use super::*; /// Helper to make an `ArrayVec`. /// /// You specify the backing array type, and optionally give all the elements you /// want to initially place into the array. /// /// As an unfortunate restriction, the backing array type must support `Default` /// for it to work with this macro. /// /// ```rust /// use tinyvec::*; /// /// // The backing array type can be specified in the macro call /// let empty_av = array_vec!([u8; 16]); /// let some_ints = array_vec!([i32; 4], 1, 2, 3); /// /// // Or left to inference /// let empty_av: ArrayVec<[u8; 10]> = array_vec!(); /// let some_ints: ArrayVec<[u8; 10]> = array_vec!(5, 6, 7, 8); /// ``` #[macro_export] macro_rules! array_vec { ($array_type:ty) => { { let av: $crate::ArrayVec<$array_type> = Default::default(); av } }; ($array_type:ty, $($elem:expr),*) => { { let mut av: $crate::ArrayVec<$array_type> = Default::default(); $( av.push($elem); )* av } }; () => { array_vec!(_) }; ($($elem:expr),*) => { array_vec!(_, $($elem),*) }; } /// An array-backed, vector-like data structure. /// /// * `ArrayVec` has a fixed capacity, equal to the array size. /// * `ArrayVec` has a variable length, as you add and remove elements. Attempts /// to fill the vec beyond its capacity will cause a panic. /// * All of the vec's array slots are always initialized in terms of Rust's /// memory model. When you remove a element from a location, the old value at /// that location is replaced with the type's default value. /// /// The overall API of this type is intended to, as much as possible, emulate /// the API of the [`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html) /// type. /// /// ## Construction /// /// If the backing array supports Default (length 32 or less), then you can use /// the `array_vec!` macro similarly to how you might use the `vec!` macro. /// Specify the array type, then optionally give all the initial values you want /// to have. /// ```rust /// # use tinyvec::*; /// let some_ints = array_vec!([i32; 4], 1, 2, 3); /// assert_eq!(some_ints.len(), 3); /// ``` /// /// The [`default`](ArrayVec::new) for an `ArrayVec` is to have a default /// array with length 0. The [`new`](ArrayVec::new) method is the same as /// calling `default` /// ```rust /// # use tinyvec::*; /// let some_ints = ArrayVec::<[i32; 7]>::default(); /// assert_eq!(some_ints.len(), 0); /// /// let more_ints = ArrayVec::<[i32; 7]>::new(); /// assert_eq!(some_ints, more_ints); /// ``` /// /// If you have an array and want the _whole thing_ so count as being "in" the /// new `ArrayVec` you can use one of the `from` implementations. If you want /// _part of_ the array then you can use /// [`from_array_len`](ArrayVec::from_array_len): /// ```rust /// # use tinyvec::*; /// let some_ints = ArrayVec::from([5, 6, 7, 8]); /// assert_eq!(some_ints.len(), 4); /// /// let more_ints = ArrayVec::from_array_len([5, 6, 7, 8], 2); /// assert_eq!(more_ints.len(), 2); /// ``` #[repr(C)] #[derive(Clone, Copy, Default)] pub struct ArrayVec { len: usize, data: A, } impl Deref for ArrayVec { type Target = [A::Item]; #[inline(always)] #[must_use] fn deref(&self) -> &Self::Target { &self.data.as_slice()[..self.len] } } impl DerefMut for ArrayVec { #[inline(always)] #[must_use] fn deref_mut(&mut self) -> &mut Self::Target { &mut self.data.as_slice_mut()[..self.len] } } impl> Index for ArrayVec { type Output = >::Output; #[inline(always)] #[must_use] fn index(&self, index: I) -> &Self::Output { &self.deref()[index] } } impl> IndexMut for ArrayVec { #[inline(always)] #[must_use] fn index_mut(&mut self, index: I) -> &mut Self::Output { &mut self.deref_mut()[index] } } impl ArrayVec { /// Move all values from `other` into this vec. /// /// ## Panics /// * If the vec overflows its capacity /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 10], 1, 2, 3); /// let mut av2 = array_vec!([i32; 10], 4, 5, 6); /// av.append(&mut av2); /// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]); /// assert_eq!