// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------- Contributing author: Stan Moore (SNL) ------------------------------------------------------------------------- */ #include "angle_harmonic_kokkos.h" #include "atom_kokkos.h" #include "atom_masks.h" #include "comm.h" #include "force.h" #include "math_const.h" #include "memory_kokkos.h" #include "neighbor_kokkos.h" #include using namespace LAMMPS_NS; using namespace MathConst; #define SMALL 0.001 /* ---------------------------------------------------------------------- */ template AngleHarmonicKokkos::AngleHarmonicKokkos(LAMMPS *lmp) : AngleHarmonic(lmp) { atomKK = (AtomKokkos *) atom; neighborKK = (NeighborKokkos *) neighbor; execution_space = ExecutionSpaceFromDevice::space; datamask_read = X_MASK | F_MASK | ENERGY_MASK | VIRIAL_MASK; datamask_modify = F_MASK | ENERGY_MASK | VIRIAL_MASK; centroidstressflag = CENTROID_NOTAVAIL; } /* ---------------------------------------------------------------------- */ template AngleHarmonicKokkos::~AngleHarmonicKokkos() { if (!copymode) { memoryKK->destroy_kokkos(k_eatom,eatom); memoryKK->destroy_kokkos(k_vatom,vatom); } } /* ---------------------------------------------------------------------- */ template void AngleHarmonicKokkos::compute(int eflag_in, int vflag_in) { eflag = eflag_in; vflag = vflag_in; ev_init(eflag,vflag,0); // reallocate per-atom arrays if necessary if (eflag_atom) { memoryKK->destroy_kokkos(k_eatom,eatom); memoryKK->create_kokkos(k_eatom,eatom,maxeatom,"angle:eatom"); d_eatom = k_eatom.template view(); } if (vflag_atom) { memoryKK->destroy_kokkos(k_vatom,vatom); memoryKK->create_kokkos(k_vatom,vatom,maxvatom,"angle:vatom"); d_vatom = k_vatom.template view(); } //atomKK->sync(execution_space,datamask_read); k_k.template sync(); k_theta0.template sync(); // if (eflag || vflag) atomKK->modified(execution_space,datamask_modify); // else atomKK->modified(execution_space,F_MASK); x = atomKK->k_x.template view(); f = atomKK->k_f.template view(); neighborKK->k_anglelist.template sync(); anglelist = neighborKK->k_anglelist.template view(); int nanglelist = neighborKK->nanglelist; nlocal = atom->nlocal; newton_bond = force->newton_bond; copymode = 1; // loop over neighbors of my atoms EV_FLOAT ev; if (evflag) { if (newton_bond) { Kokkos::parallel_reduce(Kokkos::RangePolicy >(0,nanglelist),*this,ev); } else { Kokkos::parallel_reduce(Kokkos::RangePolicy >(0,nanglelist),*this,ev); } } else { if (newton_bond) { Kokkos::parallel_for(Kokkos::RangePolicy >(0,nanglelist),*this); } else { Kokkos::parallel_for(Kokkos::RangePolicy >(0,nanglelist),*this); } } if (eflag_global) energy += ev.evdwl; if (vflag_global) { virial[0] += ev.v[0]; virial[1] += ev.v[1]; virial[2] += ev.v[2]; virial[3] += ev.v[3]; virial[4] += ev.v[4]; virial[5] += ev.v[5]; } if (eflag_atom) { k_eatom.template modify(); k_eatom.template sync(); } if (vflag_atom) { k_vatom.template modify(); k_vatom.template sync(); } copymode = 0; } template template KOKKOS_INLINE_FUNCTION void AngleHarmonicKokkos::operator()(TagAngleHarmonicCompute, const int &n, EV_FLOAT& ev) const { // The f array is atomic