/** * @file ed448goldilocks/decaf.c * @author Mike Hamburg * * @copyright * Copyright (c) 2015-2016 Cryptography Research, Inc. \n * Released under the MIT License. See LICENSE.txt for license information. * * @brief Decaf high-level functions. * * @warning This file was automatically generated in Python. * Please do not edit it. */ #define _XOPEN_SOURCE 600 /* for posix_memalign */ #include "word.h" #include "field.h" #include #include /* MSVC has no builtint ctz, this is a fix as in https://stackoverflow.com/questions/355967/how-to-use-msvc-intrinsics-to-get-the-equivalent-of-this-gcc-code/5468852#5468852 */ #ifdef _MSC_VER #include uint32_t __inline ctz(uint32_t value) { DWORD trailing_zero = 0; if ( _BitScanForward( &trailing_zero, value ) ) return trailing_zero; else return 32; // This is undefined, I better choose 32 than 0 } #define __builtin_ctz(x) ctz(x) #endif /* Template stuff */ #define API_NS(_id) decaf_448_##_id #define SCALAR_BITS DECAF_448_SCALAR_BITS #define SCALAR_SER_BYTES DECAF_448_SCALAR_BYTES #define SCALAR_LIMBS DECAF_448_SCALAR_LIMBS #define scalar_t API_NS(scalar_t) #define point_t API_NS(point_t) #define precomputed_s API_NS(precomputed_s) #define IMAGINE_TWIST 0 #define COFACTOR 4 /* Comb config: number of combs, n, t, s. */ #define COMBS_N 5 #define COMBS_T 5 #define COMBS_S 18 #define DECAF_WINDOW_BITS 5 #define DECAF_WNAF_FIXED_TABLE_BITS 5 #define DECAF_WNAF_VAR_TABLE_BITS 3 #define EDDSA_USE_SIGMA_ISOGENY 0 static const int EDWARDS_D = -39081; static const scalar_t point_scalarmul_adjustment = {{{ SC_LIMB(0xc873d6d54a7bb0cf), SC_LIMB(0xe933d8d723a70aad), SC_LIMB(0xbb124b65129c96fd), SC_LIMB(0x00000008335dc163) }}}, precomputed_scalarmul_adjustment = {{{ SC_LIMB(0xc873d6d54a7bb0cf), SC_LIMB(0xe933d8d723a70aad), SC_LIMB(0xbb124b65129c96fd), SC_LIMB(0x00000008335dc163) }}}; const uint8_t decaf_x448_base_point[DECAF_X448_PUBLIC_BYTES] = { 0x05 }; #define RISTRETTO_FACTOR DECAF_448_RISTRETTO_FACTOR const gf RISTRETTO_FACTOR = {FIELD_LITERAL( 0x42ef0f45572736, 0x7bf6aa20ce5296, 0xf4fd6eded26033, 0x968c14ba839a66, 0xb8d54b64a2d780, 0x6aa0a1f1a7b8a5, 0x683bf68d722fa2, 0x22d962fbeb24f7 )}; #if IMAGINE_TWIST #define TWISTED_D (-(EDWARDS_D)) #else #define TWISTED_D ((EDWARDS_D)-1) #endif #if TWISTED_D < 0 #define EFF_D (-(TWISTED_D)) #define NEG_D 1 #else #define EFF_D TWISTED_D #define NEG_D 0 #endif /* End of template stuff */ /* Sanity */ #if (COFACTOR == 8) && !IMAGINE_TWIST && !UNSAFE_CURVE_HAS_POINTS_AT_INFINITY /* FUTURE MAGIC: Curve41417 doesn't have these properties. */ #error "Currently require IMAGINE_TWIST (and thus p=5 mod 8) for cofactor 8" /* OK, but why? * Two reasons: #1: There are bugs when COFACTOR == && IMAGINE_TWIST # #2: */ #endif #if IMAGINE_TWIST && (P_MOD_8 != 5) #error "Cannot use IMAGINE_TWIST except for p == 5 mod 8" #endif #if (COFACTOR != 8) && (COFACTOR != 4) #error "COFACTOR must be 4 or 8" #endif #if IMAGINE_TWIST extern const gf SQRT_MINUS_ONE; #endif #define WBITS DECAF_WORD_BITS /* NB this may be different from ARCH_WORD_BITS */ extern const point_t API_NS(point_base); /* Projective Niels coordinates */ typedef struct { gf a, b, c; } niels_s, niels_t[1]; typedef struct { niels_t n; gf z; } VECTOR_ALIGNED pniels_s, pniels_t[1]; /* Precomputed base */ struct precomputed_s { niels_t table [COMBS_N<<(COMBS_T-1)]; }; extern const gf API_NS(precomputed_base_as_fe)[]; const precomputed_s *API_NS(precomputed_base) = (const precomputed_s *) &API_NS(precomputed_base_as_fe); const size_t API_NS(sizeof_precomputed_s) = sizeof(precomputed_s); const size_t API_NS(alignof_precomputed_s) = sizeof(big_register_t); /** Inverse. */ static void gf_invert(gf y, const gf x, int assert_nonzero) { gf t1, t2; gf_sqr(t1, x); // o^2 mask_t ret = gf_isr(t2, t1); // +-1/sqrt(o^2) = +-1/o (void)ret; if (assert_nonzero) assert(ret); gf_sqr(t1, t2); gf_mul(t2, t1, x); // not direct to y in case of alias. gf_copy(y, t2); } /** identity = (0,1) */ const point_t API_NS(point_identity) = {{{{{0}}},{{{1}}},{{{1}}},{{{0}}}}}; /* Predeclare because not static: called by elligator */ void API_NS(deisogenize) ( gf_s *__restrict__ s, gf_s *__restrict__ inv_el_sum, gf_s *__restrict__ inv_el_m1, const point_t p, mask_t toggle_s, mask_t toggle_altx, mask_t toggle_rotation ); void API_NS(deisogenize) ( gf_s *__restrict__ s, gf_s *__restrict__ inv_el_sum, gf_s *__restrict__ inv_el_m1, const point_t p, mask_t toggle_s, mask_t toggle_altx, mask_t toggle_rotation ) { #if COFACTOR == 4 && !IMAGINE_TWIST (void)toggle_rotation; /* Only applies to cofactor 8 */ gf t1; gf_s *t2 = s, *t3=inv_el_sum, *t4=inv_el_m1; gf_add(t1,p->x,p->t); gf_sub(t2,p->x,p->t); gf_mul(t3,t1,t2); /* t3 = num */ gf_sqr(t2,p->x); gf_mul(t1,t2,t3); gf_mulw(t2,t1,-1-TWISTED_D); /* -x^2 * (a-d) * num */ gf_isr(t1,t2); /* t1 = isr */ gf_mul(t2,t1,t3); /* t2 = ratio */ gf_mul(t4,t2,RISTRETTO_FACTOR); mask_t negx = gf_lobit(t4) ^ toggle_altx; gf_cond_neg(t2, negx); gf_mul(t3,t2,p->z); gf_sub(t3,t3,p->t); gf_mul(t2,t3,p->x); gf_mulw(t4,t2,-1-TWISTED_D); gf_mul(s,t4,t1); mask_t lobs = gf_lobit(s); gf_cond_neg(s,lobs); gf_copy(inv_el_m1,p->x); gf_cond_neg(inv_el_m1,~lobs^negx^toggle_s); gf_add(inv_el_m1,inv_el_m1,p->t); #elif COFACTOR == 8 && IMAGINE_TWIST /* More complicated because of rotation */ gf t1,t2,t3,t4,t5; gf_add(t1,p->z,p->y); gf_sub(t2,p->z,p->y); gf_mul(t3,t1,t2); /* t3 = num */ gf_mul(t2,p->x,p->y); /* t2 = den */ gf_sqr(t1,t2); gf_mul(t4,t1,t3); gf_mulw(t1,t4,-1-TWISTED_D); gf_isr(t4,t1); /* isqrt(num*(a-d)*den^2) */ gf_mul(t1,t2,t4); gf_mul(t2,t1,RISTRETTO_FACTOR); /* t2 = "iden" in ristretto.sage */ gf_mul(t1,t3,t4); /* t1 = "inum" in ristretto.sage */ /* Calculate altxy = iden*inum*i*t^2*(d-a) */ gf_mul(t3,t1,t2); gf_mul_i(t4,t3); gf_mul(t3,t4,p->t); gf_mul(t4,t3,p->t); gf_mulw(t3,t4,TWISTED_D+1); /* iden*inum*i*t^2*(d-1) */ mask_t rotate = toggle_rotation ^ gf_lobit(t3); /* Rotate if altxy is negative */ gf_cond_swap(t1,t2,rotate); gf_mul_i(t4,p->x); gf_cond_sel(t4,p->y,t4,rotate); /* t4 = "fac" = ix if rotate, else y */ gf_mul_i(t5,RISTRETTO_FACTOR); /* t5 = imi */ gf_mul(t3,t5,t2); /* iden * imi */ gf_mul(t2,t5,t1); gf_mul(t5,t2,p->t); /* "altx" = iden*imi*t */ mask_t negx = gf_lobit(t5) ^ toggle_altx; gf_cond_neg(t1,negx^rotate); gf_mul(t2,t1,p->z); gf_add(t2,t2,ONE); gf_mul(inv_el_sum,t2,t4); gf_mul(s,inv_el_sum,t3); mask_t negs = gf_lobit(s); gf_cond_neg(s,negs); mask_t negz = ~negs ^ toggle_s ^ negx; gf_copy(inv_el_m1,p->z); gf_cond_neg(inv_el_m1,negz); gf_sub(inv_el_m1,inv_el_m1,t4); #else #error "Cofactor must be 4 (with no IMAGINE_TWIST) or 8 (with IMAGINE_TWIST)" #endif } void API_NS(point_encode)( unsigned char ser[SER_BYTES], const point_t p ) { gf s,ie1,ie2; API_NS(deisogenize)(s,ie1,ie2,p,0,0,0); gf_serialize(ser,s,1); } decaf_error_t API_NS(point_decode) ( point_t p, const unsigned char ser[SER_BYTES], decaf_bool_t allow_identity ) { gf s, s2, num, tmp; gf_s *tmp2=s2, *ynum=p->z, *isr=p->x, *den=p->t; mask_t succ = gf_deserialize(s, ser, 1, 0); succ &= bool_to_mask(allow_identity) | ~gf_eq(s, ZERO); succ &= ~gf_lobit(s); gf_sqr(s2,s); /* s^2 = -as^2 */ #if IMAGINE_TWIST gf_sub(s2,ZERO,s2); /* -as^2 */ #endif gf_sub(den,ONE,s2); /* 1+as^2 */ gf_add(ynum,ONE,s2); /* 1-as^2 */ gf_mulw(num,s2,-4*TWISTED_D); gf_sqr(tmp,den); /* tmp = den^2 */ gf_add(num,tmp,num); /* num = den^2 - 4*d*s^2 */ gf_mul(tmp2,num,tmp); /* tmp2 = num*den^2 */ succ &= gf_isr(isr,tmp2); /* isr = 1/sqrt(num*den^2) */ gf_mul(tmp,isr,den); /* isr*den */ gf_mul(p->y,tmp,ynum); /* isr*den*(1-as^2) */ gf_mul(tmp2,tmp,s); /* s*isr*den */ gf_add(tmp2,tmp2,tmp2); /* 2*s*isr*den */ gf_mul(tmp,tmp2,isr); /* 2*s*isr^2*den */ gf_mul(p->x,tmp,num); /* 2*s*isr^2*den*num */ gf_mul(tmp,tmp2,RISTRETTO_FACTOR); /* 2*s*isr*den*magic */ gf_cond_neg(p->x,gf_lobit(tmp)); /* flip x */ #if COFACTOR==8 /* Additionally check y != 0 and x*y*isomagic nonegative */ succ &= ~gf_eq(p->y,ZERO); gf_mul(tmp,p->x,p->y); gf_mul(tmp2,tmp,RISTRETTO_FACTOR); succ &= ~gf_lobit(tmp2); #endif #if IMAGINE_TWIST gf_copy(tmp,p->x); gf_mul_i(p->x,tmp); #endif /* Fill in z and t */ gf_copy(p->z,ONE); gf_mul(p->t,p->x,p->y); assert(API_NS(point_valid)(p) | ~succ); return decaf_succeed_if(mask_to_bool(succ)); } void API_NS(point_sub) ( point_t p, const point_t q, const point_t r ) { gf a, b, c, d; gf_sub_nr ( b, q->y, q->x ); /* 3+e */ gf_sub_nr ( d, r->y, r->x ); /* 3+e */ gf_add_nr ( c, r->y, r->x ); /* 2+e */ gf_mul ( a, c, b ); gf_add_nr ( b, q->y, q->x ); /* 2+e */ gf_mul ( p->y, d, b ); gf_mul ( b, r->t, q->t ); gf_mulw ( p->x, b, 2*EFF_D ); gf_add_nr ( b, a, p->y ); /* 2+e */ gf_sub_nr ( c, p->y, a ); /* 3+e */ gf_mul ( a, q->z, r->z ); gf_add_nr ( a, a, a ); /* 2+e */ if (GF_HEADROOM <= 3) gf_weak_reduce(a); /* or 1+e */ #if NEG_D