/* ---------------------------------------------------------------------- This is the ██╗ ██╗ ██████╗ ██████╗ ██████╗ ██╗ ██╗████████╗███████╗ ██║ ██║██╔════╝ ██╔════╝ ██╔════╝ ██║ ██║╚══██╔══╝██╔════╝ ██║ ██║██║ ███╗██║ ███╗██║ ███╗███████║ ██║ ███████╗ ██║ ██║██║ ██║██║ ██║██║ ██║██╔══██║ ██║ ╚════██║ ███████╗██║╚██████╔╝╚██████╔╝╚██████╔╝██║ ██║ ██║ ███████║ ╚══════╝╚═╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚══════╝® DEM simulation engine, released by DCS Computing Gmbh, Linz, Austria http://www.dcs-computing.com, office@dcs-computing.com LIGGGHTS® is part of CFDEM®project: http://www.liggghts.com | http://www.cfdem.com Core developer and main author: Christoph Kloss, christoph.kloss@dcs-computing.com LIGGGHTS® is open-source, distributed under the terms of the GNU Public License, version 2 or later. It is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the GNU General Public License along with LIGGGHTS®. If not, see http://www.gnu.org/licenses . See also top-level README and LICENSE files. LIGGGHTS® and CFDEM® are registered trade marks of DCS Computing GmbH, the producer of the LIGGGHTS® software and the CFDEM®coupling software See http://www.cfdem.com/terms-trademark-policy for details. ------------------------------------------------------------------------- Contributing author and copyright for this file: This file is from LAMMPS, but has been modified. Copyright for modification: Copyright 2012- DCS Computing GmbH, Linz Copyright 2009-2012 JKU Linz Copyright of original file: LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator http://lammps.sandia.gov, Sandia National Laboratories Steve Plimpton, sjplimp@sandia.gov Copyright (2003) Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains certain rights in this software. This software is distributed under the GNU General Public License. ------------------------------------------------------------------------- */ #include #include #include #include "create_atoms.h" #include "atom.h" #include "atom_vec.h" #include "comm.h" #include "modify.h" #include "fix.h" #include "domain.h" #include "lattice.h" #include "region.h" #include "random_park.h" #include "error.h" #include "force.h" // include last to ensure correct macros #include "domain_definitions.h" using namespace LAMMPS_NS; #define EPSILON 1.0e-6 enum{BOX,REGION,SINGLE,RANDOM}; /* ---------------------------------------------------------------------- */ CreateAtoms::CreateAtoms(LAMMPS *lmp) : Pointers(lmp), seed_char(NULL) {} /* ---------------------------------------------------------------------- */ void CreateAtoms::command(int narg, char **arg) { if (domain->box_exist == 0) error->all(FLERR,"Create_atoms command before simulation box is defined"); if (modify->nfix_restart_peratom) error->all(FLERR,"Cannot create_atoms after " "reading restart file with per-atom info"); all_in = false; all_in_dist = 0.; // parse arguments if (narg < 2) error->all(FLERR,"Illegal create_atoms command"); itype = force->inumeric(FLERR,arg[0]); if (itype <= 0 || itype > atom->ntypes) error->all(FLERR,"Invalid atom type in create_atoms command"); int iarg = 0; if (strcmp(arg[1],"box") == 0) { style = BOX; iarg = 2; } else if (strcmp(arg[1],"region") == 0) { style = REGION; if (narg < 3) error->all(FLERR,"Illegal create_atoms command"); nregion = domain->find_region(arg[2]); if (nregion == -1) error->all(FLERR, "Create_atoms region ID does not exist"); domain->regions[nregion]->init(); iarg = 3;; } else if (strcmp(arg[1],"single") == 0) { style = SINGLE; if (narg < 5) error->all(FLERR,"Illegal create_atoms command"); xone[0] = force->numeric(FLERR,arg[2]); xone[1] = force->numeric(FLERR,arg[3]); xone[2] = force->numeric(FLERR,arg[4]); iarg = 5; } else if (strcmp(arg[1],"random") == 0) { style = RANDOM; if (narg < 5) error->all(FLERR,"Illegal create_atoms command"); nrandom = force->inumeric(FLERR,arg[2]); if (seed_char) delete [] seed_char; seed_char = new char [strlen(arg[3])+1]; strcpy(seed_char, arg[3]); if (strcmp(arg[4],"NULL") == 0) nregion = -1; else { nregion = domain->find_region(arg[4]); if (nregion == -1) error->all(FLERR, "Create_atoms region ID does not exist"); domain->regions[nregion]->init(); } iarg = 5; } else error->all(FLERR,"Illegal create_atoms command"); // process optional keywords int scaleflag = 0; remapflag = 0; nbasis = domain->lattice->nbasis; basistype = new int[nbasis]; for (int i = 0; i < nbasis; i++) basistype[i] = itype; while (iarg < narg) { if (strcmp(arg[iarg],"basis") == 0) { if (iarg+3 > narg) error->all(FLERR,"Illegal create_atoms command"); int ibasis = force->inumeric(FLERR,arg[iarg+1]); itype = force->inumeric(FLERR,arg[iarg+2]); if (ibasis <= 0 || ibasis > nbasis || itype <= 0 || itype > atom->ntypes) error->all(FLERR,"Invalid basis setting in create_atoms command"); basistype[ibasis-1] = itype; iarg += 3; } else if (strcmp(arg[iarg],"remap") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal create_atoms command"); if (strcmp(arg[iarg+1],"yes") == 0) remapflag = 1; else if (strcmp(arg[iarg+1],"no") == 0) remapflag = 0; else error->all(FLERR,"Illegal create_atoms command"); iarg += 2; } else if (strcmp(arg[iarg],"all_in") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal create_atoms command"); all_in_dist = force->numeric(FLERR,arg[iarg+1]); if(all_in_dist <= 0.) error->all(FLERR,"Illegal create_atoms command, 'all_in' > 0 required"); all_in = true; iarg += 2; } else if (strcmp(arg[iarg],"units") == 0) { if (iarg+2 > narg) error->all(FLERR,"Illegal create_atoms command"); if (strcmp(arg[iarg+1],"box") == 0) scaleflag = 0; else if (strcmp(arg[iarg+1],"lattice") == 0) scaleflag = 1; else error->all(FLERR,"Illegal create_atoms command"); iarg += 2; } else error->all(FLERR,"Illegal create_atoms command"); } // error checks if (style == RANDOM) { if (nrandom < 0) error->all(FLERR,"Illegal create_atoms command"); } if(all_in && ! (REGION==style)) error->all(FLERR,"Illegal create_atoms command, 'all_in' can only be used together with region"); // demand non-none lattice be defined for BOX and REGION // else setup scaling for SINGLE and RANDOM // could use domain->lattice->lattice2box() to do conversion of // lattice to box, but not consistent with other uses of units=lattice // triclinic remapping occurs in add_single() if (style == BOX || style == REGION) { if (nbasis == 0) error->all(FLERR,"Cannot create atoms with undefined lattice"); } else if (scaleflag == 1) { xone[0] *= domain->lattice->xlattice; xone[1] *= domain->lattice->ylattice; xone[2] *= domain->lattice->zlattice; } // set bounds for my proc in sublo[3] & subhi[3] // if periodic and style = BOX or REGION, i.e. using lattice: // should create exactly 1 atom when 2 images are both "on" the boundary // either image may be slightly inside/outside true box due to round-off // if I am lo proc, decrement lower bound by EPSILON // this will insure lo image is created // if I am hi proc, decrement upper bound by 2.0*EPSILON // this will insure hi image is not created // thus insertion box is EPSILON smaller than true box // and is shifted away from true boundary // which is where atoms are likely to be generated triclinic = domain->triclinic; double epsilon[3]; if (triclinic) epsilon[0] = epsilon[1] = epsilon[2] = EPSILON; else { epsilon[0] = domain->prd[0] * EPSILON; epsilon[1] = domain->prd[1] * EPSILON; epsilon[2] = domain->prd[2] * EPSILON; } if (triclinic == 0) { sublo[0] = domain->sublo[0]; subhi[0] = domain->subhi[0]; sublo[1] = domain->sublo[1]; subhi[1] = domain->subhi[1]; sublo[2] = domain->sublo[2]; subhi[2] = domain->subhi[2]; } else { sublo[0] = domain->sublo_lamda[0]; subhi[0] = domain->subhi_lamda[0]; sublo[1] = domain->sublo_lamda[1]; subhi[1] = domain->subhi_lamda[1]; sublo[2] = domain->sublo_lamda[2]; subhi[2] = domain->subhi_lamda[2]; } if (style == BOX || style == REGION) { if (domain->xperiodic) { if (comm->myloc[0] == 0) sublo[0] -= epsilon[0]; if (comm->myloc[0] == comm->procgrid[0]-1) subhi[0] -= 2.0*epsilon[0]; } if (domain->yperiodic) { if (comm->myloc[1] == 0) sublo[1] -= epsilon[1]; if (comm->myloc[1] == comm->procgrid[1]-1) subhi[1] -= 2.0*epsilon[1]; } if (domain->zperiodic) { if (comm->myloc[2] == 0) sublo[2] -= epsilon[2]; if (comm->myloc[2] == comm->procgrid[2]-1) subhi[2] -= 2.0*epsilon[2]; } } // add atoms in one of 3 ways bigint natoms_previous = atom->natoms; int nlocal_previous = atom->nlocal; if (style == SINGLE) add_single(); else if (style == RANDOM) add_random(); else add_lattice(); // invoke set_arrays() for fixes that need initialization of new atoms int nlocal = atom->nlocal; for (int m = 0; m < modify->nfix; m++) { Fix *fix = modify->fix[m]; if (fix->create_attribute) { fix->pre_set_arrays(); for (int i = nlocal_previous; i < nlocal; i++) fix->set_arrays(i); } } // clean up if (domain->lattice) delete [] basistype; // new total # of atoms bigint nblocal = atom->nlocal; MPI_Allreduce(&nblocal,&atom->natoms,1,MPI_LMP_BIGINT,MPI_SUM,world); if (atom->natoms < 0 || atom->natoms > MAXBIGINT) error->all(FLERR,"Too many total atoms"); // print status if (comm->me == 0) { if (screen) fprintf(screen,"Created " BIGINT_FORMAT " atoms\n", atom->natoms-natoms_previous); if (logfile) fprintf(logfile,"Created " BIGINT_FORMAT " atoms\n", atom->natoms-natoms_previous); } // reset simulation now that more atoms are defined // add tags for newly created atoms if possible // if global map exists, reset it // change these to MAXTAGINT when allow tagint = bigint if (atom->natoms > MAXSMALLINT) { if (comm->me == 0) error->warning(FLERR,"Total atom count exceeds ID limit, " "atoms will not have individual IDs"); atom->tag_enable = 0; } if (atom->natoms <= MAXSMALLINT) atom->tag_extend(); if (atom->map_style) { atom->nghost = 0; atom->map_init(); atom->map_set(); } // if a molecular system, set nspecial to 0 for new atoms // NOTE: 31May12, don't think this is needed, avec->create_atom() does it //if (atom->molecular) { // int **nspecial = atom->nspecial; // for (int i = nlocal_previous; i < atom->nlocal; i++) { // nspecial[i][0] = 0; // nspecial[i][1] = 0; // nspecial[i][2] = 0; // } //} // error checks on coarsegraining if(force->cg_active()) error->cg(FLERR,"create_atoms"); } /* ---------------------------------------------------------------------- add single atom with coords at xone if it's in my sub-box if triclinic, xone is in lamda coords ------------------------------------------------------------------------- */ void CreateAtoms::add_single() { // remap atom if requested if (remapflag) { tagint imagetmp = ((tagint) IMGMAX << IMG2BITS) | ((tagint) IMGMAX << IMGBITS) | IMGMAX; domain->remap(xone,imagetmp); } // if triclinic, convert to lamda coords (0-1) double lamda[3],*coord; if (triclinic) { domain->x2lamda(xone,lamda); coord = lamda; } else coord = xone; // if atom is in my subbox, create it if (coord[0] >= sublo[0] && coord[0] < subhi[0] && coord[1] >= sublo[1] && coord[1] < subhi[1] && coord[2] >= sublo[2] && coord[2] < subhi[2]) { atom->avec->create_atom(itype,xone); for (int j = 0; j < modify->nfix; j++) if (modify->fix[j]->create_attribute) { modify->fix[j]->pre_set_arrays(); modify->fix[j]->set_arrays(atom->nlocal-1); } } } /* ---------------------------------------------------------------------- add Nrandom atoms at random locations ------------------------------------------------------------------------- */ void CreateAtoms::add_random() { double xlo,ylo,zlo,xhi,yhi,zhi,zmid; double lamda[3],*coord; double *boxlo=NULL,*boxhi=NULL; // random number generator, same for all procs RanPark *random = new RanPark(lmp,seed_char); // bounding box for atom creation // in real units, even if triclinic // only limit bbox by region if its bboxflag is set (interior region) if (triclinic == 0) { xlo = domain->boxlo[0]; xhi = domain->boxhi[0]; ylo = domain->boxlo[1]; yhi = domain->boxhi[1]; zlo = domain->boxlo[2]; zhi = domain->boxhi[2]; zmid = zlo + 0.5*(zhi-zlo); } else { xlo = domain->boxlo_bound[0]; xhi = domain->boxhi_bound[0]; ylo = domain->boxlo_bound[1]; yhi = domain->boxhi_bound[1]; zlo = domain->boxlo_bound[2]; zhi = domain->boxhi_bound[2]; zmid = zlo + 0.5*(zhi-zlo); boxlo = domain->boxlo_lamda; boxhi = domain->boxhi_lamda; } if (nregion >= 0 && domain->regions[nregion]->bboxflag) { xlo = MAX(xlo,domain->regions[nregion]->extent_xlo); xhi = MIN(xhi,domain->regions[nregion]->extent_xhi); ylo = MAX(ylo,domain->regions[nregion]->extent_ylo); yhi = MIN(yhi,domain->regions[nregion]->extent_yhi); zlo = MAX(zlo,domain->regions[nregion]->extent_zlo); zhi = MIN(zhi,domain->regions[nregion]->extent_zhi); } // generate random positions for each new atom within bounding box // iterate until atom is within region and triclinic simulation box // if final atom position is in my subbox, create it if (xlo > xhi || ylo > yhi || zlo > zhi) error->all(FLERR,"No overlap of box and region for create_atoms"); int valid; for (int i = 0; i < nrandom; i++) { while (1) { xone[0] = xlo + random->uniform() * (xhi-xlo); xone[1] = ylo + random->uniform() * (yhi-ylo); xone[2] = zlo + random->uniform() * (zhi-zlo); if (domain->dimension == 2) xone[2] = zmid; valid = 1; if (nregion >= 0) { if(!all_in && domain->regions[nregion]->match(xone[0],xone[1],xone[2]) == 0) valid = 0; else if(all_in && domain->regions[nregion]->match_shrinkby_cut(xone,all_in_dist) == 0) valid = 0; } if (triclinic) { domain->x2lamda(xone,lamda); coord = lamda; if (coord[0] < boxlo[0] || coord[0] >= boxhi[0] || coord[1] < boxlo[1] || coord[1] >= boxhi[1] || coord[2] < boxlo[2] || coord[2] >= boxhi[2]) valid = 0; } else coord = xone; if (valid) break; } // if triclinic, coord is now in lamda units if (coord[0] >= sublo[0] && coord[0] < subhi[0] && coord[1] >= sublo[1] && coord[1] < subhi[1] && coord[2] >= sublo[2] && coord[2] < subhi[2]) { atom->avec->create_atom(itype,xone); for (int j = 0; j < modify->nfix; j++) if (modify->fix[j]->create_attribute) { modify->fix[j]->pre_set_arrays(); modify->fix[j]->set_arrays(atom->nlocal-1); } } } // clean-up delete random; } /* ---------------------------------------------------------------------- add many atoms by looping