// clang-format off /* ---------------------------------------------------------------------- LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator https://www.lammps.org/, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. See the README file in the top-level LAMMPS directory. ------------------------------------------------------------------------- */ #include "dihedral.h" #include "atom.h" #include "comm.h" #include "force.h" #include "atom_masks.h" #include "memory.h" #include "error.h" #include "suffix.h" #include "update.h" using namespace LAMMPS_NS; /* ---------------------------------------------------------------------- set dihedral contribution to Vdwl and Coulombic energy to 0.0 DihedralCharmm will override this ------------------------------------------------------------------------- */ Dihedral::Dihedral(LAMMPS *lmp) : Pointers(lmp) { energy = 0.0; writedata = 0; allocated = 0; suffix_flag = Suffix::NONE; maxeatom = maxvatom = maxcvatom = 0; eatom = nullptr; vatom = nullptr; cvatom = nullptr; setflag = nullptr; centroidstressflag = CENTROID_AVAIL; execution_space = Host; datamask_read = ALL_MASK; datamask_modify = ALL_MASK; copymode = 0; } /* ---------------------------------------------------------------------- */ Dihedral::~Dihedral() { if (copymode) return; memory->destroy(eatom); memory->destroy(vatom); memory->destroy(cvatom); } /* ---------------------------------------------------------------------- check if all coeffs are set ------------------------------------------------------------------------- */ void Dihedral::init() { if (!allocated && atom->ndihedraltypes) error->all(FLERR,"Dihedral coeffs are not set"); for (int i = 1; i <= atom->ndihedraltypes; i++) if (setflag[i] == 0) error->all(FLERR,"All dihedral coeffs are not set"); init_style(); } /* ---------------------------------------------------------------------- setup for energy, virial computation see integrate::ev_set() for bitwise settings of eflag/vflag set the following flags, values are otherwise set to 0: evflag != 0 if any bits of eflag or vflag are set eflag_global != 0 if ENERGY_GLOBAL bit of eflag set eflag_atom != 0 if ENERGY_ATOM bit of eflag set eflag_either != 0 if eflag_global or eflag_atom is set vflag_global != 0 if VIRIAL_PAIR or VIRIAL_FDOTR bit of vflag set vflag_atom != 0 if VIRIAL_ATOM bit of vflag set vflag_atom != 0 if VIRIAL_CENTROID bit of vflag set and centroidstressflag != CENTROID_AVAIL cvflag_atom != 0 if VIRIAL_CENTROID bit of vflag set and centroidstressflag = CENTROID_AVAIL vflag_either != 0 if any of vflag_global, vflag_atom, cvflag_atom is set ------------------------------------------------------------------------- */ void Dihedral::ev_setup(int eflag, int vflag, int alloc) { int i,n; evflag = 1; eflag_either = eflag; eflag_global = eflag & ENERGY_GLOBAL; eflag_atom = eflag & ENERGY_ATOM; vflag_global = vflag & (VIRIAL_PAIR | VIRIAL_FDOTR); vflag_atom = vflag & VIRIAL_ATOM; if (vflag & VIRIAL_CENTROID && centroidstressflag != CENTROID_AVAIL) vflag_atom = 1; cvflag_atom = 0; if (vflag & VIRIAL_CENTROID && centroidstressflag == CENTROID_AVAIL) cvflag_atom = 1; vflag_either = vflag_global || vflag_atom || cvflag_atom; // reallocate per-atom arrays if necessary if (eflag_atom && atom->nmax > maxeatom) { maxeatom = atom->nmax; if (alloc) { memory->destroy(eatom); memory->create(eatom,comm->nthreads*maxeatom,"dihedral:eatom"); } } if (vflag_atom && atom->nmax > maxvatom) { maxvatom = atom->nmax; if (alloc) { memory->destroy(vatom); memory->create(vatom,comm->nthreads*maxvatom,6,"dihedral:vatom"); } } if (cvflag_atom && atom->nmax > maxcvatom) { maxcvatom = atom->nmax; if (alloc) { memory->destroy(cvatom); memory->create(cvatom,comm->nthreads*maxcvatom,9,"dihedral:cvatom"); } } // zero accumulators if (eflag_global) energy = 0.0; if (vflag_global) for (i = 0; i < 6; i++) virial[i] = 0.0; if (eflag_atom && alloc) { n = atom->nlocal; if (force->newton_bond) n += atom->nghost; for (i = 0; i < n; i++) eatom[i] = 0.0; } if (vflag_atom && alloc) { n = atom->nlocal; if (force->newton_bond) n += atom->nghost; for (i = 0; i < n; i++) { vatom[i][0] = 0.0; vatom[i][1] = 0.0; vatom[i][2] = 0.0; vatom[i][3] = 0.0; vatom[i][4] = 0.0; vatom[i][5] = 0.0; } } if (cvflag_atom && alloc) { n = atom->nlocal; if (force->newton_bond) n += atom->nghost; for (i = 0; i < n; i++) { cvatom[i][0] = 0.0; cvatom[i][1] = 0.0; cvatom[i][2] = 0.0; cvatom[i][3] = 0.0; cvatom[i][4] = 0.0; cvatom[i][5] = 0.0; cvatom[i][6] = 0.0; cvatom[i][7] = 0.0; cvatom[i][8] = 0.0; cvatom[i][9] = 0.0; } } } /* ---------------------------------------------------------------------- tally energy and virial into global and per-atom accumulators virial = r1F1 + r2F2 + r3F3 + r4F4 = (r1-r2) F1 + (r3-r2) F3 + (r4-r2) F4 = (r1-r2) F1 + (r3-r2) F3 + (r4-r3 + r3-r2) F4 = vb1*f1 + vb2*f3 + (vb3+vb2)*f4 ------------------------------------------------------------------------- */ void Dihedral::ev_tally(int i1, int i2, int i3, int i4, int nlocal, int newton_bond, double edihedral, double *f1, double *f3, double *f4, double vb1x, double vb1y, double vb1z, double vb2x, double vb2y, double vb2z, double vb3x, double vb3y, double vb3z) { double edihedralquarter,v[6]; if (eflag_either) { if (eflag_global) { if (newton_bond) energy += edihedral; else { edihedralquarter = 0.25*edihedral; if (i1 < nlocal) energy += edihedralquarter; if (i2 < nlocal) energy += edihedralquarter; if (i3 < nlocal) energy += edihedralquarter; if (i4 < nlocal) energy += edihedralquarter; } } if (eflag_atom) { edihedralquarter = 0.25*edihedral; if (newton_bond || i1 < nlocal) eatom[i1] += edihedralquarter; if (newton_bond || i2 < nlocal) eatom[i2] += edihedralquarter; if (newton_bond || i3 < nlocal) eatom[i3] += edihedralquarter; if (newton_bond || i4 < nlocal) eatom[i4] += edihedralquarter; } } if (vflag_either) { v[0] = vb1x*f1[0] + vb2x*f3[0] + (vb3x+vb2x)*f4[0]; v[1] = vb1y*f1[1] + vb2y*f3[1] + (vb3y+vb2y)*f4[1]; v[2] = vb1z*f1[2] + vb2z*f3[2] + (vb3z+vb2z)*f4[2]; v[3] = vb1x*f1[1] + vb2x*f3[1] + (vb3x+vb2x)*f4[1]; v[4] = vb1x*f1[2] + vb2x*f3[2] + (vb3x+vb2x)*f4[2]; v[5] = vb1y*f1[2] + vb2y*f3[2] + (vb3y+vb2y)*f4[2]; if (vflag_global) { if (newton_bond) { virial[0] += v[0]; virial[1] += v[1]; virial[2] += v[2]; virial[3] += v[3]; virial[4] += v[4]; virial[5] += v[5]; } else { if (i1 < nlocal) { virial[0] += 0.25*v[0]; virial[1] += 0.25*v[1]; virial[2] += 0.25*v[2]; virial[3] += 0.25*v[3]; virial[4] += 0.25*v[4]; virial[5] += 0.25*v[5]; } if (i2 < nlocal) { virial[0] += 0.25*v[0]; virial[1] += 0.25*v[1]; virial[2] += 0.25*v[2]; virial[3] += 0.25*v[3]; virial[4] += 0.25*v[4]; virial[5] += 0.25*v[5]; } if (i3 < nlocal) { virial[0] += 0.25*v[0]; virial[1] += 0.25*v[1]; virial[2] += 0.25*v[2]; virial[3] += 0.25*v[3]; virial[4] += 0.25*v[4]; virial[5] += 0.25*v[5]; } if (i4 < nlocal) { virial[0] += 0.25*v[0]; virial[1] += 0.25*v[1]; virial[2] += 0.25*v[2]; virial[3] += 0.25*v[3]; virial[4] += 0.25*v[4]; virial[5] += 0.25*v[5]; } } } if (vflag_atom) { if (newton_bond || i1 < nlocal) { vatom[i1][0] += 0.25*v[0]; vatom[i1][1] += 0.25*v[1]; vatom[i1][2] += 0.25*v[2]; vatom[i1][3] += 0.25*v[3]; vatom[i1][4] += 0.25*v[4]; vatom[i1][5] += 0.25*v[5]; } if (newton_bond || i2 < nlocal) { vatom[i2][0] += 0.25*v[0]; vatom[i2][1] += 0.25*v[1]; vatom[i2][2] += 0.25*v[2]; vatom[i2][3] += 0.25*v[3]; vatom[i2][4] += 0.25*v[4]; vatom[i2][5] += 0.25*v[5]; } if (newton_bond || i3 < nlocal) { vatom[i3][0] += 0.25*v[0]; vatom[i3][1] += 0.25*v[1]; vatom[i3][2] += 0.25*v[2]; vatom[i3][3] += 0.25*v[3]; vatom[i3][4] += 0.25*v[4]; vatom[i3][5] += 0.25*v[5]; } if (newton_bond || i4 < nlocal) { vatom[i4][0] += 0.25*v[0]; vatom[i4][1] += 0.25*v[1]; vatom[i4][2] += 0.25*v[2]; vatom[i4][3] += 0.25*v[3]; vatom[i4][4] += 0.25*v[4]; vatom[i4][5] += 0.25*v[5]; } } } // per-atom centroid virial if (cvflag_atom) { // r0 = (r1+r2+r3+r4)/4 // rij = ri-rj // total virial = r10*f1 + r20*f2 + r30*f3 + r40*f4 // vb1: r12 // vb2: r32 // vb3: r43 if (newton_bond || i1 < nlocal) { double a1[3]; // a1 = r10 = (3*r12 - 2*r32 - r43)/4 a1[0] = 0.25*(3*vb1x - 2*vb2x - vb3x); a1[1] = 0.25*(3*vb1y - 2*vb2y - vb3y); a1[2] = 0.25*(3*vb1z - 2*vb2z - vb3z); cvatom[i1][0] += a1[0]*f1[0]; cvatom[i1][1] += a1[1]*f1[1]; cvatom[i1][2] += a1[2]*f1[2]; cvatom[i1][3] += a1[0]*f1[1]; cvatom[i1][4] += a1[0]*f1[2]; cvatom[i1][5] += a1[1]*f1[2]; cvatom[i1][6] += a1[1]*f1[0]; cvatom[i1][7] += a1[2]*f1[0]; cvatom[i1][8] += a1[2]*f1[1]; } if (newton_bond || i2 < nlocal) { double a2[3]; double f2[3]; // a2 = r20 = ( -r12 - 2*r32 - r43)/4 a2[0] = 0.25*(-vb1x - 2*vb2x - vb3x); a2[1] = 0.25*(-vb1y - 2*vb2y - vb3y); a2[2] = 0.25*(-vb1z - 2*vb2z - vb3z); f2[0] = - f1[0] - f3[0] - f4[0]; f2[1] = - f1[1] - f3[1] - f4[1]; f2[2] = - f1[2] - f3[2] - f4[2]; cvatom[i2][0] += a2[0]*f2[0]; cvatom[i2][1] += a2[1]*f2[1]; cvatom[i2][2] += a2[2]*f2[2]; cvatom[i2][3] += a2[0]*f2[1]; cvatom[i2][4] += a2[0]*f2[2]; cvatom[i2][5] += a2[1]*f2[2]; cvatom[i2][6] += a2[1]*f2[0]; cvatom[i2][7] += a2[2]*f2[0]; cvatom[i2][8] += a2[2]*f2[1]; } if (newton_bond || i3 < nlocal) { double a3[3]; // a3 = r30 = ( -r12 + 2*r32 - r43)/4 a3[0] = 0.25*(-vb1x + 2*vb2x - vb3x); a3[1] = 0.25*(-vb1y + 2*vb2y - vb3y); a3[2] = 0.25*(-vb1z + 2*vb2z - vb3z); cvatom[i3][0] += a3[0]*f3[0]; cvatom[i3][1] += a3[1]*f3[1]; cvatom[i3][2] += a3[2]*f3[2]; cvatom[i3][3] += a3[0]*f3[1]; cvatom[i3][4] += a3[0]*f3[2]; cvatom[i3][5] += a3[1]*f3[2]; cvatom[i3][6] += a3[1]*f3[0]; cvatom[i3][7] += a3[2]*f3[0]; cvatom[i3][8] += a3[2]*f3[1]; } if (newton_bond || i4 < nlocal) { double a4[3]; // a4 = r40 = ( -r12 + 2*r32 + 3*r43)/4 a4[0] = 0.25*(-vb1x + 2*vb2x + 3*vb3x); a4[1] = 0.25*(-vb1y + 2*vb2y + 3*vb3y); a4[2] = 0.25*(-vb1z + 2*vb2z + 3*vb3z); cvatom[i4][0] += a4[0]*f4[0]; cvatom[i4][1] += a4[1]*f4[1]; cvatom[i4][2] += a4[2]*f4[2]; cvatom[i4][3] += a4[0]*f4[1]; cvatom[i4][4] += a4[0]*f4[2]; cvatom[i4][5] += a4[1]*f4[2]; cvatom[i4][6] += a4[1]*f4[0]; cvatom[i4][7] += a4[2]*f4[0]; cvatom[i4][8] += a4[2]*f4[1]; } } } /* ---------------------------------------------------------------------- */ void Dihedral::problem(const char *filename, int lineno, int i1, int i2, int i3, int i4) { const auto x = atom->x; auto warn = fmt::format("Dihedral problem: {} {} {} {} {} {}\n", comm->me, update->ntimestep, atom->tag[i1], atom->tag[i2], atom->tag[i3], atom->tag[i4]); warn += fmt::format("WARNING: 1st atom: {} {:.8} {:.8} {:.8}\n", comm->me,x[i1][0],x[i1][1],x[i1][2]); warn += fmt::format("WARNING: 2nd atom: {} {:.8} {:.8} {:.8}\n", comm->me,x[i2][0],x[i2][1],x[i2][2]); warn += fmt::format("WARNING: 3rd atom: {} {:.8} {:.8} {:.8}\n", comm->me,x[i3][0],x[i3][1],x[i3][2]); warn += fmt::format("WARNING: 4th atom: {} {:.8} {:.8} {:.8}", comm->me,x[i4][0],x[i4][1],x[i4][2]); error->warning(filename, lineno, warn); } /* ---------------------------------------------------------------------- */ double Dihedral::memory_usage() { double bytes = (double)comm->nthreads*maxeatom * sizeof(double); bytes += (double)comm->nthreads*maxvatom*6 * sizeof(double); bytes += (double)comm->nthreads*maxcvatom*9 * sizeof(double); return bytes; }