// // init2e.cc // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Curtis Janssen // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #include #include #include #include #include #include #include #include using namespace std; using namespace sc; static void fail() { ExEnv::errn() << scprintf("failing module:\n%s",__FILE__) << endl; abort(); } /* Initialize the 2e integral computation routines. * storage = the amount of storage available in bytes * order = order of derivative, must be zero or one * cs1 = center structure for center 1 * cs2 = center structure for center 2 * cs3 = center structure for center 3 * cs4 = center structure for center 4 * The integrals which will be computed are (cs1 cs2|cs3 cs4). * This function returns the pointer to the buffer where the * integrals are stored. */ double * Int2eV3::int_initialize_erep(size_t storage, int order, const Ref &cs1, const Ref &cs2, const Ref &cs3, const Ref &cs4) { int nc1,nc2,nc3,nc4; int jmax,jmax1,jmax2,jmax3,jmax4; redundant_ = 1; permute_ = 0; int_unit_shell = 0; /* Reset the integral storage variables. */ int_integral_storage = 0; used_storage_ = 0; /* Turn off exponent weighted contractions. */ int_expweight1 = 0; int_expweight2 = 0; int_expweight3 = 0; int_expweight4 = 0; /* See if the order of derivative needed is allowed. */ if (order > 1) { ExEnv::errn() << scprintf("int_initialize_erep cannot handle order>1, yet\n"); } if (order > 0) { int_derivative_bounds = 1; } else { int_derivative_bounds = 0; } /* Put the center pointers into the global centers pointers. */ int_cs1 = cs1; int_cs2 = cs2; int_cs3 = cs3; int_cs4 = cs4; /* Find the max angular momentum on each center. */ jmax1 = cs1->max_angular_momentum(); if (!int_unit2) jmax2 = cs2->max_angular_momentum(); else jmax2 = 0; jmax3 = cs3->max_angular_momentum(); if (!int_unit4) jmax4 = cs4->max_angular_momentum(); else jmax4 = 0; /* Find the maximum number of contractions in a shell on each center. */ nc1 = cs1->max_ncontraction(); if (!int_unit2) nc2 = cs2->max_ncontraction(); else nc2 = 1; nc3 = cs3->max_ncontraction(); if (!int_unit4) nc4 = cs4->max_ncontraction(); else nc4 = 1; /* Initialize the Fj(T) routine. */ jmax = jmax1+jmax2+jmax3+jmax4; if (int_derivative_bounds) { fjt_ = new FJT(jmax + 2*order); /* The 2 is for bounds checking */ } else { fjt_ = new FJT(jmax + order); } /* Initialize the build and shift routines. */ int_init_buildgc(order,jmax1,jmax2,jmax3,jmax4,nc1,nc2,nc3,nc4); int_init_shiftgc(order,jmax1,jmax2,jmax3,jmax4); /* Allocate storage for the integral buffer. */ int maxsize = cs1->max_ncartesian_in_shell() *(int_unit2?1:cs2->max_ncartesian_in_shell()) *cs3->max_ncartesian_in_shell() *(int_unit4?1:cs4->max_ncartesian_in_shell()); if (order==0) { int_buffer = (double *) malloc(sizeof(double) * maxsize); int_derint_buffer = 0; } else if (order==1) { int nderint; nderint = cs1->max_ncartesian_in_shell(1) *(int_unit2?1:cs2->max_ncartesian_in_shell(1)) *cs3->max_ncartesian_in_shell(1) *(int_unit4?1:cs4->max_ncartesian_in_shell(1)); /* Allocate the integral buffers. */ int_buffer = (double *) malloc(sizeof(double) * 9*maxsize); int_derint_buffer = (double *) malloc(sizeof(double) * nderint); if (!int_derint_buffer) { ExEnv::errn() << scprintf("couldn't malloc intermed storage for derivative ints\n"); fail(); } } if (!int_buffer) { ExEnv::errn() << scprintf("couldn't allocate integrals\n"); fail(); } /* See if the intermediates are to be computed and set global variables * accordingly. */ // this size estimate is only accurate if all centers are the same int size_inter_1 = cs1->nshell() * (sizeof(double*)+sizeof(int)); if (storage - used_storage_ >= size_inter_1) { int_store1 = 1; used_storage_ += size_inter_1; } else { ExEnv::out0() << indent << "Int2eV3: not storing O(N) intemediates due to lack of memory" << endl; int_store1 = 0; } // this size estimate is only