gf_sub_nr ( p->y, a, p->x ); /* 4+e or 3+e */ gf_add_nr ( a, a, p->x ); /* 3+e or 2+e */ #else gf_add_nr ( p->y, a, p->x ); /* 3+e or 2+e */ gf_sub_nr ( a, a, p->x ); /* 4+e or 3+e */ #endif gf_mul ( p->z, a, p->y ); gf_mul ( p->x, p->y, c ); gf_mul ( p->y, a, b ); gf_mul ( p->t, b, c ); } void API_NS(point_add) ( point_t p, const point_t q, const point_t r ) { gf a, b, c, d; gf_sub_nr ( b, q->y, q->x ); /* 3+e */ gf_sub_nr ( c, r->y, r->x ); /* 3+e */ gf_add_nr ( d, r->y, r->x ); /* 2+e */ gf_mul ( a, c, b ); gf_add_nr ( b, q->y, q->x ); /* 2+e */ gf_mul ( p->y, d, b ); gf_mul ( b, r->t, q->t ); gf_mulw ( p->x, b, 2*EFF_D ); gf_add_nr ( b, a, p->y ); /* 2+e */ gf_sub_nr ( c, p->y, a ); /* 3+e */ gf_mul ( a, q->z, r->z ); gf_add_nr ( a, a, a ); /* 2+e */ if (GF_HEADROOM <= 3) gf_weak_reduce(a); /* or 1+e */ #if NEG_D gf_add_nr ( p->y, a, p->x ); /* 3+e or 2+e */ gf_sub_nr ( a, a, p->x ); /* 4+e or 3+e */ #else gf_sub_nr ( p->y, a, p->x ); /* 4+e or 3+e */ gf_add_nr ( a, a, p->x ); /* 3+e or 2+e */ #endif gf_mul ( p->z, a, p->y ); gf_mul ( p->x, p->y, c ); gf_mul ( p->y, a, b ); gf_mul ( p->t, b, c ); } static DECAF_NOINLINE void point_double_internal ( point_t p, const point_t q, int before_double ) { gf a, b, c, d; gf_sqr ( c, q->x ); gf_sqr ( a, q->y ); gf_add_nr ( d, c, a ); /* 2+e */ gf_add_nr ( p->t, q->y, q->x ); /* 2+e */ gf_sqr ( b, p->t ); gf_subx_nr ( b, b, d, 3 ); /* 4+e */ gf_sub_nr ( p->t, a, c ); /* 3+e */ gf_sqr ( p->x, q->z ); gf_add_nr ( p->z, p->x, p->x ); /* 2+e */ gf_subx_nr ( a, p->z, p->t, 4 ); /* 6+e */ if (GF_HEADROOM == 5) gf_weak_reduce(a); /* or 1+e */ gf_mul ( p->x, a, b ); gf_mul ( p->z, p->t, a ); gf_mul ( p->y, p->t, d ); if (!before_double) gf_mul ( p->t, b, d ); } void API_NS(point_double)(point_t p, const point_t q) { point_double_internal(p,q,0); } void API_NS(point_negate) ( point_t nega, const point_t a ) { gf_sub(nega->x, ZERO, a->x); gf_copy(nega->y, a->y); gf_copy(nega->z, a->z); gf_sub(nega->t, ZERO, a->t); } /* Operations on [p]niels */ static DECAF_INLINE void cond_neg_niels ( niels_t n, mask_t neg ) { gf_cond_swap(n->a, n->b, neg); gf_cond_neg(n->c, neg); } static DECAF_NOINLINE void pt_to_pniels ( pniels_t b, const point_t a ) { gf_sub ( b->n->a, a->y, a->x ); gf_add ( b->n->b, a->x, a->y ); gf_mulw ( b->n->c, a->t, 2*TWISTED_D ); gf_add ( b->z, a->z, a->z ); } static DECAF_NOINLINE void pniels_to_pt ( point_t e, const pniels_t d ) { gf eu; gf_add ( eu, d->n->b, d->n->a ); gf_sub ( e->y, d->n->b, d->n->a ); gf_mul ( e->t, e->y, eu); gf_mul ( e->x, d->z, e->y ); gf_mul ( e->y, d->z, eu ); gf_sqr ( e->z, d->z ); } static DECAF_NOINLINE void niels_to_pt ( point_t e, const niels_t n ) { gf_add ( e->y, n->b, n->a ); gf_sub ( e->x, n->b, n->a ); gf_mul ( e->t, e->y, e->x ); gf_copy ( e->z, ONE ); } static DECAF_NOINLINE void add_niels_to_pt ( point_t d, const niels_t e, int before_double ) { gf a, b, c; gf_sub_nr ( b, d->y, d->x ); /* 3+e */ gf_mul ( a, e->a, b ); gf_add_nr ( b, d->x, d->y ); /* 2+e */ gf_mul ( d->y, e->b, b ); gf_mul ( d->x, e->c, d->t ); gf_add_nr ( c, a, d->y ); /* 2+e */ gf_sub_nr ( b, d->y, a ); /* 3+e */ gf_sub_nr ( d->y, d->z, d->x ); /* 3+e */ gf_add_nr ( a, d->x, d->z ); /* 2+e */ gf_mul ( d->z, a, d->y ); gf_mul ( d->x, d->y, b ); gf_mul ( d->y, a, c ); if (!before_double) gf_mul ( d->t, b, c ); } static DECAF_NOINLINE void sub_niels_from_pt ( point_t d, const niels_t e, int before_double ) { gf a, b, c; gf_sub_nr ( b, d->y, d->x ); /* 3+e */ gf_mul ( a, e->b, b ); gf_add_nr ( b, d->x, d->y ); /* 2+e */ gf_mul ( d->y, e->a, b ); gf_mul ( d->x, e->c, d->t ); gf_add_nr ( c, a, d->y ); /* 2+e */ gf_sub_nr ( b, d->y, a ); /* 3+e */ gf_add_nr ( d->y, d->z, d->x ); /* 2+e */ gf_sub_nr ( a, d->z, d->x ); /* 3+e */ gf_mul ( d->z, a, d->y ); gf_mul ( d->x, d->y, b ); gf_mul ( d->y, a, c ); if (!before_double) gf_mul ( d->t, b, c ); } static void add_pniels_to_pt ( point_t p, const pniels_t pn, int before_double ) { gf L0; gf_mul ( L0, p->z, pn->z ); gf_copy ( p->z, L0 ); add_niels_to_pt( p, pn->n, before_double ); } static void sub_pniels_from_pt ( point_t p, const pniels_t pn, int before_double ) { gf L0; gf_mul ( L0, p->z, pn->z ); gf_copy ( p->z, L0 ); sub_niels_from_pt( p, pn->n, before_double ); } static DECAF_NOINLINE void prepare_fixed_window( pniels_t *multiples, const point_t b, int ntable ) { point_t tmp; pniels_t