Kokkos::View::value,Kokkos::MemoryTraits > a_f = f; const int i1 = anglelist(n,0); const int i2 = anglelist(n,1); const int i3 = anglelist(n,2); const int type = anglelist(n,3); // 1st bond const F_FLOAT delx1 = x(i1,0) - x(i2,0); const F_FLOAT dely1 = x(i1,1) - x(i2,1); const F_FLOAT delz1 = x(i1,2) - x(i2,2); const F_FLOAT rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1; const F_FLOAT r1 = sqrt(rsq1); // 2nd bond const F_FLOAT delx2 = x(i3,0) - x(i2,0); const F_FLOAT dely2 = x(i3,1) - x(i2,1); const F_FLOAT delz2 = x(i3,2) - x(i2,2); const F_FLOAT rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2; const F_FLOAT r2 = sqrt(rsq2); // angle (cos and sin) F_FLOAT c = delx1*delx2 + dely1*dely2 + delz1*delz2; c /= r1*r2; if (c > 1.0) c = 1.0; if (c < -1.0) c = -1.0; F_FLOAT s = sqrt(1.0 - c*c); if (s < SMALL) s = SMALL; s = 1.0/s; // force & energy const F_FLOAT dtheta = acos(c) - d_theta0[type]; const F_FLOAT tk = d_k[type] * dtheta; F_FLOAT eangle = 0.0; if (eflag) eangle = tk*dtheta; const F_FLOAT a = -2.0 * tk * s; const F_FLOAT a11 = a*c / rsq1; const F_FLOAT a12 = -a / (r1*r2); const F_FLOAT a22 = a*c / rsq2; F_FLOAT f1[3],f3[3]; f1[0] = a11*delx1 + a12*delx2; f1[1] = a11*dely1 + a12*dely2; f1[2] = a11*delz1 + a12*delz2; f3[0] = a22*delx2 + a12*delx1; f3[1] = a22*dely2 + a12*dely1; f3[2] = a22*delz2 + a12*delz1; // apply force to each of 3 atoms if (NEWTON_BOND || i1 < nlocal) { a_f(i1,0) += f1[0]; a_f(i1,1) += f1[1]; a_f(i1,2) += f1[2]; } if (NEWTON_BOND || i2 < nlocal) { a_f(i2,0) -= f1[0] + f3[0]; a_f(i2,1) -= f1[1] + f3[1]; a_f(i2,2) -= f1[2] + f3[2]; } if (NEWTON_BOND || i3 < nlocal) { a_f(i3,0) += f3[0]; a_f(i3,1) += f3[1]; a_f(i3,2) += f3[2]; } if (EVFLAG) ev_tally(ev,i1,i2,i3,eangle,f1,f3, delx1,dely1,delz1,delx2,dely2,delz2); } template template KOKKOS_INLINE_FUNCTION void AngleHarmonicKokkos::operator()(TagAngleHarmonicCompute, const int &n) const { EV_FLOAT ev; this->template operator()(TagAngleHarmonicCompute(), n, ev); } /* ---------------------------------------------------------------------- */ template void AngleHarmonicKokkos::allocate() { AngleHarmonic::allocate(); int n = atom->nangletypes; k_k = typename ArrayTypes::tdual_ffloat_1d("AngleHarmonic::k",n+1); k_theta0 = typename ArrayTypes::tdual_ffloat_1d("AngleHarmonic::theta0",n+1); d_k = k_k.template view(); d_theta0 = k_theta0.template view(); } /* ---------------------------------------------------------------------- set coeffs for one or more types ------------------------------------------------------------------------- */ template void AngleHarmonicKokkos::coeff(int narg, char **arg) { AngleHarmonic::coeff(narg, arg); int n = atom->nangletypes; for (int i = 1; i <= n; i++) { k_k.h_view[i] = k[i]; k_theta0.h_view[i] = theta0[i]; } k_k.template modify(); k_theta0.template modify(); } /* ---------------------------------------------------------------------- proc 0 reads coeffs from restart file, bcasts them ------------------------------------------------------------------------- */ template void AngleHarmonicKokkos::read_restart(FILE *fp) { AngleHarmonic::read_restart(fp); int n = atom->nangletypes; for (int i = 1; i <= n; i++) { k_k.h_view[i] = k[i]; k_theta0.h_view[i] = theta0[i]; } k_k.template modify(); k_theta0.template modify(); } /* ---------------------------------------------------------------------- tally energy and virial into global and per-atom accumulators virial = r1F1 + r2F2 + r3F3 = (r1-r2) F1 + (r3-r2) F3 = del1*f1 + del2*f3 ------------------------------------------------------------------------- */ template //template KOKKOS_INLINE_FUNCTION void AngleHarmonicKokkos::ev_tally(EV_FLOAT &ev, const int i, const int j, const int k, F_FLOAT &eangle, F_FLOAT *f1, F_FLOAT *f3, const F_FLOAT &delx1, const F_FLOAT &dely1, const F_FLOAT &delz1, const F_FLOAT &delx2, const F_FLOAT &dely2, const F_FLOAT &delz2) const { E_FLOAT eanglethird; F_FLOAT v[6]; // The eatom and vatom arrays are atomic Kokkos::View::value,Kokkos::MemoryTraits > v_eatom = k_eatom.template view(); Kokkos::View::value,Kokkos::MemoryTraits > v_vatom = k_vatom.template view(); if (eflag_either) { if (eflag_global) { if (newton_bond) ev.evdwl += eangle; else { eanglethird = THIRD*eangle; if (i < nlocal) ev.evdwl += eanglethird; if (j < nlocal) ev.evdwl += eanglethird; if (k < nlocal) ev.evdwl += eanglethird; } } if (eflag_atom) { eanglethird = THIRD*eangle; if (newton_bond || i < nlocal) v_eatom[i] += eanglethird; if (newton_bond || j < nlocal) v_eatom[j] += eanglethird; if (newton_bond || k < nlocal) v_eatom[k] += eanglethird; } } if (vflag_either) { v[0] = delx1*f1[0] + delx2*f3[0]; v[1] = dely1*f1[1] + dely2*f3[1]; v[2] = delz1*f1[2] + delz2*f3[2]; v[3] = delx1*f1[1] + delx2*f3[1]; v[4] = delx1*f1[2] + delx2*f3[2]; v[5] = dely1*f1[2] + dely2*f3[2]; if (vflag_global) { if (newton_bond) { ev.v[0] += v[0]; ev.v[1] += v[1]; ev.v[2] += v[2]; ev.v[3] += v[3]; ev.v[4] += v[4]; ev.v[5] += v[5]; } else { if (i < nlocal) { ev.v[0] += THIRD*v[0]; ev.v[1] += THIRD*v[1]; ev.v[2] += THIRD*v[2]; ev.v[3] += THIRD*v[3]; ev.v[4] += THIRD*v[4]; ev.v[5] += THIRD*v[5]; } if (j < nlocal) { ev.v[0] += THIRD*v[0]; ev.v[1] += THIRD*v[1]; ev.v[2] += THIRD*v[2]; ev.v[3] += THIRD*v[3]; ev.v[4] += THIRD*v[4]; ev.v[5] += THIRD*v[5]; } if (k < nlocal) { ev.v[0] += THIRD*v[0]; ev.v[1] += THIRD*v[1]; ev.v[2] += THIRD*v[2]; ev.v[3] += THIRD*v[3]; ev.v[4] += THIRD*v[4]; ev.v[5] += THIRD*v[5]; } } } if (vflag_atom) { if (newton_bond || i < nlocal) { v_vatom(i,0) += THIRD*v[0]; v_vatom(i,1) += THIRD*v[1]; v_vatom(i,2) += THIRD*v[2]; v_vatom(i,3) += THIRD*v[3]; v_vatom(i,4) += THIRD*v[4]; v_vatom(i,5) += THIRD*v[5]; } if (newton_bond || j < nlocal) { v_vatom(j,0) += THIRD*v[0]; v_vatom(j,1) += THIRD*v[1]; v_vatom(j,2) += THIRD*v[2]; v_vatom(j,3) += THIRD*v[3]; v_vatom(j,4) += THIRD*v[4]; v_vatom(j,5) += THIRD*v[5]; } if (newton_bond || k < nlocal) { v_vatom(k,0) += THIRD*v[0]; v_vatom(k,1) += THIRD*v[1]; v_vatom(k,2) += THIRD*v[2]; v_vatom(k,3) += THIRD*v[3]; v_vatom(k,4) += THIRD*v[4]; v_vatom(k,5) += THIRD*v[5]; } } } } /* ---------------------------------------------------------------------- */ namespace LAMMPS_NS { template class AngleHarmonicKokkos; #ifdef LMP_KOKKOS_GPU template class AngleHarmonicKokkos; #endif }