// Copyright 2017 Google Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. //! Tree-based two pass parser. use std::cmp::{max, min}; use std::collections::{HashMap, VecDeque}; use std::ops::{Index, Range}; use unicase::UniCase; use crate::linklabel::{scan_link_label_rest, LinkLabel, ReferenceLabel}; use crate::scanners::*; use crate::strings::CowStr; use crate::tree::{Tree, TreeIndex}; // Allowing arbitrary depth nested parentheses inside link destinations // can create denial of service vulnerabilities if we're not careful. // The simplest countermeasure is to limit their depth, which is // explicitly allowed by the spec as long as the limit is at least 3: // https://spec.commonmark.org/0.29/#link-destination const LINK_MAX_NESTED_PARENS: usize = 5; /// Codeblock kind. #[derive(Clone, Debug, PartialEq)] pub enum CodeBlockKind<'a> { Indented, /// The value contained in the tag describes the language of the code, which may be empty. Fenced(CowStr<'a>), } impl<'a> CodeBlockKind<'a> { pub fn is_indented(&self) -> bool { match *self { CodeBlockKind::Indented => true, _ => false, } } pub fn is_fenced(&self) -> bool { match *self { CodeBlockKind::Fenced(_) => true, _ => false, } } } /// Tags for elements that can contain other elements. #[derive(Clone, Debug, PartialEq)] pub enum Tag<'a> { /// A paragraph of text and other inline elements. Paragraph, /// A heading. The field indicates the level of the heading. Heading(u32), BlockQuote, /// A code block. CodeBlock(CodeBlockKind<'a>), /// A list. If the list is ordered the field indicates the number of the first item. /// Contains only list items. List(Option), // TODO: add delim and tight for ast (not needed for html) /// A list item. Item, /// A footnote definition. The value contained is the footnote's label by which it can /// be referred to. FootnoteDefinition(CowStr<'a>), /// A table. Contains a vector describing the text-alignment for each of its columns. Table(Vec), /// A table header. Contains only `TableRow`s. Note that the table body starts immediately /// after the closure of the `TableHead` tag. There is no `TableBody` tag. TableHead, /// A table row. Is used both for header rows as body rows. Contains only `TableCell`s. TableRow, TableCell, // span-level tags Emphasis, Strong, Strikethrough, /// A link. The first field is the link type, the second the destination URL and the third is a title. Link(LinkType, CowStr<'a>, CowStr<'a>), /// An image. The first field is the link type, the second the destination URL and the third is a title. Image(LinkType, CowStr<'a>, CowStr<'a>), } /// Type specifier for inline links. See [the Tag::Link](enum.Tag.html#variant.Link) for more information. #[derive(Clone, Debug, PartialEq, Copy)] pub enum LinkType { /// Inline link like `[foo](bar)` Inline, /// Reference link like `[foo][bar]` Reference, /// Reference without destination in the document, but resolved by the broken_link_callback ReferenceUnknown, /// Collapsed link like `[foo][]` Collapsed, /// Collapsed link without destination in the document, but resolved by the broken_link_callback CollapsedUnknown, /// Shortcut link like `[foo]` Shortcut, /// Shortcut without destination in the document, but resolved by the broken_link_callback ShortcutUnknown, /// Autolink like `` Autolink, /// Email address in autolink like `` Email, } impl LinkType { fn to_unknown(self) -> Self { match self { LinkType::Reference => LinkType::ReferenceUnknown, LinkType::Collapsed => LinkType::CollapsedUnknown, LinkType::Shortcut => LinkType::ShortcutUnknown, _ => unreachable!