pn; int i; point_double_internal(tmp, b, 0); pt_to_pniels(pn, tmp); pt_to_pniels(multiples[0], b); API_NS(point_copy)(tmp, b); for (i=1; i> 1, NTABLE = 1<<(WINDOW-1); scalar_t scalar1x; API_NS(scalar_add)(scalar1x, scalar, point_scalarmul_adjustment); API_NS(scalar_halve)(scalar1x,scalar1x); /* Set up a precomputed table with odd multiples of b. */ pniels_t pn, multiples[1<<((int)(DECAF_WINDOW_BITS)-1)]; // == NTABLE (MSVC compatibility issue) point_t tmp; prepare_fixed_window(multiples, b, NTABLE); /* Initialize. */ int i,j,first=1; i = SCALAR_BITS - ((SCALAR_BITS-1) % WINDOW) - 1; for (; i>=0; i-=WINDOW) { /* Fetch another block of bits */ word_t bits = scalar1x->limb[i/WBITS] >> (i%WBITS); if (i%WBITS >= WBITS-WINDOW && i/WBITSlimb[i/WBITS+1] << (WBITS - (i%WBITS)); } bits &= WINDOW_MASK; mask_t inv = (bits>>(WINDOW-1))-1; bits ^= inv; /* Add in from table. Compute t only on last iteration. */ constant_time_lookup(pn, multiples, sizeof(pn), NTABLE, bits & WINDOW_T_MASK); cond_neg_niels(pn->n, inv); if (first) { pniels_to_pt(tmp, pn); first = 0; } else { /* Using Hisil et al's lookahead method instead of extensible here * for no particular reason. Double WINDOW times, but only compute t on * the last one. */ for (j=0; j> 1, NTABLE = 1<<(WINDOW-1); scalar_t scalar1x, scalar2x; API_NS(scalar_add)(scalar1x, scalarb, point_scalarmul_adjustment); API_NS(scalar_halve)(scalar1x,scalar1x); API_NS(scalar_add)(scalar2x, scalarc, point_scalarmul_adjustment); API_NS(scalar_halve)(scalar2x,scalar2x); /* Set up a precomputed table with odd multiples of b. */ pniels_t pn, multiples1[1<<((int)(DECAF_WINDOW_BITS)-1)], multiples2[1<<((int)(DECAF_WINDOW_BITS)-1)]; // Array size above equal NTABLE (MSVC compatibility issue) point_t tmp; prepare_fixed_window(multiples1, b, NTABLE); prepare_fixed_window(multiples2, c, NTABLE); /* Initialize. */ int i,j,first=1; i = SCALAR_BITS - ((SCALAR_BITS-1) % WINDOW) - 1; for (; i>=0; i-=WINDOW) { /* Fetch another block of bits */ word_t bits1 = scalar1x->limb[i/WBITS] >> (i%WBITS), bits2 = scalar2x->limb[i/WBITS] >> (i%WBITS); if (i%WBITS >= WBITS-WINDOW && i/WBITSlimb[i/WBITS+1] << (WBITS - (i%WBITS)); bits2 ^= scalar2x->limb[i/WBITS+1] << (WBITS - (i%WBITS)); } bits1 &= WINDOW_MASK; bits2 &= WINDOW_MASK; mask_t inv1 = (bits1>>(WINDOW-1))-1; mask_t inv2 = (bits2>>(WINDOW-1))-1; bits1 ^= inv1; bits2 ^= inv2; /* Add in from table. Compute t only on last iteration. */ constant_time_lookup(pn, multiples1, sizeof(pn), NTABLE, bits1 & WINDOW_T_MASK); cond_neg_niels(pn->n, inv1); if (first) { pniels_to_pt(tmp, pn); first = 0; } else { /* Using Hisil et al's lookahead method instead of extensible here * for no particular reason. Double WINDOW times, but only compute t on * the last one. */ for (j=0; jn, inv2); add_pniels_to_pt(tmp, pn, i?-1:0); } /* Write out the answer */ API_NS(point_copy)(a,tmp); decaf_bzero(scalar1x,sizeof(scalar1x)); decaf_bzero(scalar2x,sizeof(scalar2x)); decaf_bzero(pn,sizeof(pn)); decaf_bzero(multiples1,sizeof(multiples1)); decaf_bzero(multiples2,sizeof(multiples2)); decaf_bzero(tmp,sizeof(tmp)); } void API_NS(point_dual_scalarmul) ( point_t a1, point_t a2, const point_t b, const scalar_t scalar1, const scalar_t scalar2 ) { const int WINDOW = DECAF_WINDOW_BITS, WINDOW_MASK = (1<> 1, NTABLE = 1<<(WINDOW-1); scalar_t scalar1x, scalar2x; API_NS(scalar_add)(scalar1x, scalar1, point_scalarmul_adjustment); API_NS(scalar_halve)(scalar1x,scalar1x); API_NS(scalar_add)(scalar2x, scalar2, point_scalarmul_adjustment); API_NS(scalar_halve)(scalar2x,scalar2x); /* Set up a precomputed table with odd multiples of b. */ point_t multiples1[1<<((int)(DECAF_WINDOW_BITS)-1)], multiples2[1<<((int)(DECAF_WINDOW_BITS)-1)], working, tmp; // Array sizes above equal NTABLE (MSVC compatibility issue) pniels_t pn; API_NS(point_copy)(working, b); /* Initialize. */ int i,j; for (i=0; ilimb[i/WBITS] >> (i%WBITS), bits2 = scalar2x->limb[i/WBITS] >> (i%WBITS); if (i%WBITS >= WBITS-WINDOW && i/WBITSlimb[i/WBITS+1] << (WBITS - (i%WBITS)); bits2 ^= scalar2x->limb[i/WBITS+1] << (WBITS - (i%WBITS)); } bits1 &= WINDOW_MASK; bits2 &= WINDOW_MASK; mask_t inv1 = (bits1>>(WINDOW-1))-1; mask_t inv2 = (bits2>>(WINDOW-1))-1; bits1 ^= inv1; bits2 ^= inv2; pt_to_pniels(pn, working); constant_time_lookup(tmp, multiples1, sizeof(tmp), NTABLE, bits1 & WINDOW_T_MASK); cond_neg_niels(pn->n, inv1); /* add_pniels_to_pt(multiples1[bits1 & WINDOW_T_MASK], pn, 0); */ add_pniels_to_pt(tmp, pn, 0); constant_time_insert(multiples1, tmp, sizeof(tmp), NTABLE, bits1 & WINDOW_T_MASK); constant_time_lookup(tmp, multiples2, sizeof(tmp), NTABLE, bits2 & WINDOW_T_MASK); cond_neg_niels(pn->n, inv1^inv2); /* add_pniels_to_pt(multiples2[bits2 & WINDOW_T_MASK], pn, 0); */ add_pniels_to_pt(tmp, pn, 0); constant_time_insert(multiples2, tmp, sizeof(tmp), NTABLE, bits2 & WINDOW_T_MASK); } if (NTABLE > 1) { API_NS(point_copy)(working, multiples1[NTABLE-1]); API_NS(point_copy)(tmp , multiples2[NTABLE-1]); for (i=NTABLE-1; i>1; i--) { API_NS(point_add)(multiples1[i-1], multiples1[i-1], multiples1[i]); API_NS(point_add)(multiples2[i-1], multiples2[i-1], multiples2[i]); API_NS(point_add)(working, working, multiples1[i-1]); API_NS(point_add)(tmp, tmp, multiples2[i-1]); } API_NS(point_add)(multiples1[0], multiples1[0], multiples1[1]); API_NS(point_add)(multiples2[0], multiples2[0], multiples2[1]); point_double_internal(working, working, 0); point_double_internal(tmp, tmp, 0); API_NS(point_add)(a1, working, multiples1[0]); API_NS(point_add)(a2, tmp, multiples2[0]); } else { API_NS(point_copy)(a1, multiples1[0]); API_NS(point_copy)(a2, multiples2[0]); } decaf_bzero(scalar1x,sizeof(scalar1x)); decaf_bzero(scalar2x,sizeof(scalar2x)); decaf_bzero(pn,sizeof(pn)); decaf_bzero(multiples1,sizeof(multiples1)); decaf_bzero(multiples2,sizeof(multiples2)); decaf_bzero(tmp,sizeof(tmp)); decaf_bzero(working,sizeof(working)); } decaf_bool_t API_NS(point_eq) ( const point_t p, const point_t q ) { /* equality mod 2-torsion compares x/y */ gf a, b; gf_mul ( a, p->y, q->x ); gf_mul ( b, q->y, p->x ); mask_t succ = gf_eq(a,b); #if (COFACTOR == 8) gf_mul ( a, p->y, q->y ); gf_mul ( b, q->x, p->x ); #if !(IMAGINE_TWIST) gf_sub ( a, ZERO, a ); #else /* Interesting note: the 4tor would normally be rotation. * But because of the *i twist, it's actually * (x,y) <-> (iy,ix) */ /* No code, just a comment. */ #endif succ |= gf_eq(a,b); #endif return mask_to_bool(succ); } decaf_bool_t API_NS(point_valid) ( const point_t p ) { gf a,b,c; gf_mul(a,p->x,p->y); gf_mul(b,p->z,p->t); mask_t out = gf_eq(a,b); gf_sqr(a,p->x); gf_sqr(b,p->y); gf_sub(a,b,a); gf_sqr(b,p->t); gf_mulw(c,b,TWISTED_D); gf_sqr(b,p->z); gf_add(b,b,c); out &= gf_eq(a,b); out &= ~gf_eq(p->z,ZERO); return mask_to_bool(out); } void API_NS(point_debugging_torque) ( point_t q, const point_t p ) { #if COFACTOR == 8 && IMAGINE_TWIST gf tmp; gf_mul(tmp,p->x,SQRT_MINUS_ONE); gf_mul(q->x,p->y,SQRT_MINUS_ONE); gf_copy(q->y,tmp); gf_copy(q->z,p->z); gf_sub(q->t,ZERO,p->t); #else gf_sub(q->x,ZERO,p->x); gf_sub(q->y,ZERO,p->y); gf_copy(q->z,p->z); gf_copy(q->t,p->t); #endif } void API_NS(point_debugging_pscale) ( point_t q, const point_t p, const uint8_t factor[SER_BYTES] ) { gf gfac,tmp; /* NB this means you'll never pscale by negative numbers for p521 */ ignore_result(gf_deserialize(gfac,factor,0,0)); gf_cond_sel(gfac,gfac,ONE,gf_eq(gfac,ZERO)); gf_mul(tmp,p->x,gfac); gf_copy(q->x,tmp); gf_mul(tmp,p->y,gfac); gf_copy(q->y,tmp); gf_mul(tmp,p->z,gfac); gf_copy(q->z,tmp); gf_mul(tmp,p->t,gfac); gf_copy(q->t,tmp); } static void gf_batch_invert ( gf *__restrict__ out, const gf *in, unsigned int n ) { gf t1; assert(n>1); gf_copy(out[1], in[0]); int i; for (i=1; i<(int) (n-1); i++) { gf_mul(out[i+1], out[i], in[i]); } gf_mul(out[0], out[n-1], in[n-1]); gf_invert(out[0], out[0], 1); for (i=n-1; i>0; i--) { gf_mul(t1, out[i], out[0]); gf_copy(out[i], t1); gf_mul(t1, out[0], in[i]); gf_copy(out[0], t1); } } static void batch_normalize_niels ( niels_t *table, const gf *zs, gf *__restrict__ zis, int n ) { int i; gf product; gf_batch_invert(zis, zs, n); for (i=0; ia, zis[i]); gf_strong_reduce(product); gf_copy(table[i]->a, product); gf_mul(product, table[i]->b, zis[i]); gf_strong_reduce(product); gf_copy(table[i]->b, product); gf_mul(product, table[i]->c, zis[i]); gf_strong_reduce(product); gf_copy(table[i]->c, product); } decaf_bzero(product,sizeof(product)); } void API_NS(precompute) ( precomputed_s *table, const point_t base ) { const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S; assert(n*t*s >= SCALAR_BITS); point_t working, start, doubles[COMBS_T-1]; API_NS(point_copy)(working, base); pniels_t pn_tmp; gf zs[(unsigned int)(COMBS_N)<<(unsigned int)(COMBS_T-1)], zis[(unsigned int)(COMBS_N)<<(unsigned