"""Example of explicit fixed effects fMRI model fitting ==================================================== This example illustrates how to run a fixed effects model based on pre-computed statistics. This is helpful when the initial models have to be fit separately. For details on the data, please see: Dehaene-Lambertz G, Dehaene S, Anton JL, Campagne A, Ciuciu P, Dehaene G, Denghien I, Jobert A, LeBihan D, Sigman M, Pallier C, Poline JB. Functional segregation of cortical language areas by sentence repetition. Hum Brain Mapp. 2006: 27:360--371. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2653076#R11 Please see `Simple example of two-session :term:`fMRI` model fitting `_ example for details. The main difference is that the fixed-effects model is run explicitly here, after GLM fitting on two sessions. """ ######################################################################### # Prepare data and analysis parameters # -------------------------------------- # # Inspecting 'data', we note that there are two sessions from nilearn.datasets import func data = func.fetch_fiac_first_level() fmri_img = [data['func1'], data['func2']] ######################################################################### # Create a mean image for plotting purpose from nilearn.image import mean_img mean_img_ = mean_img(fmri_img[0]) ######################################################################### # The design matrices were pre-computed, we simply put them in a list of # DataFrames design_files = [data['design_matrix1'], data['design_matrix2']] import pandas as pd import numpy as np design_matrices = [pd.DataFrame(np.load(df)['X']) for df in design_files] ######################################################################### # GLM estimation # ---------------------------------- # GLM specification. Note that the mask was provided in the dataset. # So we use it. from nilearn.glm.first_level import FirstLevelModel fmri_glm = FirstLevelModel(mask_img=data['mask'], smoothing_fwhm=5, minimize_memory=True) ######################################################################### # Compute fixed effects of the two runs and compute related images # For this, we first define the contrasts as we would do for a single session n_columns = design_matrices[0].shape[1] contrast_val = np.hstack(([-1, -1, 1, 1], np.zeros(n_columns - 4))) ######################################################################### # Statistics for the first session from nilearn import plotting cut_coords = [-129, -126, 49] contrast_id = 'DSt_minus_SSt' fmri_glm = fmri_glm.fit(fmri_img[0], design_matrices=design_matrices[0]) summary_statistics_session1 = fmri_glm.compute_contrast( contrast_val, output_type='all') plotting.plot_stat_map( summary_statistics_session1['z_score'], bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords, title='{0}, first session'.format(contrast_id)) ######################################################################### # Statistics for the second session fmri_glm = fmri_glm.fit(fmri_img[1], design_matrices=design_matrices[1]) summary_statistics_session2 = fmri_glm.compute_contrast( contrast_val, output_type='all') plotting.plot_stat_map( summary_statistics_session2['z_score'], bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords, title='{0}, second session'.format(contrast_id)) ######################################################################### # Fixed effects statistics from nilearn.glm.contrasts import compute_fixed_effects contrast_imgs = [summary_statistics_session1['effect_size'], summary_statistics_session2['effect_size']] variance_imgs = [summary_statistics_session1['effect_variance'], summary_statistics_session2['effect_variance']] fixed_fx_contrast, fixed_fx_variance, fixed_fx_stat = compute_fixed_effects( contrast_imgs, variance_imgs, data['mask']) plotting.plot_stat_map( fixed_fx_stat, bg_img=mean_img_, threshold=3.0, cut_coords=cut_coords, title='{0}, fixed effects'.format(contrast_id)) ######################################################################### # Not unexpectedly, the fixed effects version displays higher peaks than the # input sessions. Computing fixed effects enhances the signal-to-noise ratio of # the resulting brain maps # Note however that, technically, the output maps of the fixed effects map is a # t statistic (not a z statistic) plotting.show()