(), } } } /// Markdown events that are generated in a preorder traversal of the document /// tree, with additional `End` events whenever all of an inner node's children /// have been visited. #[derive(Clone, Debug, PartialEq)] pub enum Event<'a> { /// Start of a tagged element. Events that are yielded after this event /// and before its corresponding `End` event are inside this element. /// Start and end events are guaranteed to be balanced. Start(Tag<'a>), /// End of a tagged element. End(Tag<'a>), /// A text node. Text(CowStr<'a>), /// An inline code node. Code(CowStr<'a>), /// An HTML node. Html(CowStr<'a>), /// A reference to a footnote with given label, which may or may not be defined /// by an event with a `Tag::FootnoteDefinition` tag. Definitions and references to them may /// occur in any order. FootnoteReference(CowStr<'a>), /// A soft line break. SoftBreak, /// A hard line break. HardBreak, /// A horizontal ruler. Rule, /// A task list marker, rendered as a checkbox in HTML. Contains a true when it is checked. TaskListMarker(bool), } /// Table column text alignment. #[derive(Copy, Clone, Debug, PartialEq)] pub enum Alignment { /// Default text alignment. None, Left, Center, Right, } bitflags! { /// Option struct containing flags for enabling extra features /// that are not part of the CommonMark spec. pub struct Options: u32 { const ENABLE_TABLES = 1 << 1; const ENABLE_FOOTNOTES = 1 << 2; const ENABLE_STRIKETHROUGH = 1 << 3; const ENABLE_TASKLISTS = 1 << 4; const ENABLE_SMART_PUNCTUATION = 1 << 5; } } #[derive(Debug, Default, Clone, Copy)] struct Item { start: usize, end: usize, body: ItemBody, } #[derive(Debug, PartialEq, Clone, Copy)] enum ItemBody { Paragraph, Text, SoftBreak, HardBreak, // These are possible inline items, need to be resolved in second pass. // repeats, can_open, can_close MaybeEmphasis(usize, bool, bool), // quote byte, can_open, can_close MaybeSmartQuote(u8, bool, bool), MaybeCode(usize, bool), // number of backticks, preceeded by backslash MaybeHtml, MaybeLinkOpen, // bool indicates whether or not the preceeding section could be a reference MaybeLinkClose(bool), MaybeImage, // These are inline items after resolution. Emphasis, Strong, Strikethrough, Code(CowIndex), Link(LinkIndex), Image(LinkIndex), FootnoteReference(CowIndex), TaskListMarker(bool), // true for checked Rule, Heading(u32), // heading level FencedCodeBlock(CowIndex), IndentCodeBlock, Html, OwnedHtml(CowIndex), BlockQuote, List(bool, u8, u64), // is_tight, list character, list start index ListItem(usize), // indent level SynthesizeText(CowIndex), SynthesizeChar(char), FootnoteDefinition(CowIndex), // Tables Table(AlignmentIndex), TableHead, TableRow, TableCell, // Dummy node at the top of the tree - should not be used otherwise! Root, } impl<'a> ItemBody { fn is_inline(&self) -> bool { match *self { ItemBody::MaybeEmphasis(..) | ItemBody::MaybeSmartQuote(..) | ItemBody::MaybeHtml | ItemBody::MaybeCode(..) | ItemBody::MaybeLinkOpen | ItemBody::MaybeLinkClose(..) | ItemBody::MaybeImage => true, _ => false, } } } impl<'a> Default for ItemBody { fn default() -> Self { ItemBody::Root } } /// Scanning modes for `Parser`'s `parse_line` method. #[derive(PartialEq, Eq, Copy, Clone)] enum TableParseMode { /// Inside a paragraph, scanning for table headers. Scan, /// Inside a table. Active, /// Inside a paragraph, not scanning for table headers. Disabled, } pub struct BrokenLink<'a> { pub span: std::ops::Range, pub link_type: LinkType, pub reference: &'a str, } /// State for the first parsing pass. /// /// The first pass resolves all block structure, generating an AST. Within a block, items /// are in a linear chain with potential inline markup identified. struct FirstPass<'a, 'b> { text: &'a str, tree: Tree, begin_list_item: bool, last_line_blank: bool, allocs: Allocations<'a>, options: Options, list_nesting: usize, lookup_table: &'b LookupTable, } impl<'a, 'b> FirstPass<'a, 'b> { fn new(text: &'a str, options: Options, lookup_table: &'b LookupTable) -> FirstPass<'a, 'b> { // This is a very naive heuristic for the number of nodes // we'll need. let start_capacity = max(128, text.len() / 32); let tree = Tree::with_capacity(start_capacity); FirstPass { text, tree, begin_list_item: false, last_line_blank: false, allocs: Allocations::new(), options, list_nesting: 0, lookup_table, } } fn run(mut self) -> (Tree, Allocations<'a>) { let mut ix = 0; while ix < self.text.len() { ix = self.parse_block(ix); } for _ in 0..self.tree.spine_len() { self.pop(ix); } (self.tree, self.allocs) } /// Returns offset after block. fn parse_block(&mut self, mut start_ix: usize) -> usize { let bytes = self.text.as_bytes(); let mut line_start = LineStart::new(&bytes[start_ix..]); let i = scan_containers(&self.tree, &mut line_start); for _ in i..self.tree.spine_len() { self.pop(start_ix); } if self.options.contains(Options::ENABLE_FOOTNOTES) { // finish footnote if it's still open and was preceeded by blank line if let Some(node_ix) = self.tree.peek_up() { if let ItemBody::FootnoteDefinition(..) = self.tree[node_ix].item.body { if self.last_line_blank { self.pop(start_ix); } } } // Footnote definitions of the form // [^bar]: // * anything really let container_start = start_ix + line_start.bytes_scanned(); if let Some(bytecount) = self.parse_footnote(container_start) { start_ix = container_start + bytecount; start_ix += scan_blank_line(&bytes[start_ix..]).unwrap_or(0); line_start = LineStart::new(&bytes[start_ix..]); } } // Process new containers loop { let container_start = start_ix + line_start.bytes_scanned(); if let Some((ch, index, indent)) = line_start.scan_list_marker() { let after_marker_index = start_ix + line_start.bytes_scanned(); self.continue_list(container_start, ch, index); self.tree.append(Item { start: container_start, end: after_marker_index, // will get updated later if item not empty body: ItemBody::ListItem(indent), }); self.tree.push(); if let Some(n) = scan_blank_line(&bytes[after_marker_index..]) { self.begin_list_item = true; return after_marker_index + n; } if self.options.contains(Options::ENABLE_TASKLISTS) { if let Some(is_checked) = line_start.scan_task_list_marker() { self.tree.append(Item { start: after_marker_index, end: start_ix + line_start.bytes_scanned(), body: ItemBody::TaskListMarker(is_checked), }); } } } else if line_start.scan_blockquote_marker() { self.finish_list(start_ix); self.tree.append(Item { start: container_start, end: 0, // will get set later body: ItemBody::BlockQuote, }); self.tree.push(); } else { break; } } let ix = start_ix + line_start.bytes_scanned(); if let Some(n) = scan_blank_line(&bytes[ix..]) { if let Some(node_ix) = self.tree.peek_up() { match self.tree[node_ix].item.body { ItemBody::BlockQuote => (), _ => { if self.begin_list_item { // A list item can begin with at most one blank line. self.pop(start_ix); } self.last_line_blank = true; } } } return ix + n; } self.begin_list_item = false; self.finish_list(start_ix); // Save `remaining_space` here to avoid needing to backtrack `line_start` for HTML blocks let remaining_space = line_start.remaining_space(); let indent = line_start.scan_space_upto(4); if indent == 4 { let ix = start_ix + line_start.bytes_scanned(); let remaining_space = line_start.remaining_space(); return self.parse_indented_code_block(ix, remaining_space); } let ix = start_ix + line_start.bytes_scanned(); // HTML Blocks if bytes[ix] == b'<' { // Types 1-5 are all detected by one function and all end with the same // pattern if let Some(html_end_tag) = get_html_end_tag(&bytes[(ix + 1)..]) { return self.parse_html_block_type_1_to_5(ix, html_end_tag, remaining_space); } // Detect type 6 let possible_tag = scan_html_block_tag(&bytes[(ix + 1)..]).1; if is_html_tag(possible_tag) { return self.parse_html_block_type_6_or_7(ix, remaining_space); } // Detect type 7 if let Some(_html_bytes) = scan_html_type_7(&bytes[ix..]) { return self.parse_html_block_type_6_or_7(ix, remaining_space); } } if let Ok(n) = scan_hrule(&bytes[ix..]) { return self.parse_hrule(n, ix); } if let Some(atx_size) = scan_atx_heading(&bytes[ix..]) { return self.parse_atx_heading(ix, atx_size); } // parse refdef if let Some((bytecount, label, link_def)) = self.parse_refdef_total(ix) { self.allocs.refdefs.entry(label).or_insert(link_def); let ix = ix + bytecount; // try to read trailing whitespace or it will register as a completely blank line // TODO: shouldn't we do this for all block level items? return ix + scan_blank_line(&bytes[ix..]).unwrap_or(0); } if let Some((n, fence_ch)) = scan_code_fence(&bytes[ix..]) { return self.parse_fenced_code_block(ix, indent, fence_ch, n); } self.parse_paragraph(ix) } /// Returns the offset of the first line after the table. /// Assumptions: current focus is a table element and the table header /// matches the separator line (same number of columns). fn parse_table(&mut self, table_cols: usize, head_start: usize, body_start: usize) -> usize { // parse header. this shouldn't fail because we made sure the table header is ok let (_sep_start, thead_ix) = self.parse_table_row_inner(head_start, table_cols); self.tree[thead_ix].item.body = ItemBody::TableHead; // parse body let mut ix = body_start; while let Some((next_ix, _row_ix)) = self.parse_table_row(ix, table_cols) { ix = next_ix; } self.pop(ix); ix } /// Call this when containers are taken care of. /// Returns bytes scanned, row_ix fn parse_table_row_inner(&mut self, mut ix: usize, row_cells: usize) -> (usize, TreeIndex) { let bytes = self.text.as_bytes(); let mut cells = 0; let mut final_cell_ix = None; let row_ix = self.tree.append(Item { start: ix, end: 0, // set at end of this function body: ItemBody::TableRow, }); self.tree.push(); loop { ix += scan_ch(&bytes[ix..], b'|'); ix += scan_whitespace_no_nl(&bytes[ix..]); if let Some(eol_bytes) = scan_eol(&bytes[ix..]) { ix += eol_bytes; break; } let cell_ix = self.tree.append(Item { start: ix, end: ix, body: ItemBody::TableCell, }); self.tree.push(); let (next_ix, _brk) = self.parse_line(ix, TableParseMode::Active); let trailing_whitespace = scan_rev_while(&bytes[..next_ix], is_ascii_whitespace); if let Some(cur_ix) = self.tree.cur() { self.tree[cur_ix].item.end -= trailing_whitespace; } self.tree[cell_ix].item.end = next_ix - trailing_whitespace; self.tree.pop(); ix = next_ix; cells += 1; if cells == row_cells { final_cell_ix = Some(cell_ix); } } // fill empty cells if needed // note: this is where GFM and commonmark-extra diverge. we follow // GFM here for _ in cells..row_cells { self.tree.append(Item { start: ix, end: ix, body: ItemBody::TableCell, }); } // drop excess cells if let Some(cell_ix) = final_cell_ix { self.tree[cell_ix].next = None; } self.pop(ix); (ix, row_ix) } /// Returns first offset after the row and the tree index of the row. fn parse_table_row(&mut self, mut ix: usize, row_cells: usize) -> Option<(usize, TreeIndex)> { let bytes = self.text.as_bytes(); let mut line_start = LineStart::new(&bytes[ix..]); let containers = scan_containers(&self.tree, &mut line_start); if containers != self.tree.spine_len() { return None; } line_start.scan_all_space(); ix += line_start.bytes_scanned(); if scan_paragraph_interrupt(&bytes[ix..]) { return None; } let (ix, row_ix) = self.parse_table_row_inner(ix, row_cells); Some((ix, row_ix)) } /// Returns offset of line start after paragraph. fn parse_paragraph(&mut self, start_ix: usize) -> usize { let node_ix = self.tree.append(Item { start: start_ix, end: 0, // will get set later body: ItemBody::Paragraph, }); self.tree.push(); let bytes = self.text.as_bytes(); let mut ix = start_ix; loop { let scan_mode = if self.options.contains(Options::ENABLE_TABLES) && ix == start_ix { TableParseMode::Scan } else { TableParseMode::Disabled }; let (next_ix, brk) = self.parse_line(ix, scan_mode); // break out when we find a table if let Some(Item { body: ItemBody::Table(alignment_ix), .. }) = brk { let table_cols = self.allocs[alignment_ix].len(); self.tree[node_ix].item.body = ItemBody::Table(alignment_ix); // this clears out any stuff we may have appended - but there may // be a cleaner way self.tree[node_ix].child = None; self.tree.pop(); self.tree.push(); return self.parse_table(table_cols, ix, next_ix); } ix = next_ix; let mut line_start = LineStart::new(&bytes[ix..]); let n_containers = scan_containers(&self.tree, &mut line_start); if !line_start.scan_space(4) { let ix_new = ix + line_start.bytes_scanned(); if n_containers == self.tree.spine_len() { if let Some(ix_setext) = self.parse_setext_heading(ix_new, node_ix) { if let Some(Item { start, body: ItemBody::HardBreak, .. }) = brk { if bytes[start] == b'\\' { self.tree.append_text(start, start + 1); } } ix = ix_setext; break; } } // first check for non-empty lists, then for other interrupts let suffix = &bytes[ix_new..]; if self.interrupt_paragraph_by_list(suffix) || scan_paragraph_interrupt(suffix) { break; } } line_start.scan_all_space(); if line_start.is_at_eol() { break; } ix = next_ix + line_start.bytes_scanned(); if let Some(item) = brk { self.tree.append(item); } } self.pop(ix); ix } /// Returns end ix of setext_heading on success. fn parse_setext_heading(&mut self, ix: usize, node_ix: TreeIndex) -> Option { let bytes = self.text.as_bytes(); let (n, level) = scan_setext_heading(&bytes[ix..])?; self.tree[node_ix].item.body = ItemBody::Heading(level); // strip trailing whitespace if let Some(cur_ix) = self.tree.cur() { self.tree[cur_ix].item.end -= scan_rev_while( &bytes[..self.tree[cur_ix].item.end], is_ascii_whitespace_no_nl, ); } Some(ix + n) } /// Parse a line of input, appending text and items to tree. /// /// Returns: index after line and an item representing the break. fn parse_line(&mut self, start: usize, mode: TableParseMode) -> (usize, Option) { let bytes = &self.text.as_bytes(); let mut pipes = 0; let mut last_pipe_ix = start; let mut begin_text = start; let (final_ix, brk) = iterate_special_bytes(&self.lookup_table, bytes, start, |ix, byte| { match byte { b'\n' | b'\r' => { if let TableParseMode::Active = mode { return LoopInstruction::BreakAtWith(ix, None); } let mut i = ix; let eol_bytes = scan_eol(&bytes[ix..]).unwrap(); if mode == TableParseMode::Scan && pipes > 0 { // check if we may be parsing a table let next_line_ix = ix + eol_bytes; let mut line_start = LineStart::new(&bytes[next_line_ix..]); if scan_containers(&self.tree, &mut line_start) == self.tree.spine_len() { let table_head_ix = next_line_ix + line_start.bytes_scanned(); let (table_head_bytes, alignment) = scan_table_head(&bytes[table_head_ix..]); if table_head_bytes > 0 { // computing header count from number of pipes let header_count = count_header_cols(bytes, pipes, start, last_pipe_ix); // make sure they match the number of columns we find in separator line if alignment.len() == header_count { let alignment_ix = self.allocs.allocate_alignment(alignment); let end_ix = table_head_ix + table_head_bytes; return LoopInstruction::BreakAtWith( end_ix, Some(Item { start: i, end: end_ix, // must update later body: ItemBody::Table(alignment_ix), }), ); } } } } let end_ix = ix + eol_bytes; let trailing_backslashes = scan_rev_while(&bytes[..ix], |b| b == b'\\'); if trailing_backslashes % 2 == 1 && end_ix < self.text.len() { i -= 1; self.tree.append_text(begin_text, i); return LoopInstruction::BreakAtWith( end_ix, Some(Item { start: i, end: end_ix, body: ItemBody::HardBreak, }), ); } let trailing_whitespace = scan_rev_while(&bytes[..ix], is_ascii_whitespace_no_nl); if trailing_whitespace >= 2 { i -= trailing_whitespace; self.tree.append_text(begin_text, i); return LoopInstruction::BreakAtWith( end_ix, Some(Item { start: i, end: end_ix, body: ItemBody::HardBreak, }), ); } self.tree.append_text(begin_text, ix); LoopInstruction::BreakAtWith( end_ix, Some(Item { start: i, end: end_ix, body: ItemBody::SoftBreak, }), ) } b'\\' => { if ix + 1 < self.text.len() && is_ascii_punctuation(bytes[ix + 1]) { self.tree.append_text(begin_text, ix); if bytes[ix + 1] == b'`' { let count = 1 + scan_ch_repeat(&bytes[(ix + 2)..], b'`'); self.tree.append(Item { start: ix + 1, end: ix + count + 1, body: ItemBody::MaybeCode(count, true), }); begin_text = ix + 1 + count; LoopInstruction::ContinueAndSkip(count) } else { begin_text = ix + 1; LoopInstruction::ContinueAndSkip(1) } } else { LoopInstruction::ContinueAndSkip(0) } } c @ b'*' | c @ b'_' | c @ b'~' => { let string_suffix = &self.text[ix..]; let count = 1 + scan_ch_repeat(&string_suffix.as_bytes()[1..], c); let can_open = delim_run_can_open(self.text, string_suffix, count, ix); let can_close = delim_run_can_close(self.text, string_suffix, count, ix); let is_valid_seq = c != b'~' || count == 2; if (can_open || can_close) && is_valid_seq { self.tree.append_text(begin_text, ix); for i in 0..count { self.tree.append(Item { start: ix + i, end: ix + i + 1, body: ItemBody::MaybeEmphasis(count - i, can_open, can_close), }); } begin_text = ix + count; } LoopInstruction::ContinueAndSkip(count - 1) } b'`' => { self.tree.append_text(begin_text, ix); let count = 1 + scan_ch_repeat(&bytes[(ix + 1)..], b'`'); self.tree.append(Item { start: ix, end: ix + count, body: ItemBody::MaybeCode(count, false), }); begin_text = ix + count; LoopInstruction::ContinueAndSkip(count - 1) } b'<' => { // Note: could detect some non-HTML cases and early escape here, but not // clear that's a win. self.tree.append_text(begin_text, ix); self.tree.append(Item { start: ix, end: ix + 1, body: ItemBody::MaybeHtml, }); begin_text = ix + 1; LoopInstruction::ContinueAndSkip(0) } b'!' => { if ix + 1 < self.text.len() && bytes[ix + 1] == b'[' { self.tree.append_text(begin_text, ix); self.tree.append(Item { start: ix, end: ix + 2, body: ItemBody::MaybeImage, }); begin_text = ix + 2; LoopInstruction::ContinueAndSkip(1) } else { LoopInstruction::ContinueAndSkip(0) } } b'[' => { self.tree.append_text(begin_text, ix); self.tree.append(Item { start: ix, end: ix + 1, body: ItemBody::MaybeLinkOpen, }); begin_text = ix + 1; LoopInstruction::ContinueAndSkip(0) } b']' => { self.tree.append_text(begin_text, ix); self.tree.append(Item { start: ix, end: ix + 1, body: ItemBody::MaybeLinkClose(true), }); begin_text = ix + 1; LoopInstruction::ContinueAndSkip(0) } b'&' => match scan_entity(&bytes[ix..]) { (n, Some(value)) => { self.tree.append_text(begin_text, ix); self.tree.append(Item { start: ix, end: ix + n, body: ItemBody::SynthesizeText(self.allocs.allocate_cow(value)), }); begin_text = ix + n; LoopInstruction::ContinueAndSkip(n - 1) } _ => LoopInstruction::ContinueAndSkip(0), }, b'|' => { if let TableParseMode::Active = mode { LoopInstruction::BreakAtWith(ix, None) } else { last_pipe_ix = ix; pipes += 1; LoopInstruction::ContinueAndSkip(0) } } b'.' => { if ix + 2 < bytes.len() && bytes[ix + 1] == b'.' && bytes[ix + 2] == b'.' { self.tree.append_text(begin_text, ix); self.tree.append(Item { start: ix, end: ix + 3, body: ItemBody::SynthesizeChar('…'), }); begin_text = ix + 3; LoopInstruction::ContinueAndSkip(2) } else { LoopInstruction::ContinueAndSkip(0) } } b'-' => { let count = 1 + scan_ch_repeat(&bytes[(ix + 1)..], b'-'); if count == 1 { LoopInstruction::ContinueAndSkip(0) } else { let itembody = if count == 2 { ItemBody::SynthesizeChar('–') } else if count == 3 { ItemBody::SynthesizeChar('—') } else { let (ems, ens) = match count % 6 { 0 | 3 => (count / 3, 0), 2 | 4 => (0, count / 2), 1 => (count / 3 - 1, 2), _ => (count / 3, 1), }; // – and — are 3 bytes each in utf8 let mut buf = String::with_capacity(3 * (ems + ens)); for _ in 0..ems { buf.push('—'); } for _ in 0..ens { buf.push('–'); } ItemBody::SynthesizeText(self.allocs.allocate_cow(buf.into())) }; self.tree.append_text(begin_text, ix); self.tree.append(Item { start: ix, end: ix + count, body: itembody, }); begin_text = ix + count; LoopInstruction::ContinueAndSkip(count - 1) } } c @ b'\'' | c @ b'"' => { let string_suffix = &self.text[ix..]; let can_open = delim_run_can_open(self.text, string_suffix, 1, ix); let can_close = delim_run_can_close(self.text, string_suffix, 1, ix); self.tree.append_text(begin_text, ix); self.tree.append(Item { start: ix, end: ix + 1, body: ItemBody::MaybeSmartQuote(c, can_open, can_close), }); begin_text = ix + 1; LoopInstruction::ContinueAndSkip(0) } _ => LoopInstruction::ContinueAndSkip(0), } }); if brk.is_none() { // need to close text at eof self.tree.append_text(begin_text, final_ix); } (final_ix, brk) } /// Check whether we should allow a paragraph interrupt by lists. Only non-empty /// lists are allowed. fn interrupt_paragraph_by_list(&self, suffix: &[u8]) -> bool { scan_listitem(suffix).map_or(false, |(ix, delim, index, _)| { self.list_nesting > 0 || // we don't allow interruption by either empty lists or // numbered lists starting at an index other than 1 !scan_empty_list(&suffix[ix..]) && (delim == b'*' || delim == b'-' || index == 1) }) } /// When start_ix is at the beginning of an HTML block of type 1 to 5, /// this will find the end of the block, adding the block itself to the /// tree and also keeping track of the lines of HTML within the block. /// /// The html_end_tag is the tag that must be found on a line to end the block. fn parse_html_block_type_1_to_5( &mut self, start_ix: usize, html_end_tag: &str, mut remaining_space: usize, ) -> usize { let bytes = self.text.as_bytes(); let mut ix = start_ix; loop { let line_start_ix = ix; ix += scan_nextline(&bytes[ix..]); self.append_html_line(remaining_space, line_start_ix, ix); let mut line_start = LineStart::new(&bytes[ix..]); let n_containers = scan_containers(&self.tree, &mut line_start); if n_containers < self.tree.spine_len() { break; } if (&self.text[line_start_ix..ix]).contains(html_end_tag) { break; } let