/** ****************************************************************************** * @file stm32l1xx_ll_tim.h * @author MCD Application Team * @version V1.2.0 * @date 01-July-2016 * @brief Header file of TIM LL module. ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32L1xx_LL_TIM_H #define __STM32L1xx_LL_TIM_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32l1xx.h" /** @addtogroup STM32L1xx_LL_Driver * @{ */ #if defined (TIM2) || defined (TIM3) || defined (TIM4) || defined (TIM5) || defined (TIM9) || defined (TIM10) || defined (TIM11) || defined (TIM6) || defined (TIM7) /** @defgroup TIM_LL TIM * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /** @defgroup TIM_LL_Private_Variables TIM Private Variables * @{ */ static const uint8_t OFFSET_TAB_CCMRx[] = { 0x00U, /* 0: TIMx_CH1 */ 0x00U, /* 1: NA */ 0x00U, /* 2: TIMx_CH2 */ 0x00U, /* 3: NA */ 0x04U, /* 4: TIMx_CH3 */ 0x00U, /* 5: NA */ 0x04U /* 6: TIMx_CH4 */ }; static const uint8_t SHIFT_TAB_OCxx[] = { 0U, /* 0: OC1M, OC1FE, OC1PE */ 0U, /* 1: - NA */ 8U, /* 2: OC2M, OC2FE, OC2PE */ 0U, /* 3: - NA */ 0U, /* 4: OC3M, OC3FE, OC3PE */ 0U, /* 5: - NA */ 8U /* 6: OC4M, OC4FE, OC4PE */ }; static const uint8_t SHIFT_TAB_ICxx[] = { 0U, /* 0: CC1S, IC1PSC, IC1F */ 0U, /* 1: - NA */ 8U, /* 2: CC2S, IC2PSC, IC2F */ 0U, /* 3: - NA */ 0U, /* 4: CC3S, IC3PSC, IC3F */ 0U, /* 5: - NA */ 8U /* 6: CC4S, IC4PSC, IC4F */ }; static const uint8_t SHIFT_TAB_CCxP[] = { 0U, /* 0: CC1P */ 0U, /* 1: NA */ 4U, /* 2: CC2P */ 0U, /* 3: NA */ 8U, /* 4: CC3P */ 0U, /* 5: NA */ 12U /* 6: CC4P */ }; /** * @} */ /* Private constants ---------------------------------------------------------*/ /** @defgroup TIM_LL_Private_Constants TIM Private Constants * @{ */ #define TIMx_OR_RMP_SHIFT ((uint32_t)16U) #define TIMx_OR_RMP_MASK ((uint32_t)0x0000FFFFU) #define TIM_OR_RMP_MASK ((uint32_t)((TIM_OR_TI1RMP | TIM_OR_ETR_RMP | TIM_OR_TI1_RMP_RI) << TIMx_OR_RMP_SHIFT)) #define TIM9_OR_RMP_MASK ((uint32_t)((TIM_OR_TI1RMP | TIM9_OR_ITR1_RMP) << TIMx_OR_RMP_SHIFT)) #define TIM2_OR_RMP_MASK ((uint32_t)(TIM2_OR_ITR1_RMP << TIMx_OR_RMP_SHIFT)) #define TIM3_OR_RMP_MASK ((uint32_t)(TIM3_OR_ITR2_RMP << TIMx_OR_RMP_SHIFT)) /** * @} */ /* Private macros ------------------------------------------------------------*/ /** @defgroup TIM_LL_Private_Macros TIM Private Macros * @{ */ /** @brief Convert channel id into channel index. * @param __CHANNEL__ This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval none */ #define TIM_GET_CHANNEL_INDEX( __CHANNEL__) \ (((__CHANNEL__) == LL_TIM_CHANNEL_CH1) ? 0U :\ ((__CHANNEL__) == LL_TIM_CHANNEL_CH2) ? 2U :\ ((__CHANNEL__) == LL_TIM_CHANNEL_CH3) ? 4U : 6U) /** * @} */ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup TIM_LL_ES_INIT TIM Exported Init structure * @{ */ /** * @brief TIM Time Base configuration structure definition. */ typedef struct { uint16_t Prescaler; /*!< Specifies the prescaler value used to divide the TIM clock. This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF. This feature can be modified afterwards using unitary function @ref LL_TIM_SetPrescaler().*/ uint32_t CounterMode; /*!< Specifies the counter mode. This parameter can be a value of @ref TIM_LL_EC_COUNTERMODE. This feature can be modified afterwards using unitary function @ref LL_TIM_SetCounterMode().*/ uint32_t Autoreload; /*!< Specifies the auto reload value to be loaded into the active Auto-Reload Register at the next update event. This parameter must be a number between Min_Data=0x0000 and Max_Data=0xFFFF. Some timer instances may support 32 bits counters. In that case this parameter must be a number between 0x0000 and 0xFFFFFFFF. This feature can be modified afterwards using unitary function @ref LL_TIM_SetAutoReload().*/ uint32_t ClockDivision; /*!< Specifies the clock division. This parameter can be a value of @ref TIM_LL_EC_CLOCKDIVISION. This feature can be modified afterwards using unitary function @ref LL_TIM_SetClockDivision().*/ } LL_TIM_InitTypeDef; /** * @brief TIM Output Compare configuration structure definition. */ typedef struct { uint32_t OCMode; /*!< Specifies the output mode. This parameter can be a value of @ref TIM_LL_EC_OCMODE. This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetMode().*/ uint32_t OCState; /*!< Specifies the TIM Output Compare state. This parameter can be a value of @ref TIM_LL_EC_OCSTATE. This feature can be modified afterwards using unitary functions @ref LL_TIM_CC_EnableChannel() or @ref LL_TIM_CC_DisableChannel().*/ uint32_t CompareValue; /*!< Specifies the Compare value to be loaded into the Capture Compare Register. This parameter can be a number between Min_Data=0x0000 and Max_Data=0xFFFF. This feature can be modified afterwards using unitary function LL_TIM_OC_SetCompareCHx (x=1..6).*/ uint32_t OCPolarity; /*!< Specifies the output polarity. This parameter can be a value of @ref TIM_LL_EC_OCPOLARITY. This feature can be modified afterwards using unitary function @ref LL_TIM_OC_SetPolarity().*/ } LL_TIM_OC_InitTypeDef; /** * @brief TIM Input Capture configuration structure definition. */ typedef struct { uint32_t ICPolarity; /*!< Specifies the active edge of the input signal. This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/ uint32_t ICActiveInput; /*!< Specifies the input. This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/ uint32_t ICPrescaler; /*!< Specifies the Input Capture Prescaler. This parameter can be a value of @ref TIM_LL_EC_ICPSC. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/ uint32_t ICFilter; /*!< Specifies the input capture filter. This parameter can be a value of @ref TIM_LL_EC_IC_FILTER. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/ } LL_TIM_IC_InitTypeDef; /** * @brief TIM Encoder interface configuration structure definition. */ typedef struct { uint32_t EncoderMode; /*!< Specifies the encoder resolution (x2 or x4). This parameter can be a value of @ref TIM_LL_EC_ENCODERMODE. This feature can be modified afterwards using unitary function @ref LL_TIM_SetEncoderMode().*/ uint32_t IC1Polarity; /*!< Specifies the active edge of TI1 input. This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/ uint32_t IC1ActiveInput; /*!< Specifies the TI1 input source This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/ uint32_t IC1Prescaler; /*!< Specifies the TI1 input prescaler value. This parameter can be a value of @ref TIM_LL_EC_ICPSC. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/ uint32_t IC1Filter; /*!< Specifies the TI1 input filter. This parameter can be a value of @ref TIM_LL_EC_IC_FILTER. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/ uint32_t IC2Polarity; /*!< Specifies the active edge of TI2 input. This parameter can be a value of @ref TIM_LL_EC_IC_POLARITY. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPolarity().*/ uint32_t IC2ActiveInput; /*!< Specifies the TI2 input source This parameter can be a value of @ref TIM_LL_EC_ACTIVEINPUT. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetActiveInput().*/ uint32_t IC2Prescaler; /*!< Specifies the TI2 input prescaler value. This parameter can be a value of @ref TIM_LL_EC_ICPSC. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetPrescaler().*/ uint32_t IC2Filter; /*!< Specifies the TI2 input filter. This parameter can be a value of @ref TIM_LL_EC_IC_FILTER. This feature can be modified afterwards using unitary function @ref LL_TIM_IC_SetFilter().*/ } LL_TIM_ENCODER_InitTypeDef; /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /* Exported constants --------------------------------------------------------*/ /** @defgroup TIM_LL_Exported_Constants TIM Exported Constants * @{ */ /** @defgroup TIM_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_TIM_ReadReg function. * @{ */ #define LL_TIM_SR_UIF TIM_SR_UIF /*!< Update interrupt flag */ #define LL_TIM_SR_CC1IF TIM_SR_CC1IF /*!< Capture/compare 1 interrupt flag */ #define LL_TIM_SR_CC2IF TIM_SR_CC2IF /*!< Capture/compare 2 interrupt flag */ #define LL_TIM_SR_CC3IF TIM_SR_CC3IF /*!< Capture/compare 3 interrupt flag */ #define LL_TIM_SR_CC4IF TIM_SR_CC4IF /*!< Capture/compare 4 interrupt flag */ #define LL_TIM_SR_TIF TIM_SR_TIF /*!< Trigger interrupt flag */ #define LL_TIM_SR_CC1OF TIM_SR_CC1OF /*!< Capture/Compare 1 overcapture flag */ #define LL_TIM_SR_CC2OF TIM_SR_CC2OF /*!< Capture/Compare 2 overcapture flag */ #define LL_TIM_SR_CC3OF TIM_SR_CC3OF /*!< Capture/Compare 3 overcapture flag */ #define LL_TIM_SR_CC4OF TIM_SR_CC4OF /*!< Capture/Compare 4 overcapture flag */ /** * @} */ /** @defgroup TIM_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_TIM_ReadReg and LL_TIM_WriteReg functions. * @{ */ #define LL_TIM_DIER_UIE TIM_DIER_UIE /*!< Update interrupt enable */ #define LL_TIM_DIER_CC1IE TIM_DIER_CC1IE /*!< Capture/compare 1 interrupt enable */ #define LL_TIM_DIER_CC2IE TIM_DIER_CC2IE /*!< Capture/compare 2 interrupt enable */ #define LL_TIM_DIER_CC3IE TIM_DIER_CC3IE /*!< Capture/compare 3 interrupt enable */ #define LL_TIM_DIER_CC4IE TIM_DIER_CC4IE /*!< Capture/compare 4 interrupt enable */ #define LL_TIM_DIER_TIE TIM_DIER_TIE /*!< Trigger interrupt enable */ /** * @} */ /** @defgroup TIM_LL_EC_UPDATESOURCE Update Source * @{ */ #define LL_TIM_UPDATESOURCE_REGULAR ((uint32_t)0x00000000U) /*!< Counter overflow/underflow, Setting the UG bit or Update generation through the slave mode controller generates an update request */ #define LL_TIM_UPDATESOURCE_COUNTER TIM_CR1_URS /*!< Only counter overflow/underflow generates an update request */ /** * @} */ /** @defgroup TIM_LL_EC_ONEPULSEMODE One Pulse Mode * @{ */ #define LL_TIM_ONEPULSEMODE_SINGLE TIM_CR1_OPM /*!< Counter is not stopped at update event */ #define LL_TIM_ONEPULSEMODE_REPETITIVE ((uint32_t)0x00000000U) /*!< Counter stops counting at the next update event */ /** * @} */ /** @defgroup TIM_LL_EC_COUNTERMODE Counter Mode * @{ */ #define LL_TIM_COUNTERMODE_UP ((uint32_t)0x00000000U) /*!TIMx_CCRy else active.*/ #define LL_TIM_OCMODE_PWM2 (TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_0) /*!TIMx_CCRy else inactive*/ /** * @} */ /** @defgroup TIM_LL_EC_OCPOLARITY Output Configuration Polarity * @{ */ #define LL_TIM_OCPOLARITY_HIGH ((uint32_t)0x00000000U) /*!< OCxactive high*/ #define LL_TIM_OCPOLARITY_LOW TIM_CCER_CC1P /*!< OCxactive low*/ /** * @} */ /** @defgroup TIM_LL_EC_ACTIVEINPUT Active Input Selection * @{ */ #define LL_TIM_ACTIVEINPUT_DIRECTTI (uint32_t)(TIM_CCMR1_CC1S_0 << 16U) /*!< ICx is mapped on TIx */ #define LL_TIM_ACTIVEINPUT_INDIRECTTI (uint32_t)(TIM_CCMR1_CC1S_1 << 16U) /*!< ICx is mapped on TIy */ #define LL_TIM_ACTIVEINPUT_TRC (uint32_t)(TIM_CCMR1_CC1S << 16U) /*!< ICx is mapped on TRC */ /** * @} */ /** @defgroup TIM_LL_EC_ICPSC Input Configuration Prescaler * @{ */ #define LL_TIM_ICPSC_DIV1 ((uint32_t)0x00000000U) /*!< No prescaler, capture is done each time an edge is detected on the capture input */ #define LL_TIM_ICPSC_DIV2 (uint32_t)(TIM_CCMR1_IC1PSC_0 << 16U) /*!< Capture is done once every 2 events */ #define LL_TIM_ICPSC_DIV4 (uint32_t)(TIM_CCMR1_IC1PSC_1 << 16U) /*!< Capture is done once every 4 events */ #define LL_TIM_ICPSC_DIV8 (uint32_t)(TIM_CCMR1_IC1PSC << 16U) /*!< Capture is done once every 8 events */ /** * @} */ /** @defgroup TIM_LL_EC_IC_FILTER Input Configuration Filter * @{ */ #define LL_TIM_IC_FILTER_FDIV1 ((uint32_t)0x00000000U) /*!< No filter, sampling is done at fDTS */ #define LL_TIM_IC_FILTER_FDIV1_N2 (uint32_t)(TIM_CCMR1_IC1F_0 << 16U) /*!< fSAMPLING=fCK_INT, N=2 */ #define LL_TIM_IC_FILTER_FDIV1_N4 (uint32_t)(TIM_CCMR1_IC1F_1 << 16U) /*!< fSAMPLING=fCK_INT, N=4 */ #define LL_TIM_IC_FILTER_FDIV1_N8 (uint32_t)((TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fCK_INT, N=8 */ #define LL_TIM_IC_FILTER_FDIV2_N6 (uint32_t)(TIM_CCMR1_IC1F_2 << 16U) /*!< fSAMPLING=fDTS/2, N=6 */ #define LL_TIM_IC_FILTER_FDIV2_N8 (uint32_t)((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/2, N=8 */ #define LL_TIM_IC_FILTER_FDIV4_N6 (uint32_t)((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/4, N=6 */ #define LL_TIM_IC_FILTER_FDIV4_N8 (uint32_t)((TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/4, N=8 */ #define LL_TIM_IC_FILTER_FDIV8_N6 (uint32_t)(TIM_CCMR1_IC1F_3 << 16U) /*!< fSAMPLING=fDTS/8, N=6 */ #define LL_TIM_IC_FILTER_FDIV8_N8 (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/8, N=8 */ #define LL_TIM_IC_FILTER_FDIV16_N5 (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/16, N=5 */ #define LL_TIM_IC_FILTER_FDIV16_N6 (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_1 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/16, N=6 */ #define LL_TIM_IC_FILTER_FDIV16_N8 (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2) << 16U) /*!