accurate if all centers are the same int size_inter_2 = cs1->nprimitive() * cs1->nprimitive() * (7*sizeof(double)); if (storage - used_storage_ >= size_inter_2) { int_store2 = 1; used_storage_ += size_inter_2; } else { ExEnv::out0() << indent << "Int2eV3: not storing O(N^2) intermediates due to lack of memory" << endl; int_store2 = 0; } if (used_storage_ > storage || !int_store1 || !int_store2) { ExEnv::out0() << indent << "Int2eV3: wanted more storage than given" << endl << indent << " given storage = " << storage << endl << indent << " build storage = " << used_storage_build_ << endl << indent << " shift storage = " << used_storage_shift_ << endl << indent << " used storage = " << used_storage_ << endl << indent << " O(N) storage = " << size_inter_1 << (int_store1?"":" (not used)") << endl << indent << " O(N^2) storage = " << size_inter_2 << (int_store2?"":" (not used)") << endl << endl; } int prim_inter_size = bs1_prim_offset_ + cs1->nprimitive(); int shell_inter_size = bs1_shell_offset_ + cs1->nshell(); if (bs2_prim_offset_ + (int_unit2?1:cs2->nprimitive()) > prim_inter_size) { prim_inter_size = bs2_prim_offset_ + (int_unit2?1:cs2->nprimitive()); shell_inter_size = bs2_shell_offset_ + (int_unit2?1:cs2->nshell()); } if (bs3_prim_offset_ + cs3->nprimitive() > prim_inter_size) { prim_inter_size = bs3_prim_offset_ + cs3->nprimitive(); shell_inter_size = bs3_shell_offset_ + cs3->nshell(); } if (bs4_prim_offset_ + (int_unit4?1:cs4->nprimitive()) > prim_inter_size) { prim_inter_size = bs4_prim_offset_ + (int_unit4?1:cs4->nprimitive()); shell_inter_size = bs4_shell_offset_ + (int_unit4?1:cs4->nshell()); } /* Allocate storage for the intermediates. */ alloc_inter(prim_inter_size, shell_inter_size); /* Set up the one shell intermediates, block by block. */ if (int_store1) { compute_shell_1(cs1, bs1_shell_offset_, bs1_prim_offset_); if (cs2.operator!=(cs1)) compute_shell_1(cs2, bs2_shell_offset_, bs2_prim_offset_); if (cs3.operator!=(cs2) && cs3.operator!=(cs1)) compute_shell_1(cs3, bs3_shell_offset_, bs3_prim_offset_); if (cs4.operator!=(cs3) && cs4.operator!=(cs2)&& cs4.operator!=(cs1)) compute_shell_1(cs4, bs4_shell_offset_, bs4_prim_offset_); } /* Compute the two shell intermediates, block by block. */ if (int_store2) { /* Compute the two primitive intermediates, block by block. */ // Some unnecessary pairs of intermediates are avoided, but // some unnecessary pairs are still being computed. compute_prim_2(cs1,bs1_shell_offset_,bs1_prim_offset_, cs1,bs1_shell_offset_,bs1_prim_offset_); if (cs2.operator!=(cs1)) { compute_prim_2(cs1,bs1_shell_offset_,bs1_prim_offset_, cs2,bs2_shell_offset_,bs2_prim_offset_); compute_prim_2(cs2,bs2_shell_offset_,bs2_prim_offset_, cs1,bs1_shell_offset_,bs1_prim_offset_); // cs2 cs2 terms are not needed since cs1 != cs2 //compute_prim_2(cs2,bs2_shell_offset_,bs2_prim_offset_, // cs2,bs2_shell_offset_,bs2_prim_offset_); } if (cs3.operator!=(cs2) && cs3.operator!=(cs1)) { compute_prim_2(cs1,bs1_shell_offset_,bs1_prim_offset_, cs3,bs3_shell_offset_,bs3_prim_offset_); compute_prim_2(cs3,bs3_shell_offset_,bs3_prim_offset_, cs1,bs1_shell_offset_,bs1_prim_offset_); compute_prim_2(cs2,bs2_shell_offset_,bs2_prim_offset_, cs3,bs3_shell_offset_,bs3_prim_offset_); compute_prim_2(cs3,bs3_shell_offset_,bs3_prim_offset_, cs2,bs2_shell_offset_,bs2_prim_offset_); compute_prim_2(cs3,bs3_shell_offset_,bs3_prim_offset_, cs3,bs3_shell_offset_,bs3_prim_offset_); } if (cs4.operator!=(cs3) && cs4.operator!=(cs2) && cs4.operator!