!(le_i16(&[0xff, 0x7f]), Ok((&b""[..], 32_767_i16))); assert_parse!(le_i16(&[0xff, 0xff]), Ok((&b""[..], -1))); assert_parse!(le_i16(&[0x00, 0x80]), Ok((&b""[..], -32_768_i16))); } #[test] fn le_u24_tests() { assert_parse!(le_u24(&[0x00, 0x00, 0x00]), Ok((&b""[..], 0))); assert_parse!(le_u24(&[0xFF, 0xFF, 0x00]), Ok((&b""[..], 65_535_u32))); assert_parse!(le_u24(&[0x56, 0x34, 0x12]), Ok((&b""[..], 1_193_046_u32))); } #[test] fn le_i24_tests() { assert_parse!(le_i24(&[0xFF, 0xFF, 0xFF]), Ok((&b""[..], -1_i32))); assert_parse!(le_i24(&[0x00, 0x00, 0xFF]), Ok((&b""[..], -65_536_i32))); assert_parse!(le_i24(&[0xAA, 0xCB, 0xED]), Ok((&b""[..], -1_193_046_i32))); } #[test] fn le_i32_tests() { assert_parse!(le_i32(&[0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0))); assert_parse!( le_i32(&[0xff, 0xff, 0xff, 0x7f]), Ok((&b""[..], 2_147_483_647_i32)) ); assert_parse!(le_i32(&[0xff, 0xff, 0xff, 0xff]), Ok((&b""[..], -1))); assert_parse!( le_i32(&[0x00, 0x00, 0x00, 0x80]), Ok((&b""[..], -2_147_483_648_i32)) ); } #[test] fn le_i64_tests() { assert_parse!( le_i64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0)) ); assert_parse!( le_i64(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f]), Ok((&b""[..], 9_223_372_036_854_775_807_i64)) ); assert_parse!( le_i64(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]), Ok((&b""[..], -1)) ); assert_parse!( le_i64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80]), Ok((&b""[..], -9_223_372_036_854_775_808_i64)) ); } #[test] #[cfg(stable_i128)] fn le_i128_tests() { assert_parse!( le_i128(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0)) ); assert_parse!( le_i128(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x7f]), Ok((&b""[..], 170_141_183_460_469_231_731_687_303_715_884_105_727_i128)) ); assert_parse!( le_i128(&[0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff]), Ok((&b""[..], -1)) ); assert_parse!( le_i128(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80]), Ok((&b""[..], -170_141_183_460_469_231_731_687_303_715_884_105_728_i128)) ); } #[test] fn be_f32_tests() { assert_parse!(be_f32(&[0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0_f32))); assert_parse!( be_f32(&[0x4d, 0x31, 0x1f, 0xd8]), Ok((&b""[..], 185_728_392_f32)) ); } #[test] fn be_f64_tests() { assert_parse!( be_f64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0_f64)) ); assert_parse!( be_f64(&[0x41, 0xa6, 0x23, 0xfb, 0x10, 0x00, 0x00, 0x00]), Ok((&b""[..], 185_728_392_f64)) ); } #[test] fn le_f32_tests() { assert_parse!(le_f32(&[0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0_f32))); assert_parse!( le_f32(&[0xd8, 0x1f, 0x31, 0x4d]), Ok((&b""[..], 185_728_392_f32)) ); } #[test] fn le_f64_tests() { assert_parse!( le_f64(&[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]), Ok((&b""[..], 0_f64)) ); assert_parse!( le_f64(&[0x00, 0x00, 0x00, 0x10, 0xfb, 0x23, 0xa6, 0x41]), Ok((&b""[..], 185_728_392_f64)) ); } #[test] fn hex_u32_tests() { assert_parse!( hex_u32(&b";"[..]), Err(Err::Error(error_position!(&b";"[..], ErrorKind::IsA))) ); assert_parse!(hex_u32(&b"ff;"[..]), Ok((&b";"[..], 255))); assert_parse!(hex_u32(&b"1be2;"[..]), Ok((&b";"[..], 7138))); assert_parse!(hex_u32(&b"c5a31be2;"[..]), Ok((&b";"[..], 3_315_801_058))); assert_parse!(hex_u32(&b"C5A31be2;"[..]), Ok((&b";"[..], 3_315_801_058))); assert_parse!(hex_u32(&b"00c5a31be2;"[..]), Ok((&b"e2;"[..], 12_952_347))); assert_parse!( hex_u32(&b"c5a31be201;"[..]), Ok((&b"01;"[..], 3_315_801_058)) ); assert_parse!(hex_u32(&b"ffffffff;"[..]), Ok((&b";"[..], 4_294_967_295))); assert_parse!(hex_u32(&b"0x1be2;"[..]), Ok((&b"x1be2;"[..], 0))); assert_parse!(hex_u32(&b"12af"[..]), Ok((&b""[..], 0x12af))); } #[test] #[cfg(feature = "std")] fn float_test() { let mut test_cases = vec![ "+3.14", "3.14", "-3.14", "0", "0.0", "1.", ".789", "-.5", "1e7", "-1E-7", ".3e-2", "1.e4", "1.2e4", "12.34", "-1.234E-12", "-1.234e-12", ]; for test in test_cases.drain(..) { let expected32 = str::parse::(test).unwrap(); let expected64 = str::parse::(test).unwrap(); println!("now parsing: {} -> {}", test, expected32); let larger = format!("{}", test); assert_parse!(recognize_float(&larger[..]), Ok(("", test))); assert_parse!(float(larger.as_bytes()), Ok((&b""[..], expected32))); assert_parse!(float(&larger[..]), Ok(("", expected32))); assert_parse!(double(larger.as_bytes()), Ok((&b""[..], expected64))); assert_parse!(double(&larger[..]), Ok(("", expected64))); } let remaining_exponent = "-1.234E-"; assert_parse!( recognize_float(remaining_exponent), Err(Err::Failure(("", ErrorKind::Digit))) ); } }