< fSAMPLING=fDTS/16, N=8 */ #define LL_TIM_IC_FILTER_FDIV32_N5 (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_0) << 16U) /*!< fSAMPLING=fDTS/32, N=5 */ #define LL_TIM_IC_FILTER_FDIV32_N6 (uint32_t)((TIM_CCMR1_IC1F_3 | TIM_CCMR1_IC1F_2 | TIM_CCMR1_IC1F_1) << 16U) /*!< fSAMPLING=fDTS/32, N=6 */ #define LL_TIM_IC_FILTER_FDIV32_N8 (uint32_t)(TIM_CCMR1_IC1F << 16U) /*!< fSAMPLING=fDTS/32, N=8 */ /** * @} */ /** @defgroup TIM_LL_EC_IC_POLARITY Input Configuration Polarity * @{ */ #define LL_TIM_IC_POLARITY_RISING ((uint32_t)0x00000000U) /*!< The circuit is sensitive to TIxFP1 rising edge, TIxFP1 is not inverted */ #define LL_TIM_IC_POLARITY_FALLING TIM_CCER_CC1P /*!< The circuit is sensitive to TIxFP1 falling edge, TIxFP1 is inverted */ #define LL_TIM_IC_POLARITY_BOTHEDGE (TIM_CCER_CC1P | TIM_CCER_CC1NP) /*!< The circuit is sensitive to both TIxFP1 rising and falling edges, TIxFP1 is not inverted */ /** * @} */ /** @defgroup TIM_LL_EC_CLOCKSOURCE Clock Source * @{ */ #define LL_TIM_CLOCKSOURCE_INTERNAL ((uint32_t)0x00000000U) /*!< The timer is clocked by the internal clock provided from the RCC */ #define LL_TIM_CLOCKSOURCE_EXT_MODE1 (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0 ) /*!< Counter counts at each rising or falling edge on a selected inpu t*/ #define LL_TIM_CLOCKSOURCE_EXT_MODE2 TIM_SMCR_ECE /*!< Counter counts at each rising or falling edge on the external trigger input ETR */ /** * @} */ /** @defgroup TIM_LL_EC_ENCODERMODE Encoder Mode * @{ */ #define LL_TIM_ENCODERMODE_X2_TI1 TIM_SMCR_SMS_0 /*!< Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1 level */ #define LL_TIM_ENCODERMODE_X2_TI2 TIM_SMCR_SMS_1 /*!< Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2 level */ #define LL_TIM_ENCODERMODE_X4_TI12 (TIM_SMCR_SMS_1 | TIM_SMCR_SMS_0) /*!< Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges depending on the level of the other input l */ /** * @} */ /** @defgroup TIM_LL_EC_TRGO Trigger Output * @{ */ #define LL_TIM_TRGO_RESET ((uint32_t)0x00000000U) /*!< UG bit from the TIMx_EGR register is used as trigger output */ #define LL_TIM_TRGO_ENABLE TIM_CR2_MMS_0 /*!< Counter Enable signal (CNT_EN) is used as trigger output */ #define LL_TIM_TRGO_UPDATE TIM_CR2_MMS_1 /*!< Update event is used as trigger output */ #define LL_TIM_TRGO_CC1IF (TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< CC1 capture or a compare match is used as trigger output */ #define LL_TIM_TRGO_OC1REF TIM_CR2_MMS_2 /*!< OC1REF signal is used as trigger output */ #define LL_TIM_TRGO_OC2REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_0) /*!< OC2REF signal is used as trigger output */ #define LL_TIM_TRGO_OC3REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1) /*!< OC3REF signal is used as trigger output */ #define LL_TIM_TRGO_OC4REF (TIM_CR2_MMS_2 | TIM_CR2_MMS_1 | TIM_CR2_MMS_0) /*!< OC4REF signal is used as trigger output */ /** * @} */ /** @defgroup TIM_LL_EC_SLAVEMODE Slave Mode * @{ */ #define LL_TIM_SLAVEMODE_DISABLED ((uint32_t)0x00000000U) /*!< Slave mode disabled */ #define LL_TIM_SLAVEMODE_RESET TIM_SMCR_SMS_2 /*!< Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter */ #define LL_TIM_SLAVEMODE_GATED (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_0) /*!< Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high */ #define LL_TIM_SLAVEMODE_TRIGGER (TIM_SMCR_SMS_2 | TIM_SMCR_SMS_1) /*!< Trigger Mode - The counter starts at a rising edge of the trigger TRGI */ /** * @} */ /** @defgroup TIM_LL_EC_TS Trigger Selection * @{ */ #define LL_TIM_TS_ITR0 ((uint32_t)0x00000000U) /*!< Internal Trigger 0 (ITR0) is used as trigger input */ #define LL_TIM_TS_ITR1 TIM_SMCR_TS_0 /*!< Internal Trigger 1 (ITR1) is used as trigger input */ #define LL_TIM_TS_ITR2 TIM_SMCR_TS_1 /*!< Internal Trigger 2 (ITR2) is used as trigger input */ #define LL_TIM_TS_ITR3 (TIM_SMCR_TS_0 | TIM_SMCR_TS_1) /*!< Internal Trigger 3 (ITR3) is used as trigger input */ #define LL_TIM_TS_TI1F_ED TIM_SMCR_TS_2 /*!< TI1 Edge Detector (TI1F_ED) is used as trigger input */ #define LL_TIM_TS_TI1FP1 (TIM_SMCR_TS_2 | TIM_SMCR_TS_0) /*!< Filtered Timer Input 1 (TI1FP1) is used as trigger input */ #define LL_TIM_TS_TI2FP2 (TIM_SMCR_TS_2 | TIM_SMCR_TS_1) /*!< Filtered Timer Input 2 (TI12P2) is used as trigger input */ #define LL_TIM_TS_ETRF TIM_SMCR_TS /*!< Filtered external Trigger (ETRF) is used as trigger input */ /** * @} */ /** @defgroup TIM_LL_EC_ETR_POLARITY External Trigger Polarity * @{ */ #define LL_TIM_ETR_POLARITY_NONINVERTED ((uint32_t)0x00000000U) /*!< ETR is non-inverted, active at high level or rising edge */ #define LL_TIM_ETR_POLARITY_INVERTED TIM_SMCR_ETP /*!< ETR is inverted, active at low level or falling edge */ /** * @} */ /** @defgroup TIM_LL_EC_ETR_PRESCALER External Trigger Prescaler * @{ */ #define LL_TIM_ETR_PRESCALER_DIV1 ((uint32_t)0x00000000U) /*!< ETR prescaler OFF */ #define LL_TIM_ETR_PRESCALER_DIV2 TIM_SMCR_ETPS_0 /*!< ETR frequency is divided by 2 */ #define LL_TIM_ETR_PRESCALER_DIV4 TIM_SMCR_ETPS_1 /*!< ETR frequency is divided by 4 */ #define LL_TIM_ETR_PRESCALER_DIV8 TIM_SMCR_ETPS /*!< ETR frequency is divided by 8 */ /** * @} */ /** @defgroup TIM_LL_EC_ETR_FILTER External Trigger Filter * @{ */ #define LL_TIM_ETR_FILTER_FDIV1 ((uint32_t)0x00000000U) /*!< No filter, sampling is done at fDTS */ #define LL_TIM_ETR_FILTER_FDIV1_N2 TIM_SMCR_ETF_0 /*!< fSAMPLING=fCK_INT, N=2 */ #define LL_TIM_ETR_FILTER_FDIV1_N4 TIM_SMCR_ETF_1 /*!< fSAMPLING=fCK_INT, N=4 */ #define LL_TIM_ETR_FILTER_FDIV1_N8 (TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fCK_INT, N=8 */ #define LL_TIM_ETR_FILTER_FDIV2_N6 TIM_SMCR_ETF_2 /*!< fSAMPLING=fDTS/2, N=6 */ #define LL_TIM_ETR_FILTER_FDIV2_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/2, N=8 */ #define LL_TIM_ETR_FILTER_FDIV4_N6 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 ) /*!< fSAMPLING=fDTS/4, N=6 */ #define LL_TIM_ETR_FILTER_FDIV4_N8 (TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/4, N=8 */ #define LL_TIM_ETR_FILTER_FDIV8_N6 TIM_SMCR_ETF_3 /*!< fSAMPLING=fDTS/8, N=8 */ #define LL_TIM_ETR_FILTER_FDIV8_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=5 */ #define LL_TIM_ETR_FILTER_FDIV16_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 ) /*!< fSAMPLING=fDTS/16, N=6 */ #define LL_TIM_ETR_FILTER_FDIV16_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_1 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/16, N=8 */ #define LL_TIM_ETR_FILTER_FDIV16_N8 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 ) /*!< fSAMPLING=fDTS/16, N=5 */ #define LL_TIM_ETR_FILTER_FDIV32_N5 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_0) /*!< fSAMPLING=fDTS/32, N=5 */ #define LL_TIM_ETR_FILTER_FDIV32_N6 (TIM_SMCR_ETF_3 | TIM_SMCR_ETF_2 | TIM_SMCR_ETF_1) /*!< fSAMPLING=fDTS/32, N=6 */ #define LL_TIM_ETR_FILTER_FDIV32_N8 TIM_SMCR_ETF /*!< fSAMPLING=fDTS/32, N=8 */ /** * @} */ /** @defgroup TIM_LL_EC_DMABURST_BASEADDR DMA Burst Base Address * @{ */ #define LL_TIM_DMABURST_BASEADDR_CR1 ((uint32_t)0x00000000U) /*!< TIMx_CR1 register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CR2 TIM_DCR_DBA_0 /*!< TIMx_CR2 register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_SMCR TIM_DCR_DBA_1 /*!< TIMx_SMCR register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_DIER (TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_DIER register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_SR TIM_DCR_DBA_2 /*!< TIMx_SR register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_EGR (TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_EGR register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CCMR1 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCMR1 register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CCMR2 (TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCMR2 register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CCER TIM_DCR_DBA_3 /*!< TIMx_CCER register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CNT (TIM_DCR_DBA_3 | TIM_DCR_DBA_0) /*!< TIMx_CNT register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_PSC (TIM_DCR_DBA_3 | TIM_DCR_DBA_1) /*!< TIMx_PSC register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_ARR (TIM_DCR_DBA_3 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_ARR register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CCR1 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_CCR1 register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CCR2 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1) /*!< TIMx_CCR2 register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CCR3 (TIM_DCR_DBA_3 | TIM_DCR_DBA_2 | TIM_DCR_DBA_1 | TIM_DCR_DBA_0) /*!< TIMx_CCR3 register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_CCR4 TIM_DCR_DBA_4 /*!< TIMx_CCR4 register is the DMA base address for DMA burst */ #define LL_TIM_DMABURST_BASEADDR_OR (TIM_DCR_DBA_4 | TIM_DCR_DBA_2 | TIM_DCR_DBA_0) /*!< TIMx_OR register is the DMA base address for DMA burst */ /** * @} */ /** @defgroup TIM_LL_EC_DMABURST_LENGTH DMA Burst Length * @{ */ #define LL_TIM_DMABURST_LENGTH_1TRANSFER ((uint32_t)0x00000000U) /*!< Transfer is done to 1 register starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_2TRANSFERS TIM_DCR_DBL_0 /*!< Transfer is done to 2 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_3TRANSFERS TIM_DCR_DBL_1 /*!< Transfer is done to 3 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_4TRANSFERS (TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 4 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_5TRANSFERS TIM_DCR_DBL_2 /*!< Transfer is done to 5 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_6TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 6 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_7TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 7 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_8TRANSFERS (TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 1 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_9TRANSFERS TIM_DCR_DBL_3 /*!< Transfer is done to 9 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_10TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_0) /*!< Transfer is done to 10 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_11TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1) /*!< Transfer is done to 11 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_12TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 12 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_13TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2) /*!< Transfer is done to 13 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_14TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_0) /*!< Transfer is done to 14 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_15TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1) /*!< Transfer is done to 15 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_16TRANSFERS (TIM_DCR_DBL_3 | TIM_DCR_DBL_2 | TIM_DCR_DBL_1 | TIM_DCR_DBL_0) /*!< Transfer is done to 16 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_17TRANSFERS TIM_DCR_DBL_4 /*!< Transfer is done to 17 registers starting from the DMA burst base address */ #define LL_TIM_DMABURST_LENGTH_18TRANSFERS (TIM_DCR_DBL_4 | TIM_DCR_DBL_0) /*!< Transfer is done to 18 registers starting from the DMA burst base address */ /** * @} */ /** @defgroup TIM_LL_EC_TIM10_TI1_RMP TIM10 input 1 remapping capability * @{ */ #define LL_TIM_TIM10_TI1_RMP_GPIO ((uint32_t)0x00000000U | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to GPIO */ #define LL_TIM_TIM10_TI1_RMP_LSI (TIM_OR_TI1RMP_0 | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to LSI internal clock */ #define LL_TIM_TIM10_TI1_RMP_LSE (TIM_OR_TI1RMP_1 | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to LSE internal clock */ #define LL_TIM_TIM10_TI1_RMP_RTC (TIM_OR_TI1RMP_0 | TIM_OR_TI1RMP_1 | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to RTC wakeup interrupt signal */ /** * @} */ /** @defgroup TIM_LL_EC_TIM10_ETR_RMP TIM10 ETR remap * @{ */ #define LL_TIM_TIM10_ETR_RMP_LSE ((uint32_t)0x00000000U | TIM_OR_RMP_MASK) /*!< TIM10 ETR input is connected to LSE */ #define LL_TIM_TIM10_ETR_RMP_TIM9_TGO (TIM_OR_ETR_RMP | TIM_OR_RMP_MASK) /*!< TIM10 ETR input is connected to TIM9 TGO */ /** * @} */ /** @defgroup TIM_LL_EC_TIM10_TI1_RMP_RI TIM10 Input 1 remap for Routing Interface (RI) * @{ */ #define LL_TIM_TIM10_TI1_RMP ((uint32_t)0x00000000U | TIM_OR_RMP_MASK) /*!< TIM10 Channel1 connection depends on TI1_RMP[1:0] bit values */ #define LL_TIM_TIM10_TI1_RMP_RI (TIM_OR_TI1_RMP_RI | TIM_OR_RMP_MASK) /*!< TIM10 channel1 is connected to RI */ /** * @} */ /** @defgroup TIM_LL_EC_TIM11_TI1_RMP TIM11 input 1 remapping capability * @{ */ #define LL_TIM_TIM11_TI1_RMP_GPIO ((uint32_t)0x00000000U | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to GPIO */ #define LL_TIM_TIM11_TI1_RMP_MSI (TIM_OR_TI1RMP_0 | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to MSI internal clock */ #define LL_TIM_TIM11_TI1_RMP_HSE_RTC (TIM_OR_TI1RMP_1 | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to HSE RTC clock */ #define LL_TIM_TIM11_TI1_RMP_GPIO1 (TIM_OR_TI1RMP_0 | TIM_OR_TI1RMP_1 | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to GPIO */ /** * @} */ /** @defgroup TIM_LL_EC_TIM11_ETR_RMP TIM11 ETR remap * @{ */ #define LL_TIM_TIM11_ETR_RMP_LSE ((uint32_t)0x00000000U | TIM_OR_RMP_MASK) /*!< TIM11 ETR input is connected to LSE */ #define LL_TIM_TIM11_ETR_RMP_TIM9_TGO (TIM_OR_ETR_RMP | TIM_OR_RMP_MASK) /*!< TIM11 ETR input is connected to TIM9 TGO clock */ /** * @} */ /** @defgroup TIM_LL_EC_TIM11_TI1_RMP_RI TIM11 Input 1 remap for Routing Interface (RI) * @{ */ #define LL_TIM_TIM11_TI1_RMP ((uint32_t)0x00000000U | TIM_OR_RMP_MASK) /*!< TIM11 Channel1 connection depends on TI1_RMP[1:0] bit values */ #define LL_TIM_TIM11_TI1_RMP_RI (TIM_OR_TI1_RMP_RI | TIM_OR_RMP_MASK) /*!< TIM11 channel1 is connected to RI */ /** * @} */ /** @defgroup TIM_LL_EC_TIM9_TI1_RMP TIM9 Input 1 remap * @{ */ #define LL_TIM_TIM9_TI1_RMP_GPIO ((uint32_t)0x00000000U | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to GPIO */ #define LL_TIM_TIM9_TI1_RMP_LSE (TIM_OR_TI1RMP_0 | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to LSE internal clock */ #define LL_TIM_TIM9_TI1_RMP_GPIO1 (TIM_OR_TI1RMP_1 | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to GPIO */ #define LL_TIM_TIM9_TI1_RMP_GPIO2 (TIM_OR_TI1RMP_0 | TIM_OR_TI1RMP_1 | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to GPIO */ /** * @} */ /** @defgroup TIM_LL_EC_TIM9_ITR1_RMP TIM9 ITR1 remap * @{ */ #define LL_TIM_TIM9_ITR1_RMP_TIM3_TGO ((uint32_t)0x00000000U | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to TIM3 TGO signal */ #define LL_TIM_TIM9_ITR1_RMP_TOUCH_IO (TIM9_OR_ITR1_RMP | TIM9_OR_RMP_MASK) /*!< TIM9 channel1 is connected to touch sensing I/O */ /** * @} */ /** @defgroup TIM_LL_EC_TIM2_ITR1_RMP TIM2 internal trigger 1 remap * @{ */ #define LL_TIM_TIM2_TIR1_RMP_TIM10_OC ((uint32_t)0x00000000U | TIM9_OR_RMP_MASK) /*!< TIM2 ITR1 input is connected to TIM10 OC*/ #define LL_TIM_TIM2_TIR1_RMP_TIM5_TGO (TIM2_OR_ITR1_RMP | TIM9_OR_RMP_MASK) /*!< TIM2 ITR1 input is connected to TIM5 TGO */ /** * @} */ /** @defgroup TIM_LL_EC_TIM3_ITR2_RMP TIM3 internal trigger 2 remap * @{ */ #define LL_TIM_TIM3_TIR2_RMP_TIM11_OC ((uint32_t)0x00000000U | TIM9_OR_RMP_MASK) /*!< TIM3 ITR2 input is connected to TIM11 OC */ #define LL_TIM_TIM3_TIR2_RMP_TIM5_TGO (TIM3_OR_ITR2_RMP | TIM9_OR_RMP_MASK) /*!< TIM3 ITR2 input is connected to TIM5 TGO */ /** * @} */ /** @defgroup TIM_LL_EC_OCREF_CLR_INT OCREF clear input selection * @{ */ #define LL_TIM_OCREF_CLR_INT_OCREF_CLR ((uint32_t)0x00000000U ) /*!< OCREF_CLR_INT is connected to the OCREF_CLR input */ #define LL_TIM_OCREF_CLR_INT_ETR TIM_SMCR_OCCS /*!< OCREF_CLR_INT is connected to ETRF */ /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup TIM_LL_Exported_Macros TIM Exported Macros * @{ */ /** @defgroup TIM_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in TIM register. * @param __INSTANCE__ TIM Instance * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_TIM_WriteReg(__INSTANCE__, __REG__, __VALUE__) WRITE_REG(__INSTANCE__->__REG__, (__VALUE__)) /** * @brief Read a value in TIM register. * @param __INSTANCE__ TIM Instance * @param __REG__ Register to be read * @retval Register value */ #define LL_TIM_ReadReg(__INSTANCE__, __REG__) READ_REG(__INSTANCE__->__REG__) /** * @} */ /** @defgroup TIM_LL_EM_Exported_Macros Exported_Macros * @{ */ /** * @brief HELPER macro calculating the prescaler value to achieve the required counter clock frequency. * @note ex: @ref __LL_TIM_CALC_PSC (80000000, 1000000); * @param __TIMCLK__ timer input clock frequency (in Hz) * @param __CNTCLK__ counter clock frequency (in Hz) * @retval Prescaler value (between Min_Data=0 and Max_Data=65535) */ #define __LL_TIM_CALC_PSC(__TIMCLK__, __CNTCLK__) \ ((__TIMCLK__) >= (__CNTCLK__)) ? (uint32_t)((__TIMCLK__)/(__CNTCLK__) - 1U) : 0U /** * @brief HELPER macro calculating the auto-reload value to achieve the required output signal frequency. * @note ex: @ref __LL_TIM_CALC_ARR (1000000, @ref LL_TIM_GetPrescaler (), 10000); * @param __TIMCLK__ timer input clock frequency (in Hz) * @param __PSC__ prescaler * @param __FREQ__ output signal frequency (in Hz) * @retval Auto-reload value (between Min_Data=0 and Max_Data=65535) */ #define __LL_TIM_CALC_ARR(__TIMCLK__, __PSC__, __FREQ__) \ (((__TIMCLK__)/((__PSC__) + 1U)) >= (__FREQ__)) ? ((__TIMCLK__)/((__FREQ__) * ((__PSC__) + 1U)) - 1U) : 0U /** * @brief HELPER macro calculating the compare value required to achieve the required timer output compare active/inactive delay. * @note ex: @ref __LL_TIM_CALC_DELAY (1000000, @ref LL_TIM_GetPrescaler (), 10); * @param __TIMCLK__ timer input clock frequency (in Hz) * @param __PSC__ prescaler * @param __DELAY__ timer output compare active/inactive delay (in us) * @retval Compare value (between Min_Data=0 and Max_Data=65535) */ #define __LL_TIM_CALC_DELAY(__TIMCLK__, __PSC__, __DELAY__) \ ((uint32_t)(((uint64_t)(__TIMCLK__) * (uint64_t)(__DELAY__)) \ / ((uint64_t)1000000U * (uint64_t)((__PSC__) + 1U)))) /** * @brief HELPER macro calculating the auto-reload value to achieve the required pulse duration (when the timer operates in one pulse mode). * @note ex: @ref __LL_TIM_CALC_PULSE (1000000, @ref LL_TIM_GetPrescaler (), 10, 20); * @param __TIMCLK__ timer input clock frequency (in Hz) * @param __PSC__ prescaler * @param __DELAY__ timer output compare active/inactive delay (in us) * @param __PULSE__ pulse duration (in us) * @retval Auto-reload value (between Min_Data=0 and Max_Data=65535) */ #define __LL_TIM_CALC_PULSE(__TIMCLK__, __PSC__, __DELAY__, __PULSE__) \ ((uint32_t)(__LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__PULSE__)) \ + __LL_TIM_CALC_DELAY((__TIMCLK__), (__PSC__), (__DELAY__)))) /** * @brief HELPER macro retrieving the ratio of the input capture prescaler * @note ex: @ref __LL_TIM_GET_ICPSC_RATIO (@ref LL_TIM_IC_GetPrescaler ()); * @param __ICPSC__ This parameter can be one of the following values: * @arg @ref LL_TIM_ICPSC_DIV1 * @arg @ref LL_TIM_ICPSC_DIV2 * @arg @ref LL_TIM_ICPSC_DIV4 * @arg @ref LL_TIM_ICPSC_DIV8 * @retval Input capture prescaler ratio (1, 2, 4 or 8) */ #define __LL_TIM_GET_ICPSC_RATIO(__ICPSC__) \ ((uint32_t)((uint32_t)0x01U << (((__ICPSC__) >> 16U) >> TIM_CCMR1_IC1PSC_Pos))) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup TIM_LL_Exported_Functions TIM Exported Functions * @{ */ /** @defgroup TIM_LL_EF_Time_Base Time Base configuration * @{ */ /** * @brief Enable timer counter. * @rmtoll CR1 CEN LL_TIM_EnableCounter * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableCounter(TIM_TypeDef *TIMx) { SET_BIT(TIMx->CR1, TIM_CR1_CEN); } /** * @brief Disable timer counter. * @rmtoll CR1 CEN LL_TIM_DisableCounter * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableCounter(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->CR1, TIM_CR1_CEN); } /** * @brief Indicates whether the timer counter is enabled. * @rmtoll CR1 CEN LL_TIM_IsEnabledCounter * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledCounter(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->CR1, TIM_CR1_CEN) == (TIM_CR1_CEN)); } /** * @brief Enable update event generation. * @rmtoll CR1 UDIS LL_TIM_EnableUpdateEvent * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableUpdateEvent(TIM_TypeDef *TIMx) { SET_BIT(TIMx->CR1, TIM_CR1_UDIS); } /** * @brief Disable update event generation. * @rmtoll CR1 UDIS LL_TIM_DisableUpdateEvent * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableUpdateEvent(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->CR1, TIM_CR1_UDIS); } /** * @brief Indicates whether update event generation is enabled. * @rmtoll CR1 UDIS LL_TIM_IsEnabledUpdateEvent * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledUpdateEvent(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->CR1, TIM_CR1_UDIS) == (TIM_CR1_UDIS)); } /** * @brief Set update event source * @note Update event source set to LL_TIM_UPDATESOURCE_REGULAR: any of the following events * generate an update interrupt or DMA request if enabled: * - Counter overflow/underflow * - Setting the UG bit * - Update generation through the slave mode controller * @note Update event source set to LL_TIM_UPDATESOURCE_COUNTER: only counter * overflow/underflow generates an update interrupt or DMA request if enabled. * @rmtoll CR1 URS LL_TIM_SetUpdateSource * @param TIMx Timer instance * @param UpdateSource This parameter can be one of the following values: * @arg @ref LL_TIM_UPDATESOURCE_REGULAR * @arg @ref LL_TIM_UPDATESOURCE_COUNTER * @retval None */ __STATIC_INLINE void LL_TIM_SetUpdateSource(TIM_TypeDef *TIMx, uint32_t UpdateSource) { MODIFY_REG(TIMx->CR1, TIM_CR1_URS, UpdateSource); } /** * @brief Get actual event update source * @rmtoll CR1 URS LL_TIM_GetUpdateSource * @param TIMx Timer instance * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_UPDATESOURCE_REGULAR * @arg @ref LL_TIM_UPDATESOURCE_COUNTER */ __STATIC_INLINE uint32_t LL_TIM_GetUpdateSource(TIM_TypeDef *TIMx) { return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_URS)); } /** * @brief Set one pulse mode (one shot v.s. repetitive). * @rmtoll CR1 OPM LL_TIM_SetOnePulseMode * @param TIMx Timer instance * @param OnePulseMode This parameter can be one of the following values: * @arg @ref LL_TIM_ONEPULSEMODE_SINGLE * @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE * @retval None */ __STATIC_INLINE void LL_TIM_SetOnePulseMode(TIM_TypeDef *TIMx, uint32_t OnePulseMode) { MODIFY_REG(TIMx->CR1, TIM_CR1_OPM, OnePulseMode); } /** * @brief Get actual one pulse mode. * @rmtoll CR1 OPM LL_TIM_GetOnePulseMode * @param TIMx Timer instance * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_ONEPULSEMODE_SINGLE * @arg @ref LL_TIM_ONEPULSEMODE_REPETITIVE */ __STATIC_INLINE uint32_t LL_TIM_GetOnePulseMode(TIM_TypeDef *TIMx) { return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_OPM)); } /** * @brief Set the timer counter counting mode. * @note Macro @ref IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to * check whether or not the counter mode selection feature is supported * by a timer instance. * @rmtoll CR1 DIR LL_TIM_SetCounterMode\n * CR1 CMS LL_TIM_SetCounterMode * @param TIMx Timer instance * @param CounterMode This parameter can be one of the following values: * @arg @ref LL_TIM_COUNTERMODE_UP * @arg @ref LL_TIM_COUNTERMODE_DOWN * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP * @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN * @retval None */ __STATIC_INLINE void LL_TIM_SetCounterMode(TIM_TypeDef *TIMx, uint32_t CounterMode) { MODIFY_REG(TIMx->CR1, TIM_CR1_DIR | TIM_CR1_CMS, CounterMode); } /** * @brief Get actual counter mode. * @note Macro @ref IS_TIM_COUNTER_MODE_SELECT_INSTANCE(TIMx) can be used to * check whether or not the counter mode selection feature is supported * by a timer instance. * @rmtoll CR1 DIR LL_TIM_GetCounterMode\n * CR1 CMS LL_TIM_GetCounterMode * @param TIMx Timer instance * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_COUNTERMODE_UP * @arg @ref LL_TIM_COUNTERMODE_DOWN * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP * @arg @ref LL_TIM_COUNTERMODE_CENTER_DOWN * @arg @ref LL_TIM_COUNTERMODE_CENTER_UP_DOWN */ __STATIC_INLINE uint32_t LL_TIM_GetCounterMode(TIM_TypeDef *TIMx) { return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR | TIM_CR1_CMS)); } /** * @brief Enable auto-reload (ARR) preload. * @rmtoll CR1 ARPE LL_TIM_EnableARRPreload * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableARRPreload(TIM_TypeDef *TIMx) { SET_BIT(TIMx->CR1, TIM_CR1_ARPE); } /** * @brief Disable auto-reload (ARR) preload. * @rmtoll CR1 ARPE LL_TIM_DisableARRPreload * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableARRPreload(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->CR1, TIM_CR1_ARPE); } /** * @brief Indicates whether auto-reload (ARR) preload is enabled. * @rmtoll CR1 ARPE LL_TIM_IsEnabledARRPreload * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledARRPreload(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->CR1, TIM_CR1_ARPE) == (TIM_CR1_ARPE)); } /** * @brief Set the division ratio between the timer clock and the sampling clock used by the dead-time generators (when supported) and the digital filters. * @note Macro @ref IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check * whether or not the clock division feature is supported by the timer * instance. * @rmtoll CR1 CKD LL_TIM_SetClockDivision * @param TIMx Timer instance * @param ClockDivision This parameter can be one of the following values: * @arg @ref LL_TIM_CLOCKDIVISION_DIV1 * @arg @ref LL_TIM_CLOCKDIVISION_DIV2 * @arg @ref LL_TIM_CLOCKDIVISION_DIV4 * @retval None */ __STATIC_INLINE void LL_TIM_SetClockDivision(TIM_TypeDef *TIMx, uint32_t ClockDivision) { MODIFY_REG(TIMx->CR1, TIM_CR1_CKD, ClockDivision); } /** * @brief Get the actual division ratio between the timer clock and the sampling clock used by the dead-time generators (when supported) and the digital filters. * @note Macro @ref IS_TIM_CLOCK_DIVISION_INSTANCE(TIMx) can be used to check * whether or not the clock division feature is supported by the timer * instance. * @rmtoll CR1 CKD LL_TIM_GetClockDivision * @param TIMx Timer instance * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_CLOCKDIVISION_DIV1 * @arg @ref LL_TIM_CLOCKDIVISION_DIV2 * @arg @ref LL_TIM_CLOCKDIVISION_DIV4 */ __STATIC_INLINE uint32_t LL_TIM_GetClockDivision(TIM_TypeDef *TIMx) { return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_CKD)); } /** * @brief Set the counter value. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @rmtoll CNT CNT LL_TIM_SetCounter * @param TIMx Timer instance * @param Counter Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF) * @retval None */ __STATIC_INLINE void LL_TIM_SetCounter(TIM_TypeDef *TIMx, uint32_t Counter) { WRITE_REG(TIMx->CNT, Counter); } /** * @brief Get the counter value. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @rmtoll CNT CNT LL_TIM_GetCounter * @param TIMx Timer instance * @retval Counter value (between Min_Data=0 and Max_Data=0xFFFF or 0xFFFFFFFF) */ __STATIC_INLINE uint32_t LL_TIM_GetCounter(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CNT)); } /** * @brief Get the current direction of the counter * @rmtoll CR1 DIR LL_TIM_GetDirection * @param TIMx Timer instance * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_COUNTERDIRECTION_UP * @arg @ref LL_TIM_COUNTERDIRECTION_DOWN */ __STATIC_INLINE uint32_t LL_TIM_GetDirection(TIM_TypeDef *TIMx) { return (uint32_t)(READ_BIT(TIMx->CR1, TIM_CR1_DIR)); } /** * @brief Set the prescaler value. * @note The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1). * @note The prescaler can be changed on the fly as this control register is buffered. The new * prescaler ratio is taken into account at the next update event. * @note Helper macro @ref __LL_TIM_CALC_PSC can be used to calculate the Prescaler parameter * @rmtoll PSC PSC LL_TIM_SetPrescaler * @param TIMx Timer instance * @param Prescaler between Min_Data=0 and Max_Data=65535 * @retval None */ __STATIC_INLINE void LL_TIM_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Prescaler) { WRITE_REG(TIMx->PSC, Prescaler); } /** * @brief Get the prescaler value. * @rmtoll PSC PSC LL_TIM_GetPrescaler * @param TIMx Timer instance * @retval Prescaler value between Min_Data=0 and Max_Data=65535 */ __STATIC_INLINE uint32_t LL_TIM_GetPrescaler(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->PSC)); } /** * @brief Set the auto-reload value. * @note The counter is blocked while the auto-reload value is null. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Helper macro @ref __LL_TIM_CALC_ARR can be used to calculate the AutoReload parameter * @rmtoll ARR ARR LL_TIM_SetAutoReload * @param TIMx Timer instance * @param AutoReload between Min_Data=0 and Max_Data=65535 * @retval None */ __STATIC_INLINE void LL_TIM_SetAutoReload(TIM_TypeDef *TIMx, uint32_t AutoReload) { WRITE_REG(TIMx->ARR, AutoReload); } /** * @brief Get the auto-reload value. * @rmtoll ARR ARR LL_TIM_GetAutoReload * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @param TIMx Timer instance * @retval Auto-reload value */ __STATIC_INLINE uint32_t LL_TIM_GetAutoReload(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->ARR)); } /** * @} */ /** @defgroup TIM_LL_EF_Capture_Compare Capture Compare configuration * @{ */ /** * @brief Set the trigger of the capture/compare DMA request. * @rmtoll CR2 CCDS LL_TIM_CC_SetDMAReqTrigger * @param TIMx Timer instance * @param DMAReqTrigger This parameter can be one of the following values: * @arg @ref LL_TIM_CCDMAREQUEST_CC * @arg @ref LL_TIM_CCDMAREQUEST_UPDATE * @retval None */ __STATIC_INLINE void LL_TIM_CC_SetDMAReqTrigger(TIM_TypeDef *TIMx, uint32_t DMAReqTrigger) { MODIFY_REG(TIMx->CR2, TIM_CR2_CCDS, DMAReqTrigger); } /** * @brief Get actual trigger of the capture/compare DMA request. * @rmtoll CR2 CCDS LL_TIM_CC_GetDMAReqTrigger * @param TIMx Timer instance * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_CCDMAREQUEST_CC * @arg @ref LL_TIM_CCDMAREQUEST_UPDATE */ __STATIC_INLINE uint32_t LL_TIM_CC_GetDMAReqTrigger(TIM_TypeDef *TIMx) { return (uint32_t)(READ_BIT(TIMx->CR2, TIM_CR2_CCDS)); } /** * @brief Enable capture/compare channels. * @rmtoll CCER CC1E LL_TIM_CC_EnableChannel\n * CCER CC2E LL_TIM_CC_EnableChannel\n * CCER CC3E LL_TIM_CC_EnableChannel\n * CCER CC4E LL_TIM_CC_EnableChannel * @param TIMx Timer instance * @param Channels This parameter can be a combination of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval None */ __STATIC_INLINE void LL_TIM_CC_EnableChannel(TIM_TypeDef *TIMx, uint32_t Channels) { SET_BIT(TIMx->CCER, Channels); } /** * @brief Disable capture/compare channels. * @rmtoll CCER CC1E LL_TIM_CC_DisableChannel\n * CCER CC2E LL_TIM_CC_DisableChannel\n * CCER CC3E LL_TIM_CC_DisableChannel\n * CCER CC4E LL_TIM_CC_DisableChannel * @param TIMx Timer instance * @param Channels This parameter can be a combination of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval None */ __STATIC_INLINE void LL_TIM_CC_DisableChannel(TIM_TypeDef *TIMx, uint32_t Channels) { CLEAR_BIT(TIMx->CCER, Channels); } /** * @brief Indicate whether channel(s) is(are) enabled. * @rmtoll CCER CC1E LL_TIM_CC_IsEnabledChannel\n * CCER CC2E LL_TIM_CC_IsEnabledChannel\n * CCER CC3E LL_TIM_CC_IsEnabledChannel\n * CCER CC4E LL_TIM_CC_IsEnabledChannel * @param TIMx Timer instance * @param Channels This parameter can be a combination of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_CC_IsEnabledChannel(TIM_TypeDef *TIMx, uint32_t Channels) { return (READ_BIT(TIMx->CCER, Channels) == (Channels)); } /** * @} */ /** @defgroup TIM_LL_EF_Output_Channel Output channel configuration * @{ */ /** * @brief Configure an output channel. * @rmtoll CCMR1 CC1S LL_TIM_OC_ConfigOutput\n * CCMR1 CC2S LL_TIM_OC_ConfigOutput\n * CCMR2 CC3S LL_TIM_OC_ConfigOutput\n * CCMR2 CC4S LL_TIM_OC_ConfigOutput\n * CCER CC1P LL_TIM_OC_ConfigOutput\n * CCER CC2P LL_TIM_OC_ConfigOutput\n * CCER CC3P LL_TIM_OC_ConfigOutput\n * CCER CC4P LL_TIM_OC_ConfigOutput\n * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param Configuration This parameter must be a combination of all the following values: * @arg @ref LL_TIM_OCPOLARITY_HIGH or @ref LL_TIM_OCPOLARITY_LOW * @retval None */ __STATIC_INLINE void LL_TIM_OC_ConfigOutput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); CLEAR_BIT(*pReg, (TIM_CCMR1_CC1S << SHIFT_TAB_OCxx[iChannel])); MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]), (Configuration & TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]); } /** * @brief Define the behavior of the output reference signal OCxREF from which * OCx and OCxN (when relevant) are derived. * @rmtoll CCMR1 OC1M LL_TIM_OC_SetMode\n * CCMR1 OC2M LL_TIM_OC_SetMode\n * CCMR2 OC3M LL_TIM_OC_SetMode\n * CCMR2 OC4M LL_TIM_OC_SetMode * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param Mode This parameter can be one of the following values: * @arg @ref LL_TIM_OCMODE_FROZEN * @arg @ref LL_TIM_OCMODE_ACTIVE * @arg @ref LL_TIM_OCMODE_INACTIVE * @arg @ref LL_TIM_OCMODE_TOGGLE * @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE * @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE * @arg @ref LL_TIM_OCMODE_PWM1 * @arg @ref LL_TIM_OCMODE_PWM2 * @retval None */ __STATIC_INLINE void LL_TIM_OC_SetMode(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Mode) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); MODIFY_REG(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel]), Mode << SHIFT_TAB_OCxx[iChannel]); } /** * @brief Get the output compare mode of an output channel. * @rmtoll CCMR1 OC1M LL_TIM_OC_GetMode\n * CCMR1 OC2M LL_TIM_OC_GetMode\n * CCMR2 OC3M LL_TIM_OC_GetMode\n * CCMR2 OC4M LL_TIM_OC_GetMode * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_OCMODE_FROZEN * @arg @ref LL_TIM_OCMODE_ACTIVE * @arg @ref LL_TIM_OCMODE_INACTIVE * @arg @ref LL_TIM_OCMODE_TOGGLE * @arg @ref LL_TIM_OCMODE_FORCED_INACTIVE * @arg @ref LL_TIM_OCMODE_FORCED_ACTIVE * @arg @ref LL_TIM_OCMODE_PWM1 * @arg @ref LL_TIM_OCMODE_PWM2 */ __STATIC_INLINE uint32_t LL_TIM_OC_GetMode(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); return (READ_BIT(*pReg, ((TIM_CCMR1_OC1M | TIM_CCMR1_CC1S) << SHIFT_TAB_OCxx[iChannel])) >> SHIFT_TAB_OCxx[iChannel]); } /** * @brief Set the polarity of an output channel. * @rmtoll CCER CC1P LL_TIM_OC_SetPolarity\n * CCER CC2P LL_TIM_OC_SetPolarity\n * CCER CC3P LL_TIM_OC_SetPolarity\n * CCER CC4P LL_TIM_OC_SetPolarity * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param Polarity This parameter can be one of the following values: * @arg @ref LL_TIM_OCPOLARITY_HIGH * @arg @ref LL_TIM_OCPOLARITY_LOW * @retval None */ __STATIC_INLINE void LL_TIM_OC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Polarity) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); MODIFY_REG(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel]), Polarity << SHIFT_TAB_CCxP[iChannel]); } /** * @brief Get the polarity of an output channel. * @rmtoll CCER CC1P LL_TIM_OC_GetPolarity\n * CCER CC2P LL_TIM_OC_GetPolarity\n * CCER CC3P LL_TIM_OC_GetPolarity\n * CCER CC4P LL_TIM_OC_GetPolarity * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_OCPOLARITY_HIGH * @arg @ref LL_TIM_OCPOLARITY_LOW */ __STATIC_INLINE uint32_t LL_TIM_OC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); return (READ_BIT(TIMx->CCER, (TIM_CCER_CC1P << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]); } /** * @brief Enable fast mode for the output channel. * @note Acts only if the channel is configured in PWM1 or PWM2 mode. * @rmtoll CCMR1 OC1FE LL_TIM_OC_EnableFast\n * CCMR1 OC2FE LL_TIM_OC_EnableFast\n * CCMR2 OC3FE LL_TIM_OC_EnableFast\n * CCMR2 OC4FE LL_TIM_OC_EnableFast * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval None */ __STATIC_INLINE void LL_TIM_OC_EnableFast(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); SET_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel])); } /** * @brief Disable fast mode for the output channel. * @rmtoll CCMR1 OC1FE LL_TIM_OC_DisableFast\n * CCMR1 OC2FE LL_TIM_OC_DisableFast\n * CCMR2 OC3FE LL_TIM_OC_DisableFast\n * CCMR2 OC4FE LL_TIM_OC_DisableFast * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval None */ __STATIC_INLINE void LL_TIM_OC_DisableFast(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); CLEAR_BIT(*pReg, (TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel])); } /** * @brief Indicates whether fast mode is enabled for the output channel. * @rmtoll CCMR1 OC1FE LL_TIM_OC_IsEnabledFast\n * CCMR1 OC2FE LL_TIM_OC_IsEnabledFast\n * CCMR2 OC3FE LL_TIM_OC_IsEnabledFast\n * CCMR2 OC4FE LL_TIM_OC_IsEnabledFast\n * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledFast(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); register uint32_t bitfield = TIM_CCMR1_OC1FE << SHIFT_TAB_OCxx[iChannel]; return (READ_BIT(*pReg, bitfield) == bitfield); } /** * @brief Enable compare register (TIMx_CCRx) preload for the output channel. * @rmtoll CCMR1 OC1PE LL_TIM_OC_EnablePreload\n * CCMR1 OC2PE LL_TIM_OC_EnablePreload\n * CCMR2 OC3PE LL_TIM_OC_EnablePreload\n * CCMR2 OC4PE LL_TIM_OC_EnablePreload * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval None */ __STATIC_INLINE void LL_TIM_OC_EnablePreload(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); SET_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel])); } /** * @brief Disable compare register (TIMx_CCRx) preload for the output channel. * @rmtoll CCMR1 OC1PE LL_TIM_OC_DisablePreload\n * CCMR1 OC2PE LL_TIM_OC_DisablePreload\n * CCMR2 OC3PE LL_TIM_OC_DisablePreload\n * CCMR2 OC4PE LL_TIM_OC_DisablePreload * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval None */ __STATIC_INLINE void LL_TIM_OC_DisablePreload(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); CLEAR_BIT(*pReg, (TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel])); } /** * @brief Indicates whether compare register (TIMx_CCRx) preload is enabled for the output channel. * @rmtoll CCMR1 OC1PE LL_TIM_OC_IsEnabledPreload\n * CCMR1 OC2PE LL_TIM_OC_IsEnabledPreload\n * CCMR2 OC3PE LL_TIM_OC_IsEnabledPreload\n * CCMR2 OC4PE LL_TIM_OC_IsEnabledPreload\n * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledPreload(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); register uint32_t bitfield = TIM_CCMR1_OC1PE << SHIFT_TAB_OCxx[iChannel]; return (READ_BIT(*pReg, bitfield) == bitfield); } /** * @brief Enable clearing the output channel on an external event. * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode. * @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether * or not a timer instance can clear the OCxREF signal on an external event. * @rmtoll CCMR1 OC1CE LL_TIM_OC_EnableClear\n * CCMR1 OC2CE LL_TIM_OC_EnableClear\n * CCMR2 OC3CE LL_TIM_OC_EnableClear\n * CCMR2 OC4CE LL_TIM_OC_EnableClear * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval None */ __STATIC_INLINE void LL_TIM_OC_EnableClear(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); SET_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel])); } /** * @brief Disable clearing the output channel on an external event. * @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether * or not a timer instance can clear the OCxREF signal on an external event. * @rmtoll CCMR1 OC1CE LL_TIM_OC_DisableClear\n * CCMR1 OC2CE LL_TIM_OC_DisableClear\n * CCMR2 OC3CE LL_TIM_OC_DisableClear\n * CCMR2 OC4CE LL_TIM_OC_DisableClear * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval None */ __STATIC_INLINE void LL_TIM_OC_DisableClear(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); CLEAR_BIT(*pReg, (TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel])); } /** * @brief Indicates clearing the output channel on an external event is enabled for the output channel. * @note This function enables clearing the output channel on an external event. * @note This function can only be used in Output compare and PWM modes. It does not work in Forced mode. * @note Macro @ref IS_TIM_OCXREF_CLEAR_INSTANCE(TIMx) can be used to check whether * or not a timer instance can clear the OCxREF signal on an external event. * @rmtoll CCMR1 OC1CE LL_TIM_OC_IsEnabledClear\n * CCMR1 OC2CE LL_TIM_OC_IsEnabledClear\n * CCMR2 OC3CE LL_TIM_OC_IsEnabledClear\n * CCMR2 OC4CE LL_TIM_OC_IsEnabledClear\n * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_OC_IsEnabledClear(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); register uint32_t bitfield = TIM_CCMR1_OC1CE << SHIFT_TAB_OCxx[iChannel]; return (READ_BIT(*pReg, bitfield) == bitfield); } /** * @brief Set compare value for output channel 1 (TIMx_CCR1). * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not * output channel 1 is supported by a timer instance. * @rmtoll CCR1 CCR1 LL_TIM_OC_SetCompareCH1 * @param TIMx Timer instance * @param CompareValue between Min_Data=0 and Max_Data=65535 * @retval None */ __STATIC_INLINE void LL_TIM_OC_SetCompareCH1(TIM_TypeDef *TIMx, uint32_t CompareValue) { WRITE_REG(TIMx->CCR1, CompareValue); } /** * @brief Set compare value for output channel 2 (TIMx_CCR2). * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not * output channel 2 is supported by a timer instance. * @rmtoll CCR2 CCR2 LL_TIM_OC_SetCompareCH2 * @param TIMx Timer instance * @param CompareValue between Min_Data=0 and Max_Data=65535 * @retval None */ __STATIC_INLINE void LL_TIM_OC_SetCompareCH2(TIM_TypeDef *TIMx, uint32_t CompareValue) { WRITE_REG(TIMx->CCR2, CompareValue); } /** * @brief Set compare value for output channel 3 (TIMx_CCR3). * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not * output channel is supported by a timer instance. * @rmtoll CCR3 CCR3 LL_TIM_OC_SetCompareCH3 * @param TIMx Timer instance * @param CompareValue between Min_Data=0 and Max_Data=65535 * @retval None */ __STATIC_INLINE void LL_TIM_OC_SetCompareCH3(TIM_TypeDef *TIMx, uint32_t CompareValue) { WRITE_REG(TIMx->CCR3, CompareValue); } /** * @brief Set compare value for output channel 4 (TIMx_CCR4). * @note In 32-bit timer implementations compare value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not * output channel 4 is supported by a timer instance. * @rmtoll CCR4 CCR4 LL_TIM_OC_SetCompareCH4 * @param TIMx Timer instance * @param CompareValue between Min_Data=0 and Max_Data=65535 * @retval None */ __STATIC_INLINE void LL_TIM_OC_SetCompareCH4(TIM_TypeDef *TIMx, uint32_t CompareValue) { WRITE_REG(TIMx->CCR4, CompareValue); } /** * @brief Get compare value (TIMx_CCR1) set for output channel 1. * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not * output channel 1 is supported by a timer instance. * @rmtoll CCR1 CCR1 LL_TIM_OC_GetCompareCH1 * @param TIMx Timer instance * @retval CompareValue (between Min_Data=0 and Max_Data=65535) */ __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH1(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CCR1)); } /** * @brief Get compare value (TIMx_CCR2) set for output channel 2. * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not * output channel 2 is supported by a timer instance. * @rmtoll CCR2 CCR2 LL_TIM_OC_GetCompareCH2 * @param TIMx Timer instance * @retval CompareValue (between Min_Data=0 and Max_Data=65535) */ __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH2(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CCR2)); } /** * @brief Get compare value (TIMx_CCR3) set for output channel 3. * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not * output channel 3 is supported by a timer instance. * @rmtoll CCR3 CCR3 LL_TIM_OC_GetCompareCH3 * @param TIMx Timer instance * @retval CompareValue (between Min_Data=0 and Max_Data=65535) */ __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH3(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CCR3)); } /** * @brief Get compare value (TIMx_CCR4) set for output channel 4. * @note In 32-bit timer implementations returned compare value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not * output channel 4 is supported by a timer instance. * @rmtoll CCR4 CCR4 LL_TIM_OC_GetCompareCH4 * @param TIMx Timer instance * @retval CompareValue (between Min_Data=0 and Max_Data=65535) */ __STATIC_INLINE uint32_t LL_TIM_OC_GetCompareCH4(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CCR4)); } /** * @} */ /** @defgroup TIM_LL_EF_Input_Channel Input channel configuration * @{ */ /** * @brief Configure input channel. * @rmtoll CCMR1 CC1S LL_TIM_IC_Config\n * CCMR1 IC1PSC LL_TIM_IC_Config\n * CCMR1 IC1F LL_TIM_IC_Config\n * CCMR1 CC2S LL_TIM_IC_Config\n * CCMR1 IC2PSC LL_TIM_IC_Config\n * CCMR1 IC2F LL_TIM_IC_Config\n * CCMR2 CC3S LL_TIM_IC_Config\n * CCMR2 IC3PSC LL_TIM_IC_Config\n * CCMR2 IC3F LL_TIM_IC_Config\n * CCMR2 CC4S LL_TIM_IC_Config\n * CCMR2 IC4PSC LL_TIM_IC_Config\n * CCMR2 IC4F LL_TIM_IC_Config\n * CCER CC1P LL_TIM_IC_Config\n * CCER CC1NP LL_TIM_IC_Config\n * CCER CC2P LL_TIM_IC_Config\n * CCER CC2NP LL_TIM_IC_Config\n * CCER CC3P LL_TIM_IC_Config\n * CCER CC3NP LL_TIM_IC_Config\n * CCER CC4P LL_TIM_IC_Config\n * CCER CC4NP LL_TIM_IC_Config * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param Configuration This parameter must be a combination of all the following values: * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI or @ref LL_TIM_ACTIVEINPUT_INDIRECTTI or @ref LL_TIM_ACTIVEINPUT_TRC * @arg @ref LL_TIM_ICPSC_DIV1 or ... or @ref LL_TIM_ICPSC_DIV8 * @arg @ref LL_TIM_IC_FILTER_FDIV1 or ... or @ref LL_TIM_IC_FILTER_FDIV32_N8 * @arg @ref LL_TIM_IC_POLARITY_RISING or @ref LL_TIM_IC_POLARITY_FALLING or @ref LL_TIM_IC_POLARITY_BOTHEDGE * @retval None */ __STATIC_INLINE void LL_TIM_IC_Config(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t Configuration) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), ((Configuration >> 16U) & (TIM_CCMR1_IC1F | TIM_CCMR1_IC1PSC | TIM_CCMR1_CC1S)) << SHIFT_TAB_ICxx[iChannel]); MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]), (Configuration & (TIM_CCER_CC1NP | TIM_CCER_CC1P)) << SHIFT_TAB_CCxP[iChannel]); } /** * @brief Set the active input. * @rmtoll CCMR1 CC1S LL_TIM_IC_SetActiveInput\n * CCMR1 CC2S LL_TIM_IC_SetActiveInput\n * CCMR2 CC3S LL_TIM_IC_SetActiveInput\n * CCMR2 CC4S LL_TIM_IC_SetActiveInput * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param ICActiveInput This parameter can be one of the following values: * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI * @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI * @arg @ref LL_TIM_ACTIVEINPUT_TRC * @retval None */ __STATIC_INLINE void LL_TIM_IC_SetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICActiveInput) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); MODIFY_REG(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel]), (ICActiveInput >> 16U) << SHIFT_TAB_ICxx[iChannel]); } /** * @brief Get the current active input. * @rmtoll CCMR1 CC1S LL_TIM_IC_GetActiveInput\n * CCMR1 CC2S LL_TIM_IC_GetActiveInput\n * CCMR2 CC3S LL_TIM_IC_GetActiveInput\n * CCMR2 CC4S LL_TIM_IC_GetActiveInput * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_ACTIVEINPUT_DIRECTTI * @arg @ref LL_TIM_ACTIVEINPUT_INDIRECTTI * @arg @ref LL_TIM_ACTIVEINPUT_TRC */ __STATIC_INLINE uint32_t LL_TIM_IC_GetActiveInput(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); return ((READ_BIT(*pReg, ((TIM_CCMR1_CC1S) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U); } /** * @brief Set the prescaler of input channel. * @rmtoll CCMR1 IC1PSC LL_TIM_IC_SetPrescaler\n * CCMR1 IC2PSC LL_TIM_IC_SetPrescaler\n * CCMR2 IC3PSC LL_TIM_IC_SetPrescaler\n * CCMR2 IC4PSC LL_TIM_IC_SetPrescaler * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param ICPrescaler This parameter can be one of the following values: * @arg @ref LL_TIM_ICPSC_DIV1 * @arg @ref LL_TIM_ICPSC_DIV2 * @arg @ref LL_TIM_ICPSC_DIV4 * @arg @ref LL_TIM_ICPSC_DIV8 * @retval None */ __STATIC_INLINE void LL_TIM_IC_SetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPrescaler) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); MODIFY_REG(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel]), (ICPrescaler >> 16U) << SHIFT_TAB_ICxx[iChannel]); } /** * @brief Get the current prescaler value acting on an input channel. * @rmtoll CCMR1 IC1PSC LL_TIM_IC_GetPrescaler\n * CCMR1 IC2PSC LL_TIM_IC_GetPrescaler\n * CCMR2 IC3PSC LL_TIM_IC_GetPrescaler\n * CCMR2 IC4PSC LL_TIM_IC_GetPrescaler * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_ICPSC_DIV1 * @arg @ref LL_TIM_ICPSC_DIV2 * @arg @ref LL_TIM_ICPSC_DIV4 * @arg @ref LL_TIM_ICPSC_DIV8 */ __STATIC_INLINE uint32_t LL_TIM_IC_GetPrescaler(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1PSC) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U); } /** * @brief Set the input filter duration. * @rmtoll CCMR1 IC1F LL_TIM_IC_SetFilter\n * CCMR1 IC2F LL_TIM_IC_SetFilter\n * CCMR2 IC3F LL_TIM_IC_SetFilter\n * CCMR2 IC4F LL_TIM_IC_SetFilter * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param ICFilter This parameter can be one of the following values: * @arg @ref LL_TIM_IC_FILTER_FDIV1 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N2 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N4 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV2_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV2_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV4_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV4_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV8_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV8_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N5 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N5 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N8 * @retval None */ __STATIC_INLINE void LL_TIM_IC_SetFilter(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICFilter) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); MODIFY_REG(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel]), (ICFilter >> 16U) << SHIFT_TAB_ICxx[iChannel]); } /** * @brief Get the input filter duration. * @rmtoll CCMR1 IC1F LL_TIM_IC_GetFilter\n * CCMR1 IC2F LL_TIM_IC_GetFilter\n * CCMR2 IC3F LL_TIM_IC_GetFilter\n * CCMR2 IC4F LL_TIM_IC_GetFilter * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_IC_FILTER_FDIV1 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N2 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N4 * @arg @ref LL_TIM_IC_FILTER_FDIV1_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV2_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV2_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV4_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV4_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV8_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV8_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N5 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV16_N8 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N5 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N6 * @arg @ref LL_TIM_IC_FILTER_FDIV32_N8 */ __STATIC_INLINE uint32_t LL_TIM_IC_GetFilter(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); register uint32_t *pReg = (uint32_t *)((uint32_t)((uint32_t)(&TIMx->CCMR1) + OFFSET_TAB_CCMRx[iChannel])); return ((READ_BIT(*pReg, ((TIM_CCMR1_IC1F) << SHIFT_TAB_ICxx[iChannel])) >> SHIFT_TAB_ICxx[iChannel]) << 16U); } /** * @brief Set the input channel polarity. * @rmtoll CCER CC1P LL_TIM_IC_SetPolarity\n * CCER CC1NP LL_TIM_IC_SetPolarity\n * CCER CC2P LL_TIM_IC_SetPolarity\n * CCER CC2NP LL_TIM_IC_SetPolarity\n * CCER CC3P LL_TIM_IC_SetPolarity\n * CCER CC3NP LL_TIM_IC_SetPolarity\n * CCER CC4P LL_TIM_IC_SetPolarity\n * CCER CC4NP LL_TIM_IC_SetPolarity * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @param ICPolarity This parameter can be one of the following values: * @arg @ref LL_TIM_IC_POLARITY_RISING * @arg @ref LL_TIM_IC_POLARITY_FALLING * @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE * @retval None */ __STATIC_INLINE void LL_TIM_IC_SetPolarity(TIM_TypeDef *TIMx, uint32_t Channel, uint32_t ICPolarity) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); MODIFY_REG(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel]), ICPolarity << SHIFT_TAB_CCxP[iChannel]); } /** * @brief Get the current input channel polarity. * @rmtoll CCER CC1P LL_TIM_IC_GetPolarity\n * CCER CC1NP LL_TIM_IC_GetPolarity\n * CCER CC2P LL_TIM_IC_GetPolarity\n * CCER CC2NP LL_TIM_IC_GetPolarity\n * CCER CC3P LL_TIM_IC_GetPolarity\n * CCER CC3NP LL_TIM_IC_GetPolarity\n * CCER CC4P LL_TIM_IC_GetPolarity\n * CCER CC4NP LL_TIM_IC_GetPolarity * @param TIMx Timer instance * @param Channel This parameter can be one of the following values: * @arg @ref LL_TIM_CHANNEL_CH1 * @arg @ref LL_TIM_CHANNEL_CH2 * @arg @ref LL_TIM_CHANNEL_CH3 * @arg @ref LL_TIM_CHANNEL_CH4 * @retval Returned value can be one of the following values: * @arg @ref LL_TIM_IC_POLARITY_RISING * @arg @ref LL_TIM_IC_POLARITY_FALLING * @arg @ref LL_TIM_IC_POLARITY_BOTHEDGE */ __STATIC_INLINE uint32_t LL_TIM_IC_GetPolarity(TIM_TypeDef *TIMx, uint32_t Channel) { register uint8_t iChannel = TIM_GET_CHANNEL_INDEX(Channel); return (READ_BIT(TIMx->CCER, ((TIM_CCER_CC1NP | TIM_CCER_CC1P) << SHIFT_TAB_CCxP[iChannel])) >> SHIFT_TAB_CCxP[iChannel]); } /** * @brief Connect the TIMx_CH1, CH2 and CH3 pins to the TI1 input (XOR combination). * @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not * a timer instance provides an XOR input. * @rmtoll CR2 TI1S LL_TIM_IC_EnableXORCombination * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_IC_EnableXORCombination(TIM_TypeDef *TIMx) { SET_BIT(TIMx->CR2, TIM_CR2_TI1S); } /** * @brief Disconnect the TIMx_CH1, CH2 and CH3 pins from the TI1 input. * @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not * a timer instance provides an XOR input. * @rmtoll CR2 TI1S LL_TIM_IC_DisableXORCombination * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_IC_DisableXORCombination(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->CR2, TIM_CR2_TI1S); } /** * @brief Indicates whether the TIMx_CH1, CH2 and CH3 pins are connectected to the TI1 input. * @note Macro @ref IS_TIM_XOR_INSTANCE(TIMx) can be used to check whether or not * a timer instance provides an XOR input. * @rmtoll CR2 TI1S LL_TIM_IC_IsEnabledXORCombination * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IC_IsEnabledXORCombination(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->CR2, TIM_CR2_TI1S) == (TIM_CR2_TI1S)); } /** * @brief Get captured value for input channel 1. * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC1_INSTANCE(TIMx) can be used to check whether or not * input channel 1 is supported by a timer instance. * @rmtoll CCR1 CCR1 LL_TIM_IC_GetCaptureCH1 * @param TIMx Timer instance * @retval CapturedValue (between Min_Data=0 and Max_Data=65535) */ __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH1(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CCR1)); } /** * @brief Get captured value for input channel 2. * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC2_INSTANCE(TIMx) can be used to check whether or not * input channel 2 is supported by a timer instance. * @rmtoll CCR2 CCR2 LL_TIM_IC_GetCaptureCH2 * @param TIMx Timer instance * @retval CapturedValue (between Min_Data=0 and Max_Data=65535) */ __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH2(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CCR2)); } /** * @brief Get captured value for input channel 3. * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC3_INSTANCE(TIMx) can be used to check whether or not * input channel 3 is supported by a timer instance. * @rmtoll CCR3 CCR3 LL_TIM_IC_GetCaptureCH3 * @param TIMx Timer instance * @retval CapturedValue (between Min_Data=0 and Max_Data=65535) */ __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH3(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CCR3)); } /** * @brief Get captured value for input channel 4. * @note In 32-bit timer implementations returned captured value can be between 0x00000000 and 0xFFFFFFFF. * @note Macro @ref IS_TIM_32B_COUNTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports a 32 bits counter. * @note Macro @ref IS_TIM_CC4_INSTANCE(TIMx) can be used to check whether or not * input channel 4 is supported by a timer instance. * @rmtoll CCR4 CCR4 LL_TIM_IC_GetCaptureCH4 * @param TIMx Timer instance * @retval CapturedValue (between Min_Data=0 and Max_Data=65535) */ __STATIC_INLINE uint32_t LL_TIM_IC_GetCaptureCH4(TIM_TypeDef *TIMx) { return (uint32_t)(READ_REG(TIMx->CCR4)); } /** * @} */ /** @defgroup TIM_LL_EF_Clock_Selection Counter clock selection * @{ */ /** * @brief Enable external clock mode 2. * @note When external clock mode 2 is enabled the counter is clocked by any active edge on the ETRF signal. * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports external clock mode2. * @rmtoll SMCR ECE LL_TIM_EnableExternalClock * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableExternalClock(TIM_TypeDef *TIMx) { SET_BIT(TIMx->SMCR, TIM_SMCR_ECE); } /** * @brief Disable external clock mode 2. * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports external clock mode2. * @rmtoll SMCR ECE LL_TIM_DisableExternalClock * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableExternalClock(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->SMCR, TIM_SMCR_ECE); } /** * @brief Indicate whether external clock mode 2 is enabled. * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports external clock mode2. * @rmtoll SMCR ECE LL_TIM_IsEnabledExternalClock * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledExternalClock(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SMCR, TIM_SMCR_ECE) == (TIM_SMCR_ECE)); } /** * @brief Set the clock source of the counter clock. * @note when selected clock source is external clock mode 1, the timer input * the external clock is applied is selected by calling the @ref LL_TIM_SetTriggerInput() * function. This timer input must be configured by calling * the @ref LL_TIM_IC_Config() function. * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports external clock mode1. * @note Macro @ref IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports external clock mode2. * @rmtoll SMCR SMS LL_TIM_SetClockSource\n * SMCR ECE LL_TIM_SetClockSource * @param TIMx Timer instance * @param ClockSource This parameter can be one of the following values: * @arg @ref LL_TIM_CLOCKSOURCE_INTERNAL * @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE1 * @arg @ref LL_TIM_CLOCKSOURCE_EXT_MODE2 * @retval None */ __STATIC_INLINE void LL_TIM_SetClockSource(TIM_TypeDef *TIMx, uint32_t ClockSource) { MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS | TIM_SMCR_ECE, ClockSource); } /** * @brief Set the encoder interface mode. * @note Macro @ref IS_TIM_ENCODER_INTERFACE_INSTANCE(TIMx) can be used to check * whether or not a timer instance supports the encoder mode. * @rmtoll SMCR SMS LL_TIM_SetEncoderMode * @param TIMx Timer instance * @param EncoderMode This parameter can be one of the following values: * @arg @ref LL_TIM_ENCODERMODE_X2_TI1 * @arg @ref LL_TIM_ENCODERMODE_X2_TI2 * @arg @ref LL_TIM_ENCODERMODE_X4_TI12 * @retval None */ __STATIC_INLINE void LL_TIM_SetEncoderMode(TIM_TypeDef *TIMx, uint32_t EncoderMode) { MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, EncoderMode); } /** * @} */ /** @defgroup TIM_LL_EF_Timer_Synchronization Timer synchronisation configuration * @{ */ /** * @brief Set the trigger output (TRGO) used for timer synchronization . * @note Macro @ref IS_TIM_MASTER_INSTANCE(TIMx) can be used to check * whether or not a timer instance can operate as a master timer. * @rmtoll CR2 MMS LL_TIM_SetTriggerOutput * @param TIMx Timer instance * @param TimerSynchronization This parameter can be one of the following values: * @arg @ref LL_TIM_TRGO_RESET * @arg @ref LL_TIM_TRGO_ENABLE * @arg @ref LL_TIM_TRGO_UPDATE * @arg @ref LL_TIM_TRGO_CC1IF * @arg @ref LL_TIM_TRGO_OC1REF * @arg @ref LL_TIM_TRGO_OC2REF * @arg @ref LL_TIM_TRGO_OC3REF * @arg @ref LL_TIM_TRGO_OC4REF * @retval None */ __STATIC_INLINE void LL_TIM_SetTriggerOutput(TIM_TypeDef *TIMx, uint32_t TimerSynchronization) { MODIFY_REG(TIMx->CR2, TIM_CR2_MMS, TimerSynchronization); } /** * @brief Set the synchronization mode of a slave timer. * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not * a timer instance can operate as a slave timer. * @rmtoll SMCR SMS LL_TIM_SetSlaveMode * @param TIMx Timer instance * @param SlaveMode This parameter can be one of the following values: * @arg @ref LL_TIM_SLAVEMODE_DISABLED * @arg @ref LL_TIM_SLAVEMODE_RESET * @arg @ref LL_TIM_SLAVEMODE_GATED * @arg @ref LL_TIM_SLAVEMODE_TRIGGER * @retval None */ __STATIC_INLINE void LL_TIM_SetSlaveMode(TIM_TypeDef *TIMx, uint32_t SlaveMode) { MODIFY_REG(TIMx->SMCR, TIM_SMCR_SMS, SlaveMode); } /** * @brief Set the selects the trigger input to be used to synchronize the counter. * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not * a timer instance can operate as a slave timer. * @rmtoll SMCR TS LL_TIM_SetTriggerInput * @param TIMx Timer instance * @param TriggerInput This parameter can be one of the following values: * @arg @ref LL_TIM_TS_ITR0 * @arg @ref LL_TIM_TS_ITR1 * @arg @ref LL_TIM_TS_ITR2 * @arg @ref LL_TIM_TS_ITR3 * @arg @ref LL_TIM_TS_TI1F_ED * @arg @ref LL_TIM_TS_TI1FP1 * @arg @ref LL_TIM_TS_TI2FP2 * @arg @ref LL_TIM_TS_ETRF * @retval None */ __STATIC_INLINE void LL_TIM_SetTriggerInput(TIM_TypeDef *TIMx, uint32_t TriggerInput) { MODIFY_REG(TIMx->SMCR, TIM_SMCR_TS, TriggerInput); } /** * @brief Enable the Master/Slave mode. * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not * a timer instance can operate as a slave timer. * @rmtoll SMCR MSM LL_TIM_EnableMasterSlaveMode * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableMasterSlaveMode(TIM_TypeDef *TIMx) { SET_BIT(TIMx->SMCR, TIM_SMCR_MSM); } /** * @brief Disable the Master/Slave mode. * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not * a timer instance can operate as a slave timer. * @rmtoll SMCR MSM LL_TIM_DisableMasterSlaveMode * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableMasterSlaveMode(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->SMCR, TIM_SMCR_MSM); } /** * @brief Indicates whether the Master/Slave mode is enabled. * @note Macro @ref IS_TIM_SLAVE_INSTANCE(TIMx) can be used to check