/* * Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "internal/cryptlib.h" #include "internal/provider.h" #include "internal/core.h" #include "crypto/evp.h" #include "evp_local.h" static int evp_kem_init(EVP_PKEY_CTX *ctx, int operation, const OSSL_PARAM params[]) { int ret = 0; EVP_KEM *kem = NULL; EVP_KEYMGMT *tmp_keymgmt = NULL; const OSSL_PROVIDER *tmp_prov = NULL; void *provkey = NULL; const char *supported_kem = NULL; int iter; if (ctx == NULL || ctx->keytype == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); return 0; } evp_pkey_ctx_free_old_ops(ctx); ctx->operation = operation; if (ctx->pkey == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_NO_KEY_SET); goto err; } /* * Try to derive the supported kem from |ctx->keymgmt|. */ if (!ossl_assert(ctx->pkey->keymgmt == NULL || ctx->pkey->keymgmt == ctx->keymgmt)) { ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); goto err; } supported_kem = evp_keymgmt_util_query_operation_name(ctx->keymgmt, OSSL_OP_KEM); if (supported_kem == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); goto err; } /* * Because we cleared out old ops, we shouldn't need to worry about * checking if kem is already there. * We perform two iterations: * * 1. Do the normal kem fetch, using the fetching data given by * the EVP_PKEY_CTX. * 2. Do the provider specific kem fetch, from the same provider * as |ctx->keymgmt| * * We then try to fetch the keymgmt from the same provider as the * kem, and try to export |ctx->pkey| to that keymgmt (when this * keymgmt happens to be the same as |ctx->keymgmt|, the export is * a no-op, but we call it anyway to not complicate the code even * more). * If the export call succeeds (returns a non-NULL provider key pointer), * we're done and can perform the operation itself. If not, we perform * the second iteration, or jump to legacy. */ for (iter = 1, provkey = NULL; iter < 3 && provkey == NULL; iter++) { EVP_KEYMGMT *tmp_keymgmt_tofree = NULL; /* * If we're on the second iteration, free the results from the first. * They are NULL on the first iteration, so no need to check what * iteration we're on. */ EVP_KEM_free(kem); EVP_KEYMGMT_free(tmp_keymgmt); switch (iter) { case 1: kem = EVP_KEM_fetch(ctx->libctx, supported_kem, ctx->propquery); if (kem != NULL) tmp_prov = EVP_KEM_get0_provider(kem); break; case 2: tmp_prov = EVP_KEYMGMT_get0_provider(ctx->keymgmt); kem = evp_kem_fetch_from_prov((OSSL_PROVIDER *)tmp_prov, supported_kem, ctx->propquery); if (kem == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); ret = -2; goto err; } } if (kem == NULL) continue; /* * Ensure that the key is provided, either natively, or as a cached * export. We start by fetching the keymgmt with the same name as * |ctx->pkey|, but from the provider of the kem method, using the * same property query as when fetching the kem method. * With the keymgmt we found (if we did), we try to export |ctx->pkey| * to it (evp_pkey_export_to_provider() is smart enough to only actually * export it if |tmp_keymgmt| is different from |ctx->pkey|'s keymgmt) */ tmp_keymgmt_tofree = tmp_keymgmt = evp_keymgmt_fetch_from_prov((OSSL_PROVIDER *)tmp_prov, EVP_KEYMGMT_get0_name(ctx->keymgmt), ctx->propquery); if (tmp_keymgmt != NULL) provkey = evp_pkey_export_to_provider(ctx->pkey, ctx->libctx, &tmp_keymgmt, ctx->propquery); if (tmp_keymgmt == NULL) EVP_KEYMGMT_free(tmp_keymgmt_tofree); } if (provkey == NULL) { EVP_KEM_free(kem); ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); goto err; } ctx->op.encap.kem = kem; ctx->op.encap.algctx = kem->newctx(ossl_provider_ctx(kem->prov)); if (ctx->op.encap.algctx == NULL) { /* The provider key can stay in the cache */ ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); goto err; } switch (operation) { case EVP_PKEY_OP_ENCAPSULATE: if (kem->encapsulate_init == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); ret = -2; goto err; } ret = kem->encapsulate_init(ctx->op.encap.algctx, provkey, params); break; case EVP_PKEY_OP_DECAPSULATE: if (kem->decapsulate_init == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); ret = -2; goto err; } ret = kem->decapsulate_init(ctx->op.encap.algctx, provkey, params); break; default: ERR_raise(ERR_LIB_EVP, EVP_R_INITIALIZATION_ERROR); goto err; } EVP_KEYMGMT_free(tmp_keymgmt); tmp_keymgmt = NULL; if (ret > 0) return 1; err: if (ret <= 0) { evp_pkey_ctx_free_old_ops(ctx); ctx->operation = EVP_PKEY_OP_UNDEFINED; } EVP_KEYMGMT_free(tmp_keymgmt); return ret; } int EVP_PKEY_encapsulate_init(EVP_PKEY_CTX *ctx, const OSSL_PARAM params[]) { return evp_kem_init(ctx, EVP_PKEY_OP_ENCAPSULATE, params); } int EVP_PKEY_encapsulate(EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, unsigned char *secret, size_t *secretlen) { if (ctx == NULL) return 0; if (ctx->operation != EVP_PKEY_OP_ENCAPSULATE) { ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_INITIALIZED); return -1; } if (ctx->op.encap.algctx == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } if (out != NULL && secret == NULL) return 0; return ctx->op.encap.kem->encapsulate(ctx->op.encap.algctx, out, outlen, secret, secretlen); } int EVP_PKEY_decapsulate_init(EVP_PKEY_CTX *ctx, const OSSL_PARAM params[]) { return evp_kem_init(ctx, EVP_PKEY_OP_DECAPSULATE, params); } int EVP_PKEY_decapsulate(EVP_PKEY_CTX *ctx, unsigned char *secret, size_t *secretlen, const unsigned char *in, size_t inlen) { if (ctx == NULL || (in == NULL || inlen == 0) || (secret == NULL && secretlen == NULL)) return 0; if (ctx->operation != EVP_PKEY_OP_DECAPSULATE) { ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_INITIALIZED); return -1; } if (ctx->op.encap.algctx == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); return -2; } return ctx->op.encap.kem->decapsulate(ctx->op.encap.algctx, secret, secretlen, in, inlen); } static EVP_KEM *evp_kem_new(OSSL_PROVIDER *prov) { EVP_KEM *kem = OPENSSL_zalloc(sizeof(EVP_KEM)); if (kem == NULL) { ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); return NULL; } kem->lock = CRYPTO_THREAD_lock_new(); if (kem->lock == NULL) { ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); OPENSSL_free(kem); return NULL; } kem->prov = prov; ossl_provider_up_ref(prov); kem->refcnt = 1; return kem; } static void *evp_kem_from_algorithm(int name_id, const OSSL_ALGORITHM *algodef, OSSL_PROVIDER *prov) { const OSSL_DISPATCH *fns = algodef->implementation; EVP_KEM *kem = NULL; int ctxfncnt = 0, encfncnt = 0, decfncnt = 0; int gparamfncnt = 0, sparamfncnt = 0; if ((kem = evp_kem_new(prov)) == NULL) { ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); goto err; } kem->name_id = name_id; if ((kem->type_name = ossl_algorithm_get1_first_name(algodef)) == NULL) goto err; kem->description = algodef->algorithm_description; for (; fns->function_id != 0; fns++) { switch (fns->function_id) { case OSSL_FUNC_KEM_NEWCTX: if (kem->newctx != NULL) break; kem->newctx = OSSL_FUNC_kem_newctx(fns); ctxfncnt++; break; case OSSL_FUNC_KEM_ENCAPSULATE_INIT: if (kem->encapsulate_init != NULL) break; kem->encapsulate_init = OSSL_FUNC_kem_encapsulate_init(fns); encfncnt++; break; case OSSL_FUNC_KEM_ENCAPSULATE: if (kem->encapsulate != NULL) break; kem->encapsulate = OSSL_FUNC_kem_encapsulate(fns); encfncnt++; break; case OSSL_FUNC_KEM_DECAPSULATE_INIT: if (kem->decapsulate_init != NULL) break; kem->decapsulate_init = OSSL_FUNC_kem_decapsulate_init(fns); decfncnt++; break; case OSSL_FUNC_KEM_DECAPSULATE: if (kem->decapsulate != NULL) break; kem->decapsulate = OSSL_FUNC_kem_decapsulate(fns); decfncnt++; break; case OSSL_FUNC_KEM_FREECTX: if (kem->freectx != NULL) break; kem->freectx = OSSL_FUNC_kem_freectx(fns); ctxfncnt++; break; case OSSL_FUNC_KEM_DUPCTX: if (kem->dupctx != NULL) break; kem->dupctx = OSSL_FUNC_kem_dupctx(fns); break; case OSSL_FUNC_KEM_GET_CTX_PARAMS: if (kem->get_ctx_params != NULL) break; kem->get_ctx_params = OSSL_FUNC_kem_get_ctx_params(fns); gparamfncnt++; break; case OSSL_FUNC_KEM_GETTABLE_CTX_PARAMS: if (kem->gettable_ctx_params != NULL) break; kem->gettable_ctx_params = OSSL_FUNC_kem_gettable_ctx_params(fns); gparamfncnt++; break; case OSSL_FUNC_KEM_SET_CTX_PARAMS: if (kem->set_ctx_params != NULL) break; kem->set_ctx_params = OSSL_FUNC_kem_set_ctx_params(fns); sparamfncnt++; break; case OSSL_FUNC_KEM_SETTABLE_CTX_PARAMS: if (kem->settable_ctx_params != NULL) break; kem->settable_ctx_params = OSSL_FUNC_kem_settable_ctx_params(fns); sparamfncnt++; break; } } if (ctxfncnt != 2 || (encfncnt != 0 && encfncnt != 2) || (decfncnt != 0 && decfncnt != 2) || (encfncnt != 2 && decfncnt != 2) || (gparamfncnt != 0 && gparamfncnt != 2) || (sparamfncnt != 0 && sparamfncnt != 2)) { /* * In order to be a consistent set of functions we must have at least * a set of context functions (newctx and freectx) as well as a pair of * "kem" functions: (encapsulate_init, encapsulate) or * (decapsulate_init, decapsulate). set_ctx_params and settable_ctx_params are * optional, but if one of them is present then the other one must also * be present. The same applies to get_ctx_params and * gettable_ctx_params. The dupctx function is optional. */ ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_PROVIDER_FUNCTIONS); goto err; } return kem; err: EVP_KEM_free(kem); return NULL; } void EVP_KEM_free(EVP_KEM *kem) { int i; if (kem == NULL) return; CRYPTO_DOWN_REF(&kem->refcnt, &i, kem->lock); if (i > 0) return; OPENSSL_free(kem->type_name); ossl_provider_free(kem->prov); CRYPTO_THREAD_lock_free(kem->lock); OPENSSL_free(kem); } int EVP_KEM_up_ref(EVP_KEM *kem) { int ref = 0; CRYPTO_UP_REF(&kem->refcnt, &ref, kem->lock); return 1; } OSSL_PROVIDER *EVP_KEM_get0_provider(const EVP_KEM *kem) { return kem->prov; } EVP_KEM *EVP_KEM_fetch(OSSL_LIB_CTX *ctx, const char *algorithm, const char *properties) { return evp_generic_fetch(ctx, OSSL_OP_KEM, algorithm, properties, evp_kem_from_algorithm, (int (*)(void *))EVP_KEM_up_ref, (void (*)(void *))EVP_KEM_free); } EVP_KEM *evp_kem_fetch_from_prov(OSSL_PROVIDER *prov, const char *algorithm, const char *properties) { return evp_generic_fetch_from_prov(prov, OSSL_OP_KEM, algorithm, properties, evp_kem_from_algorithm, (int (*)(void *))EVP_KEM_up_ref, (void (*)(void *))EVP_KEM_free); } int EVP_KEM_is_a(const EVP_KEM *kem, const char *name) { return evp_is_a(kem->prov, kem->name_id, NULL, name); } int evp_kem_get_number(const EVP_KEM *kem) { return kem->name_id; } const char *EVP_KEM_get0_name(const EVP_KEM *kem) { return kem->type_name; } const char *EVP_KEM_get0_description(const EVP_KEM *kem) { return kem->description; } void EVP_KEM_do_all_provided(OSSL_LIB_CTX *libctx, void (*fn)(EVP_KEM *kem, void *arg), void *arg) { evp_generic_do_all(libctx, OSSL_OP_KEM, (void (*)(void *, void *))fn, arg, evp_kem_from_algorithm, (int (*)(void *))EVP_KEM_up_ref, (void (*)(void *))EVP_KEM_free); } int EVP_KEM_names_do_all(const EVP_KEM *kem, void (*fn)(const char *name, void *data), void *data) { if (kem->prov != NULL) return evp_names_do_all(kem->prov, kem->name_id, fn, data); return 1; } const OSSL_PARAM *EVP_KEM_gettable_ctx_params(const EVP_KEM *kem) { void *provctx; if (kem == NULL || kem->gettable_ctx_params == NULL) return NULL; provctx = ossl_provider_ctx(EVP_KEM_get0_provider(kem)); return kem->gettable_ctx_params(NULL, provctx); } const OSSL_PARAM *EVP_KEM_settable_ctx_params(const EVP_KEM *kem) { void *provctx; if (kem == NULL || kem->settable_ctx_params == NULL) return NULL; provctx = ossl_provider_ctx(EVP_KEM_get0_provider(kem)); return kem->settable_ctx_params(NULL, provctx); }