over lattice ------------------------------------------------------------------------- */ void CreateAtoms::add_lattice() { // convert 8 corners of my subdomain from box coords to lattice coords // for orthogonal, use corner pts of my subbox // for triclinic, use bounding box of my subbox // xyz min to max = bounding box around the domain corners in lattice space double bboxlo[3],bboxhi[3]; if (triclinic == 0) { bboxlo[0] = domain->sublo[0]; bboxhi[0] = domain->subhi[0]; bboxlo[1] = domain->sublo[1]; bboxhi[1] = domain->subhi[1]; bboxlo[2] = domain->sublo[2]; bboxhi[2] = domain->subhi[2]; } else domain->bbox(domain->sublo_lamda,domain->subhi_lamda,bboxlo,bboxhi); double xmin,ymin,zmin,xmax,ymax,zmax; xmin = ymin = zmin = BIG; xmax = ymax = zmax = -BIG; domain->lattice->bbox(1,bboxlo[0],bboxlo[1],bboxlo[2], xmin,ymin,zmin,xmax,ymax,zmax); domain->lattice->bbox(1,bboxhi[0],bboxlo[1],bboxlo[2], xmin,ymin,zmin,xmax,ymax,zmax); domain->lattice->bbox(1,bboxlo[0],bboxhi[1],bboxlo[2], xmin,ymin,zmin,xmax,ymax,zmax); domain->lattice->bbox(1,bboxhi[0],bboxhi[1],bboxlo[2], xmin,ymin,zmin,xmax,ymax,zmax); domain->lattice->bbox(1,bboxlo[0],bboxlo[1],bboxhi[2], xmin,ymin,zmin,xmax,ymax,zmax); domain->lattice->bbox(1,bboxhi[0],bboxlo[1],bboxhi[2], xmin,ymin,zmin,xmax,ymax,zmax); domain->lattice->bbox(1,bboxlo[0],bboxhi[1],bboxhi[2], xmin,ymin,zmin,xmax,ymax,zmax); domain->lattice->bbox(1,bboxhi[0],bboxhi[1],bboxhi[2], xmin,ymin,zmin,xmax,ymax,zmax); // ilo:ihi,jlo:jhi,klo:khi = loop bounds for lattice overlap of my subbox // overlap = any part of a unit cell (face,edge,pt) in common with my subbox // in lattice space, subbox is a tilted box // but bbox of subbox is aligned with lattice axes // so ilo:khi unit cells should completely tile bounding box // decrement lo, increment hi to avoid round-off issues in lattice->bbox(), // which can lead to missing atoms in rare cases // extra decrement of lo if min < 0, since static_cast(-1.5) = -1 int ilo,ihi,jlo,jhi,klo,khi; ilo = static_cast (xmin) - 1; jlo = static_cast (ymin) - 1; klo = static_cast (zmin) - 1; ihi = static_cast (xmax) + 1; jhi = static_cast (ymax) + 1; khi = static_cast (zmax) + 1; if (xmin < 0.0) ilo--; if (ymin < 0.0) jlo--; if (zmin < 0.0) klo--; // iterate on 3d periodic lattice of unit cells using loop bounds // iterate on nbasis atoms in each unit cell // convert lattice coords to box coords // add atom if it meets all criteria double **basis = domain->lattice->basis; double x[3],lamda[3]; double *coord; int i,j,k,m; for (k = klo; k <= khi; k++) for (j = jlo; j <= jhi; j++) for (i = ilo; i <= ihi; i++) for (m = 0; m < nbasis; m++) { x[0] = i + basis[m][0]; x[1] = j + basis[m][1]; x[2] = k + basis[m][2]; // convert from lattice coords to box coords domain->lattice->lattice2box(x[0],x[1],x[2]); // if a region was specified, test if atom is in it if (style == REGION) { if (!all_in && !domain->regions[nregion]->match(x[0],x[1],x[2])) continue; if (all_in && !domain->regions[nregion]->match_shrinkby_cut(x,all_in_dist)) continue; } // test if atom is in my subbox if (triclinic) { domain->x2lamda(x,lamda); coord = lamda; } else coord = x; if (coord[0] < sublo[0] || coord[0] >= subhi[0] || coord[1] < sublo[1] || coord[1] >= subhi[1] || coord[2] < sublo[2] || coord[2] >= subhi[2]) continue; // add the atom to my list of atoms atom->avec->create_atom(basistype[m],x); for (int k = 0; k < modify->nfix; k++) if (modify->fix[k]->create_attribute) { modify->fix[k]->pre_set_arrays(); modify->fix[k]->set_arrays(atom->nlocal-1); } } }