int)(COMBS_T-1)]; unsigned int i,j,k; /* Compute n tables */ for (i=0; i>1); int idx = (((i+1)<<(t-1))-1) ^ gray; pt_to_pniels(pn_tmp, start); memcpy(table->table[idx], pn_tmp->n, sizeof(pn_tmp->n)); gf_copy(zs[idx], pn_tmp->z); if (j >= (1u<<(t-1)) - 1) break; int delta = (j+1) ^ ((j+1)>>1) ^ gray; for (k=0; delta>1; k++) delta >>=1; if (gray & (1<table,(const gf *)zs,zis,n<<(t-1)); decaf_bzero(zs,sizeof(zs)); decaf_bzero(zis,sizeof(zis)); decaf_bzero(pn_tmp,sizeof(pn_tmp)); decaf_bzero(working,sizeof(working)); decaf_bzero(start,sizeof(start)); decaf_bzero(doubles,sizeof(doubles)); } static DECAF_INLINE void constant_time_lookup_niels ( niels_s *__restrict__ ni, const niels_t *table, int nelts, int idx ) { constant_time_lookup(ni, table, sizeof(niels_s), nelts, idx); } void API_NS(precomputed_scalarmul) ( point_t out, const precomputed_s *table, const scalar_t scalar ) { int i; unsigned j,k; const unsigned int n = COMBS_N, t = COMBS_T, s = COMBS_S; scalar_t scalar1x; API_NS(scalar_add)(scalar1x, scalar, precomputed_scalarmul_adjustment); API_NS(scalar_halve)(scalar1x,scalar1x); niels_t ni; for (i=s-1; i>=0; i--) { if (i != (int)s-1) point_double_internal(out,out,0); for (j=0; jlimb[bit/WBITS] >> (bit%WBITS) & 1) << k; } } mask_t invert = (tab>>(t-1))-1; tab ^= invert; tab &= (1<<(t-1)) - 1; constant_time_lookup_niels(ni, &table->table[j<<(t-1)], 1<<(t-1), tab); cond_neg_niels(ni, invert); if ((i!=(int)s-1)||j) { add_niels_to_pt(out, ni, j==n-1 && i); } else { niels_to_pt(out, ni); } } } decaf_bzero(ni,sizeof(ni)); decaf_bzero(scalar1x,sizeof(scalar1x)); } void API_NS(point_cond_sel) ( point_t out, const point_t a, const point_t b, decaf_bool_t pick_b ) { constant_time_select(out,a,b,sizeof(point_t),bool_to_mask(pick_b),0); } /* FUTURE: restore Curve25519 Montgomery ladder? */ decaf_error_t API_NS(direct_scalarmul) ( uint8_t scaled[SER_BYTES], const uint8_t base[SER_BYTES], const scalar_t scalar, decaf_bool_t allow_identity, decaf_bool_t short_circuit ) { point_t basep; decaf_error_t succ = API_NS(point_decode)(basep, base, allow_identity); if (short_circuit && succ != DECAF_SUCCESS) return succ; API_NS(point_cond_sel)(basep, API_NS(point_base), basep, succ); API_NS(point_scalarmul)(basep, basep, scalar); API_NS(point_encode)(scaled, basep); API_NS(point_destroy)(basep); return succ; } void API_NS(point_mul_by_ratio_and_encode_like_eddsa) ( uint8_t enc[DECAF_EDDSA_448_PUBLIC_BYTES], const point_t p ) { /* The point is now on the twisted curve. Move it to untwisted. */ gf x, y, z, t; point_t q; #if COFACTOR == 8 API_NS(point_double)(q,p); #else API_NS(point_copy)(q,p); #endif #if EDDSA_USE_SIGMA_ISOGENY { /* Use 4-isogeny like ed25519: * 2*x*y*sqrt(d/a-1)/(ax^2 + y^2 - 2) * (y^2 - ax^2)/(y^2 + ax^2) * with a = -1, d = -EDWARDS_D: * -2xysqrt(EDWARDS_D-1)/(2z^2-y^2+x^2) * (y^2+x^2)/(y^2-x^2) */ gf u; gf_sqr ( x, q->x ); // x^2 gf_sqr ( t, q->y ); // y^2 gf_add( u, x, t ); // x^2 + y^2 gf_add( z, q->y, q->x ); gf_sqr ( y, z); gf_sub ( y, u, y ); // -2xy gf_sub ( z, t, x ); // y^2 - x^2 gf_sqr ( x, q->z ); gf_add ( t, x, x); gf_sub ( t, t, z); // 2z^2 - y^2 + x^2 gf_mul ( x, y, z ); // 2xy(y^2-x^2) gf_mul ( y, u, t ); // (x^2+y^2)(2z^2-y^2+x^2) gf_mul ( u, z, t ); gf_copy( z, u ); gf_mul ( u, x, RISTRETTO_FACTOR ); #if IMAGINE_TWIST gf_mul_i( x, u ); #else #error "... probably wrong" gf_copy( x, u ); #endif decaf_bzero(u,sizeof(u)); } #elif IMAGINE_TWIST { API_NS(point_double)(q,q); API_NS(point_double)(q,q); gf_mul_i(x, q->x); gf_copy(y, q->y); gf_copy(z, q->z); } #else { /* 4-isogeny: 2xy/(y^+x^2), (y^2-x^2)/(2z^2-y^2+x^2) */ gf u; gf_sqr ( x, q->x ); gf_sqr ( t, q->y ); gf_add( u, x, t ); gf_add( z, q->y, q->x ); gf_sqr ( y, z); gf_sub ( y, y, u ); gf_sub ( z, t, x ); gf_sqr ( x, q->z ); gf_add ( t, x, x); gf_sub ( t, t, z); gf_mul ( x, t, y ); gf_mul ( y, z, u ); gf_mul ( z, u, t ); decaf_bzero(u,sizeof(u)); } #endif /* Affinize */ gf_invert(z,z,1); gf_mul(t,x,z); gf_mul(x,y,z); /* Encode */ enc[DECAF_EDDSA_448_PRIVATE_BYTES-1] = 0; gf_serialize(enc, x, 1); enc[DECAF_EDDSA_448_PRIVATE_BYTES-1] |= 0x80 & gf_lobit(t); decaf_bzero(x,sizeof(x)); decaf_bzero(y,sizeof(y)); decaf_bzero(z,sizeof(z)); decaf_bzero(t,sizeof(t)); API_NS(point_destroy)(q); } decaf_error_t API_NS(point_decode_like_eddsa_and_mul_by_ratio) ( point_t p, const uint8_t enc[DECAF_EDDSA_448_PUBLIC_BYTES] ) { uint8_t