=(cs1)) { compute_prim_2(cs1,bs1_shell_offset_,bs1_prim_offset_, cs4,bs4_shell_offset_,bs4_prim_offset_); compute_prim_2(cs4,bs4_shell_offset_,bs4_prim_offset_, cs1,bs1_shell_offset_,bs1_prim_offset_); compute_prim_2(cs2,bs2_shell_offset_,bs2_prim_offset_, cs4,bs4_shell_offset_,bs4_prim_offset_); compute_prim_2(cs4,bs4_shell_offset_,bs4_prim_offset_, cs2,bs2_shell_offset_,bs2_prim_offset_); compute_prim_2(cs3,bs3_shell_offset_,bs3_prim_offset_, cs4,bs4_shell_offset_,bs4_prim_offset_); compute_prim_2(cs4,bs4_shell_offset_,bs4_prim_offset_, cs3,bs3_shell_offset_,bs3_prim_offset_); // cs4 cs4 terms are never needed since cs4 != cs3 //compute_prim_2(cs4,bs4_shell_offset_,bs_prim_offset_, // cs4,bs4_shell_offset_,bs_prim_offset_); } } return int_buffer; } /* This is called when no more 2 electron integrals are needed. * It will free the intermediates. */ void Int2eV3::int_done_erep() { if (int_unit_shell) delete_int_unit_shell(); if (int_derint_buffer) free(int_derint_buffer); free(int_buffer); if (int_store1) { delete[] int_shell_to_prim; } int_done_buildgc(); int_done_shiftgc(); } /* Allocates storage for the intermediates. The arguments are the * total number of unique primitive and shells. */ void Int2eV3::alloc_inter(int nprim,int nshell) { if (int_store1) { int_shell_r.set_dim(nshell,3); int_shell_to_prim = new int[nshell]; if (int_shell_to_prim == 0) { ExEnv::errn() << "problem allocating O(n) integral intermediates for"; ExEnv::errn() << scprintf(" %d shells and %d primitives",nshell,nprim); ExEnv::errn() << endl; fail(); } } if (int_store2) { int_prim_zeta.set_dim(nprim,nprim); int_prim_oo2zeta.set_dim(nprim,nprim); int_prim_k.set_dim(nprim,nprim); int_prim_p.set_dim(nprim,nprim,3); } } void Int2eV3::compute_shell_1(Ref cs, int shell_offset, int prim_offset) { if (cs.null()) { for (int i=0; i<3; i++) { int_shell_r(shell_offset,i) = 0.0; } int_shell_to_prim[shell_offset] = prim_offset; return; } int i,j; int offset; int iprim; offset = shell_offset; iprim = prim_offset; for (i=0; incenter(); i++) { for (j=0; jnshell_on_center(i); j++) { /* The offset shell geometry vectors. */ for (int xyz=0; xyz<3; xyz++) { int_shell_r(offset,xyz) = cs->molecule()->r(i,xyz); } /* The number of the first offset primitive in a offset shell. */ int_shell_to_prim[offset] = iprim; offset++; iprim += cs->shell(i,j).nprimitive(); } } } /* The 2 primitive intermediates. */ void Int2eV3::compute_prim_2(Ref cs1, int shell_offset1, int prim_offset1, Ref cs2, int shell_offset2, int prim_offset2) { int offset1, offset2; int i1,j1,k1,i2,j2,k2; GaussianShell *shell1,*shell2; int i; /* This is 2^(1/2) * pi^(5/4) */ const double sqrt2pi54 = 5.9149671727956129; double AmB,AmB2; if (cs2.null() && !int_unit_shell) make_int_unit_shell(); offset1 = prim_offset1; int cs1_ncenter = (cs1.null()?1:cs1->ncenter()); for (i1=0; i1nshell_on_center(i1)); for (j1=0; j1shell(i1,j1); else shell1 = int_unit_shell; for (k1=0; k1nprimitive(); k1++) { offset2 = prim_offset2; int cs2_ncenter = (cs2.null()?1:cs2->ncenter()); for (i2=0; i2nshell_on_center(i2)); for (j2=0; j2shell(i2,j2); else shell2 = int_unit_shell; for (k2=0; k2nprimitive(); k2++) { /* The zeta = alpha + beta intermediate. */ int_prim_zeta(offset1,offset2) = shell1->exponent(k1) + shell2->exponent(k2); /* The 1/(2 zeta) intermediate times 2.0. */ int_prim_oo2zeta(offset1,offset2) = 1.0/int_prim_zeta(offset1,offset2); /* The p = (alpha A + beta B) / zeta */ for (i=0; i<3; i++) { int_prim_p(offset1,offset2,i) = ( shell1->exponent(k1) * (cs1.null()?0.0 :cs1->molecule()->r(i1,i)) + shell2->exponent(k2) * (cs2.null()?0.0 :cs2->molecule()->r(i2,i))) * int_prim_oo2zeta(offset1,offset2); } /* Compute AmB^2 */ AmB2 = 0.0; for (i=0; i<3; i++) { AmB = (cs2.null()?0.0:cs2->molecule()->r(i2,i)) - (cs1.null()?0.0:cs1->molecule()->r(i1,i)); AmB2 += AmB*AmB; } /* Compute the K intermediate. */ int_prim_k(offset1,offset2) = sqrt2pi54 * int_prim_oo2zeta(offset1,offset2) * exp( - shell1->exponent(k1) * shell2->exponent(k2) * int_prim_oo2zeta(offset1,offset2) * AmB2 ); /* Finish the 1/(2 zeta) intermediate. */ int_prim_oo2zeta(offset1,offset2) = 0.5 * int_prim_oo2zeta(offset1,offset2); offset2++; } } } offset1++; } } } } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "CLJ-CONDENSED" // End: