use std::f64::consts::PI; use std::ops::Mul; /// The projection matrix which is used to project the 3D space to the 2D display panel #[derive(Clone, Debug, Copy)] pub struct ProjectionMatrix([[f64; 4]; 4]); impl AsRef<[[f64; 4]; 4]> for ProjectionMatrix { fn as_ref(&self) -> &[[f64; 4]; 4] { &self.0 } } impl AsMut<[[f64; 4]; 4]> for ProjectionMatrix { fn as_mut(&mut self) -> &mut [[f64; 4]; 4] { &mut self.0 } } impl From<[[f64; 4]; 4]> for ProjectionMatrix { fn from(data: [[f64; 4]; 4]) -> Self { ProjectionMatrix(data) } } impl Default for ProjectionMatrix { fn default() -> Self { ProjectionMatrix::rotate(PI, 0.0, 0.0) } } impl Mul for ProjectionMatrix { type Output = ProjectionMatrix; fn mul(self, other: ProjectionMatrix) -> ProjectionMatrix { let mut ret = ProjectionMatrix::zero(); for r in 0..4 { for c in 0..4 { for k in 0..4 { ret.0[r][c] += other.0[r][k] * self.0[k][c]; } } } ret.normalize(); ret } } impl Mul<(i32, i32, i32)> for ProjectionMatrix { type Output = (i32, i32); fn mul(self, (x, y, z): (i32, i32, i32)) -> (i32, i32) { let (x, y, z) = (x as f64, y as f64, z as f64); let m = self.0; ( (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32, (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32, ) } } impl Mul<(f64, f64, f64)> for ProjectionMatrix { type Output = (i32, i32); fn mul(self, (x, y, z): (f64, f64, f64)) -> (i32, i32) { let m = self.0; ( (x * m[0][0] + y * m[0][1] + z * m[0][2] + m[0][3]) as i32, (x * m[1][0] + y * m[1][1] + z * m[1][2] + m[1][3]) as i32, ) } } impl ProjectionMatrix { /// Returns the identity matrix pub fn one() -> Self { ProjectionMatrix([ [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], ]) } /// Returns the zero maxtrix pub fn zero() -> Self { ProjectionMatrix([[0.0; 4]; 4]) } /// Returns the matrix which shift the coordinate pub fn shift(x: f64, y: f64, z: f64) -> Self { ProjectionMatrix([ [1.0, 0.0, 0.0, x], [0.0, 1.0, 0.0, y], [0.0, 0.0, 1.0, z], [0.0, 0.0, 0.0, 1.0], ]) } /// Returns the matrix which rotates the coordinate pub fn rotate(x: f64, y: f64, z: f64) -> Self { let (c, b, a) = (x, y, z); ProjectionMatrix([ [ a.cos() * b.cos(), a.cos() * b.sin() * c.sin() - a.sin() * c.cos(), a.cos() * b.sin() * c.cos() + a.sin() * c.sin(), 0.0, ], [ a.sin() * b.cos(), a.sin() * b.sin() * c.sin() + a.cos() * c.cos(), a.sin() * b.sin() * c.cos() - a.cos() * c.sin(), 0.0, ], [-b.sin(), b.cos() * c.sin(), b.cos() * c.cos(), 0.0], [0.0, 0.0, 0.0, 1.0], ]) } /// Returns the matrix that applies a scale factor pub fn scale(factor: f64) -> Self { ProjectionMatrix([ [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0 / factor], ]) } /// Normalize the matrix, this will make the metric unit to 1 pub fn normalize(&mut self) { if self.0[3][3] > 1e-20 { for r in 0..4 { for c in 0..4 { self.0[r][c] /= self.0[3][3]; } } } } /// Get the distance of the point in guest coordinate from the screen in pixels pub fn projected_depth(&self, (x, y, z): (i32, i32, i32)) -> i32 { let r = &self.0[2]; (r[0] * x as f64 + r[1] * y as f64 + r[2] * z as f64 + r[3]) as i32 } } /// The helper struct to build a projection matrix #[derive(Copy, Clone)] pub struct ProjectionMatrixBuilder { pub yaw: f64, pub pitch: f64, pub scale: f64, pivot_before: (i32, i32, i32), pivot_after: (i32, i32), } impl ProjectionMatrixBuilder { pub fn new() -> Self { Self { yaw: 0.5, pitch: 0.15, scale: 1.0, pivot_after: (0, 0), pivot_before: (0, 0, 0), } } /// Set the pivot point, which means the 3D coordinate "before" should be mapped into /// the 2D coordinatet "after" pub fn set_pivot(&mut self, before: (i32, i32, i32), after: (i32, i32)) -> &mut Self { self.pivot_before = before; self.pivot_after = after; self } /// Build the matrix based on the configuration pub fn into_matrix(self) -> ProjectionMatrix { let mut ret = if self.pivot_before == (0, 0, 0) { ProjectionMatrix::default() } else { let (x, y, z) = self.pivot_before; ProjectionMatrix::shift(-x as f64, -y as f64, -z as f64) * ProjectionMatrix::default() }; if self.yaw.abs() > 1e-20 { ret = ret * ProjectionMatrix::rotate(0.0, self.yaw, 0.0); } if self.pitch.abs() > 1e-20 { ret = ret * ProjectionMatrix::rotate(self.pitch, 0.0, 0.0); } if (self.scale - 1.0).abs() > 1e-20 { ret = ret * ProjectionMatrix::scale(self.scale); } if self.pivot_after != (0, 0) { let (x, y) = self.pivot_after; ret = ret * ProjectionMatrix::shift(x as f64, y as f64, 0.0); } ret } }