enc2[DECAF_EDDSA_448_PUBLIC_BYTES]; memcpy(enc2,enc,sizeof(enc2)); mask_t low = ~word_is_zero(enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1] & 0x80); enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1] &= ~0x80; mask_t succ = gf_deserialize(p->y, enc2, 1, 0); #if 0 == 0 succ &= word_is_zero(enc2[DECAF_EDDSA_448_PRIVATE_BYTES-1]); #endif gf_sqr(p->x,p->y); gf_sub(p->z,ONE,p->x); /* num = 1-y^2 */ #if EDDSA_USE_SIGMA_ISOGENY gf_mulw(p->t,p->z,EDWARDS_D); /* d-dy^2 */ gf_mulw(p->x,p->z,EDWARDS_D-1); /* num = (1-y^2)(d-1) */ gf_copy(p->z,p->x); #else gf_mulw(p->t,p->x,EDWARDS_D); /* dy^2 */ #endif gf_sub(p->t,ONE,p->t); /* denom = 1-dy^2 or 1-d + dy^2 */ gf_mul(p->x,p->z,p->t); succ &= gf_isr(p->t,p->x); /* 1/sqrt(num * denom) */ gf_mul(p->x,p->t,p->z); /* sqrt(num / denom) */ gf_cond_neg(p->x,gf_lobit(p->x)^low); gf_copy(p->z,ONE); #if EDDSA_USE_SIGMA_ISOGENY { /* Use 4-isogeny like ed25519: * 2*x*y/sqrt(1-d/a)/(ax^2 + y^2 - 2) * (y^2 - ax^2)/(y^2 + ax^2) * (MAGIC: above formula may be off by a factor of -a * or something somewhere; check it for other a) * * with a = -1, d = -EDWARDS_D: * -2xy/sqrt(1-EDWARDS_D)/(2z^2-y^2+x^2) * (y^2+x^2)/(y^2-x^2) */ gf a, b, c, d; gf_sqr ( c, p->x ); gf_sqr ( a, p->y ); gf_add ( d, c, a ); // x^2 + y^2 gf_add ( p->t, p->y, p->x ); gf_sqr ( b, p->t ); gf_sub ( b, b, d ); // 2xy gf_sub ( p->t, a, c ); // y^2 - x^2 gf_sqr ( p->x, p->z ); gf_add ( p->z, p->x, p->x ); gf_sub ( c, p->z, p->t ); // 2z^2 - y^2 + x^2 gf_div_i ( a, c ); gf_mul ( c, a, RISTRETTO_FACTOR ); gf_mul ( p->x, b, p->t); // (2xy)(y^2-x^2) gf_mul ( p->z, p->t, c ); // (y^2-x^2)sd(2z^2 - y^2 + x^2) gf_mul ( p->y, d, c ); // (y^2+x^2)sd(2z^2 - y^2 + x^2) gf_mul ( p->t, d, b ); decaf_bzero(a,sizeof(a)); decaf_bzero(b,sizeof(b)); decaf_bzero(c,sizeof(c)); decaf_bzero(d,sizeof(d)); } #elif IMAGINE_TWIST { gf_mul(p->t,p->x,SQRT_MINUS_ONE); gf_copy(p->x,p->t); gf_mul(p->t,p->x,p->y); } #else { /* 4-isogeny 2xy/(y^2-ax^2), (y^2+ax^2)/(2-y^2-ax^2) */ gf a, b, c, d; gf_sqr ( c, p->x ); gf_sqr ( a, p->y ); gf_add ( d, c, a ); gf_add ( p->t, p->y, p->x ); gf_sqr ( b, p->t ); gf_sub ( b, b, d ); gf_sub ( p->t, a, c ); gf_sqr ( p->x, p->z ); gf_add ( p->z, p->x, p->x ); gf_sub ( a, p->z, d ); gf_mul ( p->x, a, b ); gf_mul ( p->z, p->t, a ); gf_mul ( p->y, p->t, d ); gf_mul ( p->t, b, d ); decaf_bzero(a,sizeof(a)); decaf_bzero(b,sizeof(b)); decaf_bzero(c,sizeof(c)); decaf_bzero(d,sizeof(d)); } #endif decaf_bzero(enc2,sizeof(enc2)); assert(API_NS(point_valid)(p) || ~succ); return decaf_succeed_if(mask_to_bool(succ)); } decaf_error_t decaf_x448 ( uint8_t out[X_PUBLIC_BYTES], const uint8_t base[X_PUBLIC_BYTES], const uint8_t scalar[X_PRIVATE_BYTES] ) { gf x1, x2, z2, x3, z3, t1, t2; ignore_result(gf_deserialize(x1,base,1,0)); gf_copy(x2,ONE); gf_copy(z2,ZERO); gf_copy(x3,x1); gf_copy(z3,ONE); int t; mask_t swap = 0; for (t = X_PRIVATE_BITS-1; t>=0; t--) { uint8_t sb = scalar[t/8]; /* Scalar conditioning */ if (t/8==0) sb &= -(uint8_t)COFACTOR; else if (t == X_PRIVATE_BITS-1) sb = -1; mask_t k_t = (sb>>(t%8)) & 1; k_t = -k_t; /* set to all 0s or all 1s */ swap ^= k_t; gf_cond_swap(x2,x3,swap); gf_cond_swap(z2,z3,swap); swap = k_t; gf_add_nr(t1,x2,z2); /* A = x2 + z2 */ /* 2+e */ gf_sub_nr(t2,x2,z2); /* B = x2 - z2 */ /* 3+e */ gf_sub_nr(z2,x3,z3); /* D = x3 - z3 */ /* 3+e */ gf_mul(x2,t1,z2); /* DA */ gf_add_nr(z2,z3,x3); /* C = x3 + z3 */ /* 2+e */ gf_mul(x3,t2,z2); /* CB */ gf_sub_nr(z3,x2,x3); /* DA-CB */ /* 3+e */ gf_sqr(z2,z3); /* (DA-CB)^2 */ gf_mul(z3,x1,z2); /* z3 = x1(DA-CB)^2 */ gf_add_nr(z2,x2,x3); /* (DA+CB) */ /* 2+e */ gf_sqr(x3,z2); /* x3 = (DA+CB)^2 */ gf_sqr(z2,t1); /* AA = A^2 */ gf_sqr(t1,t2); /* BB = B^2 */ gf_mul(x2,z2,t1); /* x2 = AA*BB */ gf_sub_nr(t2,z2,t1); /* E = AA-BB */ /* 3+e */ gf_mulw(t1,t2,-EDWARDS_D); /* E*-d = a24*E */ gf_add_nr(t1,t1,z2); /* AA + a24*E */ /* 2+e */ gf_mul(z2,t2,t1); /* z2 = E(AA+a24*E) */ } /* Finish */ gf_cond_swap(x2,x3,swap); gf_cond_swap(z2,z3,swap); gf_invert(z2,z2,0); gf_mul(x1,x2,z2); gf_serialize(out,x1,1); mask_t nz = ~gf_eq(x1,ZERO); decaf_bzero(x1,sizeof(x1)); decaf_bzero(x2,sizeof(x2)); decaf_bzero(z2,sizeof(z2)); decaf_bzero(x3,sizeof(x3)); decaf_bzero(z3,sizeof(z3)); decaf_bzero(t1,sizeof(t1)); decaf_bzero(t2,sizeof(t2)); return decaf_succeed_if(mask_to_bool(nz)); } /* Thanks Johan Pascal */ void decaf_ed448_convert_public_key_to_x448 ( uint8_t x[DECAF_X448_PUBLIC_BYTES], const uint8_t ed[DECAF_EDDSA_448_PUBLIC_BYTES] ) { gf y; const uint8_t mask = (uint8_t)(0xFE<<(7)); ignore_result(gf_deserialize(y, ed, 1, mask)); { gf n,d; #if EDDSA_USE_SIGMA_ISOGENY /* u = (1+y)/(1-y)*/ gf_add(n, y, ONE); /* n = y+1 */ gf_sub(d, ONE, y); /* d = 1-y */ gf_invert(d, d, 0); /* d = 1/(1-y) */ gf_mul(y, n, d); /* u = (y+1)/(1-y) */ gf_serialize(x,y,1); #else /* EDDSA_USE_SIGMA_ISOGENY */ /* u = y^2 * (1-dy^2) / (1-y^2) */ gf_sqr(n,y); /* y^2*/ gf_sub(d,ONE,n); /* 1-y^2*/ gf_invert(d,d,0); /* 1/(1-y^2)*/ gf_mul(y,n,d); /* y^2 / (1-y^2) */ gf_mulw(d,n,EDWARDS_D); /* dy^2*/ gf_sub(d, ONE, d); /* 1-dy^2*/ gf_mul(n, y, d); /* y^2 * (1-dy^2) / (1-y^2) */ gf_serialize(x,n,1); #endif /* EDDSA_USE_SIGMA_ISOGENY */ decaf_bzero(y,sizeof(y)); decaf_bzero(n,sizeof(n)); decaf_bzero(d,sizeof(d)); } } void decaf_x448_generate_key ( uint8_t out[X_PUBLIC_BYTES], const uint8_t scalar[X_PRIVATE_BYTES] ) { decaf_x448_derive_public_key(out,scalar); } void API_NS(point_mul_by_ratio_and_encode_like_x448) ( uint8_t out[X_PUBLIC_BYTES], const point_t p ) { point_t q; #if COFACTOR == 8 point_double_internal(q,p,1); #else API_NS(point_copy)(q,p); #endif gf_invert(q->t,q->x,0); /* 1/x */ gf_mul(q->z,q->t,q->y); /* y/x */ gf_sqr(q->y,q->z); /* (y/x)^2 */ #if IMAGINE_TWIST gf_sub(q->y,ZERO,q->y); #endif gf_serialize(out,q->y,1); API_NS(point_destroy(q)); } void decaf_x448_derive_public_key ( uint8_t out[X_PUBLIC_BYTES], const uint8_t scalar[X_PRIVATE_BYTES] ) { /* Scalar conditioning */ uint8_t scalar2[X_PRIVATE_BYTES]; memcpy(scalar2,scalar,sizeof(scalar2)); scalar2[0] &= -(uint8_t)COFACTOR; scalar2[X_PRIVATE_BYTES-1] &= ~(-1u<<((X_PRIVATE_BITS+7)%8)); scalar2[X_PRIVATE_BYTES-1] |= 1<<((X_PRIVATE_BITS+7)%8); scalar_t the_scalar; API_NS(scalar_decode_long)(the_scalar,scalar2,sizeof(scalar2)); /* Compensate for the encoding ratio */ for (unsigned i=1; ilimb[0] & 0xFFFF; uint32_t mask = (1<<(table_bits+1))-1; unsigned int w; const unsigned int B_OVER_16 = sizeof(scalar->limb[0]) / 2; for (w = 1; w<(SCALAR_BITS-1)/16+3; w++) { if (w < (SCALAR_BITS-1)/16+1) { /* Refill the 16 high bits of current */ current += (uint32_t)((scalar->limb[w/B_OVER_16]>>(16*(w%B_OVER_16)))<<16); } while (current & 0xFFFF) { assert(position >= 0); uint32_t pos = __builtin_ctz((uint32_t)current), odd = (uint32_t)current >> pos; int32_t delta = odd & mask; if (odd & 1<<(table_bits+1)) delta -= (1<<(table_bits+1)); current -= delta << pos; control[position].power = pos + 16*(w-1); control[position].addend = delta; position--; } current >>= 16; } assert(current==0); position++; unsigned int n = table_size - position; unsigned int i; for (i=0; in, sizeof(niels_t)); gf_copy(zs[i], tmp[i]->z); } batch_normalize_niels(out, (const gf *)zs, zis, 1< control_pre[0].power) { pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); contv++; } else if (i == control_pre[0].power && i >=0 ) { pniels_to_pt(combo, precmp_var[control_var[0].addend >> 1]); add_niels_to_pt(combo, API_NS(wnaf_base)[control_pre[0].addend >> 1], i); contv++; contp++; } else { i = control_pre[0].power; niels_to_pt(combo, API_NS(wnaf_base)[control_pre[0].addend >> 1]); contp++; } for (i--; i >= 0; i--) { int cv = (i==control_var[contv].power), cp = (i==control_pre[contp].power); point_double_internal(combo,combo,i && !(cv||cp)); if (cv) { assert(control_var[contv].addend); if (control_var[contv].addend > 0) { add_pniels_to_pt(combo, precmp_var[control_var[contv].addend >> 1], i&&!cp); } else { sub_pniels_from_pt(combo, precmp_var[(-control_var[contv].addend) >> 1], i&&!cp); } contv++; } if (cp) { assert(control_pre[contp].addend); if (control_pre[contp].addend > 0) { add_niels_to_pt(combo, API_NS(wnaf_base)[control_pre[contp].addend >> 1], i); } else { sub_niels_from_pt(combo, API_NS(wnaf_base)[(-control_pre[contp].addend) >> 1], i); } contp++; } } /* This function is non-secret, but whatever this is cheap. */ decaf_bzero(control_var,sizeof(control_var)); decaf_bzero(control_pre,sizeof(control_pre)); decaf_bzero(precmp_var,sizeof(precmp_var)); assert(contv == ncb_var); (void)ncb_var; assert(contp == ncb_pre); (void)ncb_pre; } void API_NS(point_destroy) ( point_t point ) { decaf_bzero(point, sizeof(point_t)); } void API_NS(precomputed_destroy) ( precomputed_s *pre ) { decaf_bzero(pre, API_NS(sizeof_precomputed_s)); }