(av2, &[][..]); /// ``` #[inline] pub fn append(&mut self, other: &mut Self) { for item in other.drain(..) { self.push(item) } } /// A `*mut` pointer to the backing array. /// /// ## Safety /// /// This pointer has provenance over the _entire_ backing array. #[inline(always)] #[must_use] pub fn as_mut_ptr(&mut self) -> *mut A::Item { self.data.as_slice_mut().as_mut_ptr() } /// Performs a `deref_mut`, into unique slice form. #[inline(always)] #[must_use] pub fn as_mut_slice(&mut self) -> &mut [A::Item] { self.deref_mut() } /// A `*const` pointer to the backing array. /// /// ## Safety /// /// This pointer has provenance over the _entire_ backing array. #[inline(always)] #[must_use] pub fn as_ptr(&self) -> *const A::Item { self.data.as_slice().as_ptr() } /// Performs a `deref`, into shared slice form. #[inline(always)] #[must_use] pub fn as_slice(&self) -> &[A::Item] { self.deref() } /// The capacity of the `ArrayVec`. /// /// This is fixed based on the array type, but can't yet be made a `const fn` /// on Stable Rust. #[inline(always)] #[must_use] pub fn capacity(&self) -> usize { A::CAPACITY } /// Truncates the `ArrayVec` down to length 0. #[inline(always)] pub fn clear(&mut self) { self.truncate(0) } /// Creates a draining iterator that removes the specified range in the vector /// and yields the removed items. /// /// ## Panics /// * If the start is greater than the end /// * If the end is past the edge of the vec. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4], 1, 2, 3); /// let av2: ArrayVec<[i32; 4]> = av.drain(1..).collect(); /// assert_eq!(av.as_slice(), &[1][..]); /// assert_eq!(av2.as_slice(), &[2, 3][..]); /// /// av.drain(..); /// assert_eq!(av.as_slice(), &[]); /// ``` #[inline] pub fn drain>( &mut self, range: R, ) -> ArrayVecDrain<'_, A> { use core::ops::Bound; let start = match range.start_bound() { Bound::Included(x) => *x, Bound::Excluded(x) => x + 1, Bound::Unbounded => 0, }; let end = match range.end_bound() { Bound::Included(x) => x + 1, Bound::Excluded(x) => *x, Bound::Unbounded => self.len, }; assert!( start <= end, "ArrayVec::drain> Illegal range, {} to {}", start, end ); assert!( end <= self.len, "ArrayVec::drain> Range ends at {} but length is only {}!", end, self.len ); ArrayVecDrain { parent: self, target_start: start, target_index: start, target_end: end, } } /// Clone each element of the slice into this `ArrayVec`. /// /// ## Panics /// * If the `ArrayVec` would overflow, this will panic. #[inline] pub fn extend_from_slice(&mut self, sli: &[A::Item]) where A::Item: Clone, { if sli.is_empty() { return; } let new_len = self.len + sli.len(); if new_len > A::CAPACITY { panic!( "ArrayVec::extend_from_slice> total length {} exceeds capacity {}!", new_len, A::CAPACITY ) } let target = &mut self.data.as_slice_mut()[self.len..new_len]; target.clone_from_slice(sli); self.set_len(new_len); } /// Wraps up an array and uses the given length as the initial length. /// /// If you want to simply use the full array, use `from` instead. /// /// ## Panics /// /// * The length specified must be less than or equal to the capacity of the array. #[inline] #[must_use] #[allow(clippy::match_wild_err_arm)] pub fn from_array_len(data: A, len: usize) -> Self { match Self::try_from_array_len(data, len) { Ok(out) => out, Err(_) => { panic!("ArrayVec::from_array_len> length {} exceeds capacity {}!", len, A::CAPACITY) } } } /// Inserts an item at the position given, moving all following elements +1 /// index. /// /// ## Panics /// * If `index` > `len` or /// * If the capacity is exhausted /// /// ## Example /// ```rust /// use tinyvec::*; /// let mut av = array_vec!([i32; 10], 1, 2, 3); /// av.insert(1, 4); /// assert_eq!(av.as_slice(), &[1, 4, 2, 3]); /// av.insert(4, 5); /// assert_eq!(av.as_slice(), &[1, 4, 2, 3, 5]); /// ``` #[inline] pub fn insert(&mut self, index: usize, item: A::Item) { if index > self.len { panic!("ArrayVec::insert> index {} is out of bounds {}", index, self.len); } // Try to push the element. self.push(item); // And move it into its place. self.as_mut_slice()[index..].rotate_right(1); } /// Checks if the length is 0. #[inline(always)] #[must_use] pub fn is_empty(&self) -> bool { self.len == 0 } /// The length of the `ArrayVec` (in elements). #[inline(always)] #[must_use] pub fn len(&self) -> usize { self.len } /// Makes a new, empty `ArrayVec`. #[inline(always)] #[must_use] pub fn new() -> Self where A: Default, { Self::default() } /// Remove and return the last element of the vec, if there is one. /// /// ## Failure /// * If the vec is empty you get `None`. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 10], 1, 2); /// assert_eq!(av.pop(), Some(2)); /// assert_eq!(av.pop(), Some(1)); /// assert_eq!(av.pop(), None); /// ``` #[inline] pub fn pop(&mut self) -> Option { if self.len > 0 { self.len -= 1; let out = take(&mut self.data.as_slice_mut()[self.len]); Some(out) } else { None } } /// Place an element onto the end of the vec. /// /// ## Panics /// * If the length of the vec would overflow the capacity. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 2]); /// assert_eq!(&av[..], []); /// av.push(1); /// assert_eq!(&av[..], [1]); /// av.push(2); /// assert_eq!(&av[..], [1, 2]); /// // av.push(3); this would overflow the ArrayVec and panic! /// ``` #[inline(always)] pub fn push(&mut self, val: A::Item) { if self.len < A::CAPACITY { replace(&mut self.data.as_slice_mut()[self.len], val); self.len += 1; } else { panic!("ArrayVec::push> capacity overflow!") } } /// Removes the item at `index`, shifting all others down by one index. /// /// Returns the removed element. /// /// ## Panics /// /// * If the index is out of bounds. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4], 1, 2, 3); /// assert_eq!(av.remove(1), 2); /// assert_eq!(&av[..], [1, 3]); /// ``` #[inline] pub fn remove(&mut self, index: usize) -> A::Item { let targets: &mut [A::Item] = &mut self.deref_mut()[index..]; let item = replace(&mut targets[0], A::Item::default()); targets.rotate_left(1); self.len -= 1; item } /// Resize the vec to the new length. /// /// If it needs to be longer, it's filled with clones of the provided value. /// If it needs to be shorter, it's truncated. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// /// let mut av = array_vec!([&str; 10], "hello"); /// av.resize(3, "world"); /// assert_eq!(&av[..], ["hello", "world", "world"]); /// /// let mut av = array_vec!([i32; 10], 1, 2, 3, 4); /// av.resize(2, 0); /// assert_eq!(&av[..], [1, 2]); /// ``` #[inline] pub fn resize(&mut self, new_len: usize, new_val: A::Item) where A::Item: Clone, { match new_len.checked_sub(self.len) { None => self.truncate(new_len), Some(0) => (), Some(new_elements) => { for _ in 1..new_elements { self.push(new_val.clone()); } self.push(new_val); } } } /// Resize the vec to the new length. /// /// If it needs to be longer, it's filled with repeated calls to the provided /// function. If it needs to be shorter, it's truncated. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// /// let mut av = array_vec!([i32; 10], 1, 2, 3); /// av.resize_with(5, Default::default); /// assert_eq!(&av[..], [1, 2, 3, 0, 0]); /// /// let mut av = array_vec!([i32; 10]); /// let mut p = 1; /// av.resize_with(4, || { p *= 2; p }); /// assert_eq!(&av[..], [2, 4, 8, 16]); /// ``` #[inline] pub fn resize_with A::Item>( &mut self, new_len: usize, mut f: F, ) { match new_len.checked_sub(self.len) { None => self.truncate(new_len), Some(new_elements) => { for _ in 0..new_elements { self.push(f()); } } } } /// Walk the vec and keep only the elements that pass the predicate given. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// /// let mut av = array_vec!([i32; 10], 1, 1, 2, 3, 3, 4); /// av.retain(|&x| x % 2 == 0); /// assert_eq!(&av[..], [2, 4]); /// ``` #[inline] pub fn retain bool>(&mut self, mut acceptable: F) { // Drop guard to contain exactly the remaining elements when the test // panics. struct JoinOnDrop<'vec, Item> { items: &'vec mut [Item], done_end: usize, // Start of tail relative to `done_end`. tail_start: usize, } impl Drop for JoinOnDrop<'_, Item> { fn drop(&mut self) { self.items[self.done_end..].rotate_left(self.tail_start); } } let mut rest = JoinOnDrop { items: &mut self.data.as_slice_mut()[..self.len], done_end: 0, tail_start: 0, }; for idx in 0..self.len { // Loop start invariant: idx = rest.done_end + rest.tail_start if !acceptable(&rest.items[idx]) { let _ = take(&mut rest.items[idx]); self.len -= 1; rest.tail_start += 1; } else { rest.items.swap(rest.done_end, idx); rest.done_end += 1; } } } /// Forces the length of the vector to `new_len`. /// /// ## Panics /// * If `new_len` is greater than the vec's capacity. /// /// ## Safety /// * This is a fully safe operation! The inactive memory already counts as /// "initialized" by Rust's rules. /// * Other than "the memory is initialized" there are no other guarantees /// regarding what you find in the inactive portion of the vec. #[inline(always)] pub fn set_len(&mut self, new_len: usize) { if new_len > A::CAPACITY { // Note(Lokathor): Technically we don't have to panic here, and we could // just let some other call later on trigger a panic on accident when the // length is wrong. However, it's a lot easier to catch bugs when things // are more "fail-fast". panic!("ArrayVec: set_len overflow!") } else { self.len = new_len; } } /// Fill the vector until its capacity has been reached. /// /// Successively fills unused space in the spare slice of the vector with /// elements from the iterator. It then returns the remaining iterator /// without exhausting it. This also allows appending the head of an /// infinite iterator. /// /// This is an alternative to `Extend::extend` method for cases where the /// length of the iterator can not be checked. Since this vector can not /// reallocate to increase its capacity, it is unclear what to do with /// remaining elements in the iterator and the iterator itself. The /// interface also provides no way to communicate this to the caller. /// /// ## Panics /// * If the `next` method of the provided iterator panics. /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4]); /// let mut to_inf = av.fill(0..); /// assert_eq!(&av[..], [0, 1, 2, 3]); /// assert_eq!(to_inf.next(), Some(4)); /// ``` #[inline] pub fn fill>( &mut self, iter: I, ) -> I::IntoIter { let mut iter = iter.into_iter(); for element in iter.by_ref().take(self.capacity() - self.len()) { self.push(element); } iter } /// Splits the collection at the point given. /// /// * `[0, at)` stays in this vec /// * `[at, len)` ends up in the new vec. /// /// ## Panics /// * if at > len /// /// ## Example /// /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4], 1, 2, 3); /// let av2 = av.split_off(1); /// assert_eq!(&av[..], [1]); /// assert_eq!(&av2[..], [2, 3]); /// ``` #[inline] pub fn split_off(&mut self, at: usize) -> Self where Self: Default, { // FIXME: should this just use drain into the output? if at > self.len { panic!( "ArrayVec::split_off> at value {} exceeds length of {}", at, self.len ); } let mut new = Self::default(); let moves = &mut self.as_mut_slice()[at..]; let split_len = moves.len(); let targets = &mut new.data.as_slice_mut()[..split_len]; moves.swap_with_slice(targets); new.len = split_len; self.len = at; new } /// Remove an element, swapping the end of the vec into its place. /// /// ## Panics /// * If the index is out of bounds. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([&str; 4], "foo", "bar", "quack", "zap"); /// /// assert_eq!(av.swap_remove(1), "bar"); /// assert_eq!(&av[..], ["foo", "zap", "quack"]); /// /// assert_eq!(av.swap_remove(0), "foo"); /// assert_eq!(&av[..], ["quack", "zap"]); /// ``` #[inline] pub fn swap_remove(&mut self, index: usize) -> A::Item { assert!( index < self.len, "ArrayVec::swap_remove> index {} is out of bounds {}", index, self.len ); if index == self.len - 1 { self.pop().unwrap() } else { let i = self.pop().unwrap(); replace(&mut self[index], i) } } /// Reduces the vec's length to the given value. /// /// If the vec is already shorter than the input, nothing happens. #[inline] pub fn truncate(&mut self, new_len: usize) { if needs_drop::() { while self.len > new_len { self.pop(); } } else { self.len = self.len.min(new_len); } } /// Wraps an array, using the given length as the starting length. /// /// If you want to use the whole length of the array, you can just use the /// `From` impl. /// /// ## Failure /// /// If the given length is greater than the capacity of the array this will /// error, and you'll get the array back in the `Err`. #[inline] pub fn try_from_array_len(data: A, len: usize) -> Result { if len <= A::CAPACITY { Ok(Self { data, len }) } else { Err(data) } } } #[cfg(feature = "grab_spare_slice")] impl ArrayVec { /// Obtain the shared slice of the array _after_ the active memory. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4]); /// assert_eq!(av.grab_spare_slice().len(), 4); /// av.push(10); /// av.push(11); /// av.push(12); /// av.push(13); /// assert_eq!(av.grab_spare_slice().len(), 0); /// ``` #[inline(always)] pub fn grab_spare_slice(&self) -> &[A::Item] { &self.data.as_slice()[self.len..] } /// Obtain the mutable slice of the array _after_ the active memory. /// /// ## Example /// ```rust /// # use tinyvec::*; /// let mut av = array_vec!([i32; 4]); /// assert_eq!(av.grab_spare_slice_mut().len(), 4); /// av.push(10); /// av.push(11); /// assert_eq!(av.grab_spare_slice_mut().len(), 2); /// ``` #[inline(always)] pub fn grab_spare_slice_mut(&mut self) -> &mut [A::Item] { &mut self.data.as_slice_mut()[self.len..] } } #[cfg(feature = "nightly_slice_partition_dedup")] impl ArrayVec { /// De-duplicates the vec contents. #[inline(always)] pub fn dedup(&mut self) where A::Item: PartialEq, { self.dedup_by(|a, b| a == b) } /// De-duplicates the vec according to the predicate given. #[inline(always)] pub fn dedup_by(&mut self, same_bucket: F) where F: FnMut(&mut A::Item, &mut A::Item) -> bool, { let len = { let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket); dedup.len() }; self.truncate(len); } /// De-duplicates the vec according to the key selector given. #[inline(always)] pub fn dedup_by_key(&mut self, mut key: F) where F: FnMut(&mut A::Item) -> K, K: PartialEq, { self.dedup_by(|a, b| key(a) == key(b)) } } /// Draining iterator for `ArrayVecDrain` /// /// See [`ArrayVec::drain`](ArrayVec::drain) pub struct ArrayVecDrain<'p, A: Array> { parent: &'p mut ArrayVec, target_start: usize, target_index: usize, target_end: usize, } impl<'p, A: Array> Iterator for ArrayVecDrain<'p, A> { type Item = A::Item; #[inline] fn next(&mut self) -> Option { if self.target_index != self.target_end { let out = take(&mut self.parent[self.target_index]); self.target_index += 1; Some(out) } else { None } } } impl<'p, A: Array> FusedIterator for ArrayVecDrain<'p, A> { } impl<'p, A: Array> Drop for ArrayVecDrain<'p, A> { #[inline] fn drop(&mut self) { // Changed because it was moving `self`, it's also more clear and the std does the same self.for_each(drop); // Implementation very similar to [`ArrayVec::remove`](ArrayVec::remove) let count = self.target_end - self.target_start; let targets: &mut [A::Item] = &mut self.parent.deref_mut()[self.target_start..]; targets.rotate_left(count); self.parent.len -= count; } } impl AsMut<[A::Item]> for ArrayVec { #[inline(always)] #[must_use] fn as_mut(&mut self) -> &mut [A::Item] { &mut *self } } impl AsRef<[A::Item]> for ArrayVec { #[inline(always)] #[must_use] fn as_ref(&self) -> &[A::Item] { &*self } } impl Borrow<[A::Item]> for ArrayVec { #[inline(always)] #[must_use] fn borrow(&self) -> &[A::Item] { &*self } } impl BorrowMut<[A::Item]> for ArrayVec { #[inline(always)] #[must_use] fn borrow_mut(&mut self) -> &mut [A::Item] { &mut *self } } impl Extend for ArrayVec { #[inline] fn extend>(&mut self, iter: T) { for t in iter { self.push(t) } } } impl From for ArrayVec { #[inline(always)] #[must_use] /// The output has a length equal to the full array. /// /// If you want to select a length, use /// [`from_array_len`](ArrayVec::from_array_len) fn from(data: A) -> Self { Self { len: data.as_slice().len(), data } } } impl FromIterator for ArrayVec { #[inline] #[must_use] fn from_iter>(iter: T) -> Self { let mut av = Self::default(); for i in iter { av.push(i) } av } } /// Iterator for consuming an `ArrayVec` and returning owned elements. pub struct ArrayVecIterator { base: usize, len: usize, data: A, } impl ArrayVecIterator { /// Returns the remaining items of this iterator as a slice. #[inline] #[must_use] pub fn as_slice(&self) -> &[A::Item] { &self.data.as_slice()[self.base..self.len] } } impl FusedIterator for ArrayVecIterator { } impl Iterator for ArrayVecIterator { type Item = A::Item; #[inline] fn next(&mut self) -> Option { if self.base < self.len { let out = take(&mut self.data.as_slice_mut()[self.base]); self.base += 1; Some(out) } else { None } } #[inline(always)] #[must_use] fn size_hint(&self) -> (usize, Option) { let s = self.len - self.base; (s, Some(s)) } #[inline(always)] fn count(self) -> usize { self.len - self.base } #[inline] fn last(mut self) -> Option { Some(take(&mut self.data.as_slice_mut()[self.len])) } #[inline] fn nth(&mut self, n: usize) -> Option { let i = self.base + (n - 1); if i < self.len { let out = take(&mut self.data.as_slice_mut()[i]); self.base = i + 1; Some(out) } else { None } } } impl Debug for ArrayVecIterator where A::Item: Debug { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { f.debug_tuple("ArrayVecIterator").field(&self.as_slice()).finish() } } impl IntoIterator for ArrayVec { type Item = A::Item; type IntoIter = ArrayVecIterator; #[inline(always)] #[must_use] fn into_iter(self) -> Self::IntoIter { ArrayVecIterator { base: 0, len: self.len, data: self.data } } } impl PartialEq for ArrayVec where A::Item: PartialEq, { #[inline] #[must_use] fn eq(&self, other: &Self) -> bool { self.as_slice().eq(other.as_slice()) } } impl Eq for ArrayVec where A::Item: Eq {} impl PartialOrd for ArrayVec where A::Item: PartialOrd, { #[inline] #[must_use] fn partial_cmp(&self, other: &Self) -> Option { self.as_slice().partial_cmp(other.as_slice()) } } impl Ord for ArrayVec where A::Item: Ord, { #[inline] #[must_use] fn cmp(&self, other: &Self) -> core::cmp::Ordering { self.as_slice().cmp(other.as_slice()) } } impl PartialEq<&A> for ArrayVec where A::Item: PartialEq, { #[inline] #[must_use] fn eq(&self, other: &&A) -> bool { self.as_slice().eq(other.as_slice()) } } impl PartialEq<&[A::Item]> for ArrayVec where A::Item: PartialEq, { #[inline] #[must_use] fn eq(&self, other: &&[A::Item]) -> bool { self.as_slice().eq(*other) } } impl Hash for ArrayVec where A::Item: Hash, { #[inline] fn hash(&self, state: &mut H) { self.as_slice().hash(state) } } #[cfg(feature = "experimental_write_impl")] impl> core::fmt::Write for ArrayVec { fn write_str(&mut self, s: &str) -> core::fmt::Result { let my_len = self.len(); let str_len = s.as_bytes().len(); if my_len + str_len <= A::CAPACITY { let remainder = &mut self.data.as_slice_mut()[my_len..]; let target = &mut remainder[..str_len]; target.copy_from_slice(s.as_bytes()); Ok(()) } else { Err(core::fmt::Error) } } } // // // // // // // // // Formatting impls // // // // // // // // impl Binary for ArrayVec where A::Item: Binary, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Binary::fmt(elem, f)?; } write!(f, "]") } } impl Debug for ArrayVec where A::Item: Debug, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Debug::fmt(elem, f)?; } write!(f, "]") } } impl Display for ArrayVec where A::Item: Display, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Display::fmt(elem, f)?; } write!(f, "]") } } impl LowerExp for ArrayVec where A::Item: LowerExp, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } LowerExp::fmt(elem, f)?; } write!(f, "]") } } impl LowerHex for ArrayVec where A::Item: LowerHex, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } LowerHex::fmt(elem, f)?; } write!(f, "]") } } impl Octal for ArrayVec where A::Item: Octal, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Octal::fmt(elem, f)?; } write!(f, "]") } } impl Pointer for ArrayVec where A::Item: Pointer, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } Pointer::fmt(elem, f)?; } write!(f, "]") } } impl UpperExp for ArrayVec where A::Item: UpperExp, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } UpperExp::fmt(elem, f)?; } write!(f, "]") } } impl UpperHex for ArrayVec where A::Item: UpperHex, { #[allow(clippy::missing_inline_in_public_items)] fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { write!(f, "[")?; for (i, elem) in self.iter().enumerate() { if i > 0 { write!(f, ", ")?; } UpperHex::fmt(elem, f)?; } write!(f, "]") } }