whether or not * a timer instance can operate as a slave timer. * @rmtoll SMCR MSM LL_TIM_IsEnabledMasterSlaveMode * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledMasterSlaveMode(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SMCR, TIM_SMCR_MSM) == (TIM_SMCR_MSM)); } /** * @brief Configure the external trigger (ETR) input. * @note Macro @ref IS_TIM_ETR_INSTANCE(TIMx) can be used to check whether or not * a timer instance provides an external trigger input. * @rmtoll SMCR ETP LL_TIM_ConfigETR\n * SMCR ETPS LL_TIM_ConfigETR\n * SMCR ETF LL_TIM_ConfigETR * @param TIMx Timer instance * @param ETRPolarity This parameter can be one of the following values: * @arg @ref LL_TIM_ETR_POLARITY_NONINVERTED * @arg @ref LL_TIM_ETR_POLARITY_INVERTED * @param ETRPrescaler This parameter can be one of the following values: * @arg @ref LL_TIM_ETR_PRESCALER_DIV1 * @arg @ref LL_TIM_ETR_PRESCALER_DIV2 * @arg @ref LL_TIM_ETR_PRESCALER_DIV4 * @arg @ref LL_TIM_ETR_PRESCALER_DIV8 * @param ETRFilter This parameter can be one of the following values: * @arg @ref LL_TIM_ETR_FILTER_FDIV1 * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N2 * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N4 * @arg @ref LL_TIM_ETR_FILTER_FDIV1_N8 * @arg @ref LL_TIM_ETR_FILTER_FDIV2_N6 * @arg @ref LL_TIM_ETR_FILTER_FDIV2_N8 * @arg @ref LL_TIM_ETR_FILTER_FDIV4_N6 * @arg @ref LL_TIM_ETR_FILTER_FDIV4_N8 * @arg @ref LL_TIM_ETR_FILTER_FDIV8_N6 * @arg @ref LL_TIM_ETR_FILTER_FDIV8_N8 * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N5 * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N6 * @arg @ref LL_TIM_ETR_FILTER_FDIV16_N8 * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N5 * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N6 * @arg @ref LL_TIM_ETR_FILTER_FDIV32_N8 * @retval None */ __STATIC_INLINE void LL_TIM_ConfigETR(TIM_TypeDef *TIMx, uint32_t ETRPolarity, uint32_t ETRPrescaler, uint32_t ETRFilter) { MODIFY_REG(TIMx->SMCR, TIM_SMCR_ETP | TIM_SMCR_ETPS | TIM_SMCR_ETF, ETRPolarity | ETRPrescaler | ETRFilter); } /** * @} */ /** @defgroup TIM_LL_EF_DMA_Burst_Mode DMA burst mode configuration * @{ */ /** * @brief Configures the timer DMA burst feature. * @note Macro @ref IS_TIM_DMABURST_INSTANCE(TIMx) can be used to check whether or * not a timer instance supports the DMA burst mode. * @rmtoll DCR DBL LL_TIM_ConfigDMABurst\n * DCR DBA LL_TIM_ConfigDMABurst * @param TIMx Timer instance * @param DMABurstBaseAddress This parameter can be one of the following values: * @arg @ref LL_TIM_DMABURST_BASEADDR_CR1 * @arg @ref LL_TIM_DMABURST_BASEADDR_CR2 * @arg @ref LL_TIM_DMABURST_BASEADDR_SMCR * @arg @ref LL_TIM_DMABURST_BASEADDR_DIER * @arg @ref LL_TIM_DMABURST_BASEADDR_SR * @arg @ref LL_TIM_DMABURST_BASEADDR_EGR * @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR1 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCMR2 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCER * @arg @ref LL_TIM_DMABURST_BASEADDR_CNT * @arg @ref LL_TIM_DMABURST_BASEADDR_PSC * @arg @ref LL_TIM_DMABURST_BASEADDR_ARR * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR1 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR2 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR3 * @arg @ref LL_TIM_DMABURST_BASEADDR_CCR4 * @arg @ref LL_TIM_DMABURST_BASEADDR_OR * @param DMABurstLength This parameter can be one of the following values: * @arg @ref LL_TIM_DMABURST_LENGTH_1TRANSFER * @arg @ref LL_TIM_DMABURST_LENGTH_2TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_3TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_4TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_5TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_6TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_7TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_8TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_9TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_10TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_11TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_12TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_13TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_14TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_15TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_16TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_17TRANSFERS * @arg @ref LL_TIM_DMABURST_LENGTH_18TRANSFERS * @retval None */ __STATIC_INLINE void LL_TIM_ConfigDMABurst(TIM_TypeDef *TIMx, uint32_t DMABurstBaseAddress, uint32_t DMABurstLength) { MODIFY_REG(TIMx->DCR, TIM_DCR_DBL | TIM_DCR_DBA, DMABurstBaseAddress | DMABurstLength); } /** * @} */ /** @defgroup TIM_LL_EF_Timer_Inputs_Remapping Timer input remapping * @{ */ /** * @brief Remap TIM inputs (input channel, internal/external triggers). * @note Macro @ref IS_TIM_REMAP_INSTANCE(TIMx) can be used to check whether or not * a some timer inputs can be remapped. * @rmtoll TIM2_OR ITR1_RMP LL_TIM_SetRemap\n * TIM3_OR ITR2_RMP LL_TIM_SetRemap\n * TIM9_OR TI1_RMP LL_TIM_SetRemap\n * TIM9_OR ITR1_RMP LL_TIM_SetRemap\n * TIM10_OR TI1_RMP LL_TIM_SetRemap\n * TIM10_OR ETR_RMP LL_TIM_SetRemap\n * TIM10_OR TI1_RMP_RI LL_TIM_SetRemap\n * TIM11_OR TI1_RMP LL_TIM_SetRemap\n * TIM11_OR ETR_RMP LL_TIM_SetRemap\n * TIM11_OR TI1_RMP_RI LL_TIM_SetRemap * @param TIMx Timer instance * @param Remap Remap params depends on the TIMx. Description available only * in CHM version of the User Manual (not in .pdf). * Otherwise see Reference Manual description of OR registers. * * Below description summarizes "Timer Instance" and "Remap" param combinations: * * TIM2: any combination of ITR1_RMP where * * . . ITR1_RMP can be one of the following values * @arg @ref LL_TIM_TIM2_TIR1_RMP_TIM10_OC (**) * @arg @ref LL_TIM_TIM2_TIR1_RMP_TIM5_TGO (**) * * TIM3: any combination of ITR2_RMP where * * . . ITR2_RMP can be one of the following values * @arg @ref LL_TIM_TIM3_TIR2_RMP_TIM11_OC (**) * @arg @ref LL_TIM_TIM3_TIR2_RMP_TIM5_TGO (**) * * TIM9: any combination of TI1_RMP, ITR1_RMP where * * . . TI1_RMP can be one of the following values * @arg @ref LL_TIM_TIM9_TI1_RMP_LSE * @arg @ref LL_TIM_TIM9_TI1_RMP_GPIO * * . . ITR1_RMP can be one of the following values * @arg @ref LL_TIM_TIM9_ITR1_RMP_TIM3_TGO (*) * @arg @ref LL_TIM_TIM9_ITR1_RMP_TOUCH_IO (*) * * * TIM10: any combination of TI1_RMP, ETR_RMP, TI1_RMP_RI where * * . . TI1_RMP can be one of the following values * @arg @ref LL_TIM_TIM10_TI1_RMP_GPIO * @arg @ref LL_TIM_TIM10_TI1_RMP_LSI * @arg @ref LL_TIM_TIM10_TI1_RMP_LSE * @arg @ref LL_TIM_TIM10_TI1_RMP_RTC * * . . ETR_RMP can be one of the following values * @arg @ref LL_TIM_TIM10_ETR_RMP_TIM9_TGO (*) * * . . TI1_RMP_RI can be one of the following values * @arg @ref LL_TIM_TIM10_TI1_RMP_RI (*) * * * TIM11: any combination of TI1_RMP, ETR_RMP, TI1_RMP_RI where * * . . TI1_RMP can be one of the following values * @arg @ref LL_TIM_TIM11_TI1_RMP_MSI * @arg @ref LL_TIM_TIM11_TI1_RMP_HSE_RTC * @arg @ref LL_TIM_TIM11_TI1_RMP * * . . ETR_RMP can be one of the following values * @arg @ref LL_TIM_TIM11_ETR_RMP_TIM9_TGO (*) * * . . TI1_RMP_RI can be one of the following values * @arg @ref LL_TIM_TIM11_TI1_RMP_RI (*) * * (*) value not available in all devices categories * (**) register not available in all devices categories * * @note Option registers are available only for cat.3, cat.4 and cat.5 devices * @retval None */ __STATIC_INLINE void LL_TIM_SetRemap(TIM_TypeDef *TIMx, uint32_t Remap) { MODIFY_REG(TIMx->OR, (Remap >> TIMx_OR_RMP_SHIFT), (Remap & TIMx_OR_RMP_MASK)); } /** * @} */ /** @defgroup TIM_LL_EF_OCREF_Clear OCREF_Clear_Management * @{ */ /** * @brief Set the OCREF clear source * @note The OCxREF signal of a given channel can be cleared when a high level is applied on the OCREF_CLR_INPUT * @note This function can only be used in Output compare and PWM modes. * @note the ETR signal can be connected to the output of a comparator to be used for current handling * @rmtoll SMCR OCCS LL_TIM_SetOCRefClearInputSource * @param TIMx Timer instance * @param OCRefClearInputSource This parameter can be one of the following values: * @arg @ref LL_TIM_OCREF_CLR_INT_OCREF_CLR * @arg @ref LL_TIM_OCREF_CLR_INT_ETR * @retval None */ __STATIC_INLINE void LL_TIM_SetOCRefClearInputSource(TIM_TypeDef *TIMx, uint32_t OCRefClearInputSource) { MODIFY_REG(TIMx->SMCR, TIM_SMCR_OCCS, OCRefClearInputSource); } /** * @} */ /** @defgroup TIM_LL_EF_FLAG_Management FLAG-Management * @{ */ /** * @brief Clear the update interrupt flag (UIF). * @rmtoll SR UIF LL_TIM_ClearFlag_UPDATE * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_UPDATE(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_UIF)); } /** * @brief Indicate whether update interrupt flag (UIF) is set (update interrupt is pending). * @rmtoll SR UIF LL_TIM_IsActiveFlag_UPDATE * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_UPDATE(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_UIF) == (TIM_SR_UIF)); } /** * @brief Clear the Capture/Compare 1 interrupt flag (CC1F). * @rmtoll SR CC1IF LL_TIM_ClearFlag_CC1 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_CC1(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_CC1IF)); } /** * @brief Indicate whether Capture/Compare 1 interrupt flag (CC1F) is set (Capture/Compare 1 interrupt is pending). * @rmtoll SR CC1IF LL_TIM_IsActiveFlag_CC1 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_CC1IF) == (TIM_SR_CC1IF)); } /** * @brief Clear the Capture/Compare 2 interrupt flag (CC2F). * @rmtoll SR CC2IF LL_TIM_ClearFlag_CC2 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_CC2(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_CC2IF)); } /** * @brief Indicate whether Capture/Compare 2 interrupt flag (CC2F) is set (Capture/Compare 2 interrupt is pending). * @rmtoll SR CC2IF LL_TIM_IsActiveFlag_CC2 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_CC2IF) == (TIM_SR_CC2IF)); } /** * @brief Clear the Capture/Compare 3 interrupt flag (CC3F). * @rmtoll SR CC3IF LL_TIM_ClearFlag_CC3 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_CC3(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_CC3IF)); } /** * @brief Indicate whether Capture/Compare 3 interrupt flag (CC3F) is set (Capture/Compare 3 interrupt is pending). * @rmtoll SR CC3IF LL_TIM_IsActiveFlag_CC3 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_CC3IF) == (TIM_SR_CC3IF)); } /** * @brief Clear the Capture/Compare 4 interrupt flag (CC4F). * @rmtoll SR CC4IF LL_TIM_ClearFlag_CC4 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_CC4(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_CC4IF)); } /** * @brief Indicate whether Capture/Compare 4 interrupt flag (CC4F) is set (Capture/Compare 4 interrupt is pending). * @rmtoll SR CC4IF LL_TIM_IsActiveFlag_CC4 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_CC4IF) == (TIM_SR_CC4IF)); } /** * @brief Clear the trigger interrupt flag (TIF). * @rmtoll SR TIF LL_TIM_ClearFlag_TRIG * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_TRIG(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_TIF)); } /** * @brief Indicate whether trigger interrupt flag (TIF) is set (trigger interrupt is pending). * @rmtoll SR TIF LL_TIM_IsActiveFlag_TRIG * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_TRIG(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_TIF) == (TIM_SR_TIF)); } /** * @brief Clear the Capture/Compare 1 over-capture interrupt flag (CC1OF). * @rmtoll SR CC1OF LL_TIM_ClearFlag_CC1OVR * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_CC1OVR(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_CC1OF)); } /** * @brief Indicate whether Capture/Compare 1 over-capture interrupt flag (CC1OF) is set (Capture/Compare 1 interrupt is pending). * @rmtoll SR CC1OF LL_TIM_IsActiveFlag_CC1OVR * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC1OVR(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_CC1OF) == (TIM_SR_CC1OF)); } /** * @brief Clear the Capture/Compare 2 over-capture interrupt flag (CC2OF). * @rmtoll SR CC2OF LL_TIM_ClearFlag_CC2OVR * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_CC2OVR(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_CC2OF)); } /** * @brief Indicate whether Capture/Compare 2 over-capture interrupt flag (CC2OF) is set (Capture/Compare 2 over-capture interrupt is pending). * @rmtoll SR CC2OF LL_TIM_IsActiveFlag_CC2OVR * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC2OVR(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_CC2OF) == (TIM_SR_CC2OF)); } /** * @brief Clear the Capture/Compare 3 over-capture interrupt flag (CC3OF). * @rmtoll SR CC3OF LL_TIM_ClearFlag_CC3OVR * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_CC3OVR(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_CC3OF)); } /** * @brief Indicate whether Capture/Compare 3 over-capture interrupt flag (CC3OF) is set (Capture/Compare 3 over-capture interrupt is pending). * @rmtoll SR CC3OF LL_TIM_IsActiveFlag_CC3OVR * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC3OVR(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_CC3OF) == (TIM_SR_CC3OF)); } /** * @brief Clear the Capture/Compare 4 over-capture interrupt flag (CC4OF). * @rmtoll SR CC4OF LL_TIM_ClearFlag_CC4OVR * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_ClearFlag_CC4OVR(TIM_TypeDef *TIMx) { WRITE_REG(TIMx->SR, ~(TIM_SR_CC4OF)); } /** * @brief Indicate whether Capture/Compare 4 over-capture interrupt flag (CC4OF) is set (Capture/Compare 4 over-capture interrupt is pending). * @rmtoll SR CC4OF LL_TIM_IsActiveFlag_CC4OVR * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsActiveFlag_CC4OVR(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->SR, TIM_SR_CC4OF) == (TIM_SR_CC4OF)); } /** * @} */ /** @defgroup TIM_LL_EF_IT_Management IT-Management * @{ */ /** * @brief Enable update interrupt (UIE). * @rmtoll DIER UIE LL_TIM_EnableIT_UPDATE * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableIT_UPDATE(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_UIE); } /** * @brief Disable update interrupt (UIE). * @rmtoll DIER UIE LL_TIM_DisableIT_UPDATE * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableIT_UPDATE(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_UIE); } /** * @brief Indicates whether the update interrupt (UIE) is enabled. * @rmtoll DIER UIE LL_TIM_IsEnabledIT_UPDATE * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_UPDATE(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_UIE) == (TIM_DIER_UIE)); } /** * @brief Enable capture/compare 1 interrupt (CC1IE). * @rmtoll DIER CC1IE LL_TIM_EnableIT_CC1 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableIT_CC1(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_CC1IE); } /** * @brief Disable capture/compare 1 interrupt (CC1IE). * @rmtoll DIER CC1IE LL_TIM_DisableIT_CC1 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableIT_CC1(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1IE); } /** * @brief Indicates whether the capture/compare 1 interrupt (CC1IE) is enabled. * @rmtoll DIER CC1IE LL_TIM_IsEnabledIT_CC1 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC1(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_CC1IE) == (TIM_DIER_CC1IE)); } /** * @brief Enable capture/compare 2 interrupt (CC2IE). * @rmtoll DIER CC2IE LL_TIM_EnableIT_CC2 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableIT_CC2(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_CC2IE); } /** * @brief Disable capture/compare 2 interrupt (CC2IE). * @rmtoll DIER CC2IE LL_TIM_DisableIT_CC2 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableIT_CC2(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2IE); } /** * @brief Indicates whether the capture/compare 2 interrupt (CC2IE) is enabled. * @rmtoll DIER CC2IE LL_TIM_IsEnabledIT_CC2 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC2(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_CC2IE) == (TIM_DIER_CC2IE)); } /** * @brief Enable capture/compare 3 interrupt (CC3IE). * @rmtoll DIER CC3IE LL_TIM_EnableIT_CC3 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableIT_CC3(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_CC3IE); } /** * @brief Disable capture/compare 3 interrupt (CC3IE). * @rmtoll DIER CC3IE LL_TIM_DisableIT_CC3 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableIT_CC3(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3IE); } /** * @brief Indicates whether the capture/compare 3 interrupt (CC3IE) is enabled. * @rmtoll DIER CC3IE LL_TIM_IsEnabledIT_CC3 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC3(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_CC3IE) == (TIM_DIER_CC3IE)); } /** * @brief Enable capture/compare 4 interrupt (CC4IE). * @rmtoll DIER CC4IE LL_TIM_EnableIT_CC4 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableIT_CC4(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_CC4IE); } /** * @brief Disable capture/compare 4 interrupt (CC4IE). * @rmtoll DIER CC4IE LL_TIM_DisableIT_CC4 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableIT_CC4(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4IE); } /** * @brief Indicates whether the capture/compare 4 interrupt (CC4IE) is enabled. * @rmtoll DIER CC4IE LL_TIM_IsEnabledIT_CC4 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_CC4(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_CC4IE) == (TIM_DIER_CC4IE)); } /** * @brief Enable trigger interrupt (TIE). * @rmtoll DIER TIE LL_TIM_EnableIT_TRIG * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableIT_TRIG(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_TIE); } /** * @brief Disable trigger interrupt (TIE). * @rmtoll DIER TIE LL_TIM_DisableIT_TRIG * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableIT_TRIG(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_TIE); } /** * @brief Indicates whether the trigger interrupt (TIE) is enabled. * @rmtoll DIER TIE LL_TIM_IsEnabledIT_TRIG * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledIT_TRIG(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_TIE) == (TIM_DIER_TIE)); } /** * @} */ /** @defgroup TIM_LL_EF_DMA_Management DMA-Management * @{ */ /** * @brief Enable update DMA request (UDE). * @rmtoll DIER UDE LL_TIM_EnableDMAReq_UPDATE * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableDMAReq_UPDATE(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_UDE); } /** * @brief Disable update DMA request (UDE). * @rmtoll DIER UDE LL_TIM_DisableDMAReq_UPDATE * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableDMAReq_UPDATE(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_UDE); } /** * @brief Indicates whether the update DMA request (UDE) is enabled. * @rmtoll DIER UDE LL_TIM_IsEnabledDMAReq_UPDATE * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_UPDATE(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_UDE) == (TIM_DIER_UDE)); } /** * @brief Enable capture/compare 1 DMA request (CC1DE). * @rmtoll DIER CC1DE LL_TIM_EnableDMAReq_CC1 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableDMAReq_CC1(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_CC1DE); } /** * @brief Disable capture/compare 1 DMA request (CC1DE). * @rmtoll DIER CC1DE LL_TIM_DisableDMAReq_CC1 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableDMAReq_CC1(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_CC1DE); } /** * @brief Indicates whether the capture/compare 1 DMA request (CC1DE) is enabled. * @rmtoll DIER CC1DE LL_TIM_IsEnabledDMAReq_CC1 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC1(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_CC1DE) == (TIM_DIER_CC1DE)); } /** * @brief Enable capture/compare 2 DMA request (CC2DE). * @rmtoll DIER CC2DE LL_TIM_EnableDMAReq_CC2 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableDMAReq_CC2(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_CC2DE); } /** * @brief Disable capture/compare 2 DMA request (CC2DE). * @rmtoll DIER CC2DE LL_TIM_DisableDMAReq_CC2 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableDMAReq_CC2(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_CC2DE); } /** * @brief Indicates whether the capture/compare 2 DMA request (CC2DE) is enabled. * @rmtoll DIER CC2DE LL_TIM_IsEnabledDMAReq_CC2 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC2(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_CC2DE) == (TIM_DIER_CC2DE)); } /** * @brief Enable capture/compare 3 DMA request (CC3DE). * @rmtoll DIER CC3DE LL_TIM_EnableDMAReq_CC3 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableDMAReq_CC3(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_CC3DE); } /** * @brief Disable capture/compare 3 DMA request (CC3DE). * @rmtoll DIER CC3DE LL_TIM_DisableDMAReq_CC3 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableDMAReq_CC3(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_CC3DE); } /** * @brief Indicates whether the capture/compare 3 DMA request (CC3DE) is enabled. * @rmtoll DIER CC3DE LL_TIM_IsEnabledDMAReq_CC3 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC3(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_CC3DE) == (TIM_DIER_CC3DE)); } /** * @brief Enable capture/compare 4 DMA request (CC4DE). * @rmtoll DIER CC4DE LL_TIM_EnableDMAReq_CC4 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableDMAReq_CC4(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_CC4DE); } /** * @brief Disable capture/compare 4 DMA request (CC4DE). * @rmtoll DIER CC4DE LL_TIM_DisableDMAReq_CC4 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableDMAReq_CC4(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_CC4DE); } /** * @brief Indicates whether the capture/compare 4 DMA request (CC4DE) is enabled. * @rmtoll DIER CC4DE LL_TIM_IsEnabledDMAReq_CC4 * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_CC4(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_CC4DE) == (TIM_DIER_CC4DE)); } /** * @brief Enable trigger interrupt (TDE). * @rmtoll DIER TDE LL_TIM_EnableDMAReq_TRIG * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_EnableDMAReq_TRIG(TIM_TypeDef *TIMx) { SET_BIT(TIMx->DIER, TIM_DIER_TDE); } /** * @brief Disable trigger interrupt (TDE). * @rmtoll DIER TDE LL_TIM_DisableDMAReq_TRIG * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_DisableDMAReq_TRIG(TIM_TypeDef *TIMx) { CLEAR_BIT(TIMx->DIER, TIM_DIER_TDE); } /** * @brief Indicates whether the trigger interrupt (TDE) is enabled. * @rmtoll DIER TDE LL_TIM_IsEnabledDMAReq_TRIG * @param TIMx Timer instance * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_TIM_IsEnabledDMAReq_TRIG(TIM_TypeDef *TIMx) { return (READ_BIT(TIMx->DIER, TIM_DIER_TDE) == (TIM_DIER_TDE)); } /** * @} */ /** @defgroup TIM_LL_EF_EVENT_Management EVENT-Management * @{ */ /** * @brief Generate an update event. * @rmtoll EGR UG LL_TIM_GenerateEvent_UPDATE * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_GenerateEvent_UPDATE(TIM_TypeDef *TIMx) { SET_BIT(TIMx->EGR, TIM_EGR_UG); } /** * @brief Generate Capture/Compare 1 event. * @rmtoll EGR CC1G LL_TIM_GenerateEvent_CC1 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_GenerateEvent_CC1(TIM_TypeDef *TIMx) { SET_BIT(TIMx->EGR, TIM_EGR_CC1G); } /** * @brief Generate Capture/Compare 2 event. * @rmtoll EGR CC2G LL_TIM_GenerateEvent_CC2 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_GenerateEvent_CC2(TIM_TypeDef *TIMx) { SET_BIT(TIMx->EGR, TIM_EGR_CC2G); } /** * @brief Generate Capture/Compare 3 event. * @rmtoll EGR CC3G LL_TIM_GenerateEvent_CC3 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_GenerateEvent_CC3(TIM_TypeDef *TIMx) { SET_BIT(TIMx->EGR, TIM_EGR_CC3G); } /** * @brief Generate Capture/Compare 4 event. * @rmtoll EGR CC4G LL_TIM_GenerateEvent_CC4 * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_GenerateEvent_CC4(TIM_TypeDef *TIMx) { SET_BIT(TIMx->EGR, TIM_EGR_CC4G); } /** * @brief Generate trigger event. * @rmtoll EGR TG LL_TIM_GenerateEvent_TRIG * @param TIMx Timer instance * @retval None */ __STATIC_INLINE void LL_TIM_GenerateEvent_TRIG(TIM_TypeDef *TIMx) { SET_BIT(TIMx->EGR, TIM_EGR_TG); } /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup TIM_LL_EF_Init Initialisation and deinitialisation functions * @{ */ ErrorStatus LL_TIM_DeInit(TIM_TypeDef *TIMx); void LL_TIM_StructInit(LL_TIM_InitTypeDef *TIM_InitStruct); ErrorStatus LL_TIM_Init(TIM_TypeDef *TIMx, LL_TIM_InitTypeDef *TIM_InitStruct); void LL_TIM_OC_StructInit(LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct); ErrorStatus LL_TIM_OC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_OC_InitTypeDef *TIM_OC_InitStruct); void LL_TIM_IC_StructInit(LL_TIM_IC_InitTypeDef *TIM_ICInitStruct); ErrorStatus LL_TIM_IC_Init(TIM_TypeDef *TIMx, uint32_t Channel, LL_TIM_IC_InitTypeDef *TIM_IC_InitStruct); void LL_TIM_ENCODER_StructInit(LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct); ErrorStatus LL_TIM_ENCODER_Init(TIM_TypeDef *TIMx, LL_TIM_ENCODER_InitTypeDef *TIM_EncoderInitStruct); /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* TIM2 || TIM3 || TIM4 || TIM5 || TIM9 || TIM10 || TIM11 TIM6 || TIM7 */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32L1xx_LL_TIM_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/