next_line_ix = ix + line_start.bytes_scanned(); if next_line_ix == self.text.len() { break; } ix = next_line_ix; remaining_space = line_start.remaining_space(); } ix } /// When start_ix is at the beginning of an HTML block of type 6 or 7, /// this will consume lines until there is a blank line and keep track of /// the HTML within the block. fn parse_html_block_type_6_or_7( &mut self, start_ix: usize, mut remaining_space: usize, ) -> usize { let bytes = self.text.as_bytes(); let mut ix = start_ix; loop { let line_start_ix = ix; ix += scan_nextline(&bytes[ix..]); self.append_html_line(remaining_space, line_start_ix, ix); let mut line_start = LineStart::new(&bytes[ix..]); let n_containers = scan_containers(&self.tree, &mut line_start); if n_containers < self.tree.spine_len() || line_start.is_at_eol() { break; } let next_line_ix = ix + line_start.bytes_scanned(); if next_line_ix == self.text.len() || scan_blank_line(&bytes[next_line_ix..]).is_some() { break; } ix = next_line_ix; remaining_space = line_start.remaining_space(); } ix } fn parse_indented_code_block(&mut self, start_ix: usize, mut remaining_space: usize) -> usize { self.tree.append(Item { start: start_ix, end: 0, // will get set later body: ItemBody::IndentCodeBlock, }); self.tree.push(); let bytes = self.text.as_bytes(); let mut last_nonblank_child = None; let mut last_nonblank_ix = 0; let mut end_ix = 0; let mut last_line_blank = false; let mut ix = start_ix; loop { let line_start_ix = ix; ix += scan_nextline(&bytes[ix..]); self.append_code_text(remaining_space, line_start_ix, ix); // TODO(spec clarification): should we synthesize newline at EOF? if !last_line_blank { last_nonblank_child = self.tree.cur(); last_nonblank_ix = ix; end_ix = ix; } let mut line_start = LineStart::new(&bytes[ix..]); let n_containers = scan_containers(&self.tree, &mut line_start); if n_containers < self.tree.spine_len() || !(line_start.scan_space(4) || line_start.is_at_eol()) { break; } let next_line_ix = ix + line_start.bytes_scanned(); if next_line_ix == self.text.len() { break; } ix = next_line_ix; remaining_space = line_start.remaining_space(); last_line_blank = scan_blank_line(&bytes[ix..]).is_some(); } // Trim trailing blank lines. if let Some(child) = last_nonblank_child { self.tree[child].next = None; self.tree[child].item.end = last_nonblank_ix; } self.pop(end_ix); ix } fn parse_fenced_code_block( &mut self, start_ix: usize, indent: usize, fence_ch: u8, n_fence_char: usize, ) -> usize { let bytes = self.text.as_bytes(); let mut info_start = start_ix + n_fence_char; info_start += scan_whitespace_no_nl(&bytes[info_start..]); // TODO: info strings are typically very short. wouldnt it be faster // to just do a forward scan here? let mut ix = info_start + scan_nextline(&bytes[info_start..]); let info_end = ix - scan_rev_while(&bytes[info_start..ix], is_ascii_whitespace); let info_string = unescape(&self.text[info_start..info_end]); self.tree.append(Item { start: start_ix, end: 0, // will get set later body: ItemBody::FencedCodeBlock(self.allocs.allocate_cow(info_string)), }); self.tree.push(); loop { let mut line_start = LineStart::new(&bytes[ix..]); let n_containers = scan_containers(&self.tree, &mut line_start); if n_containers < self.tree.spine_len() { break; } line_start.scan_space(indent); let mut close_line_start = line_start.clone(); if !close_line_start.scan_space(4) { let close_ix = ix + close_line_start.bytes_scanned(); if let Some(n) = scan_closing_code_fence(&bytes[close_ix..], fence_ch, n_fence_char) { ix = close_ix + n; break; } } let remaining_space = line_start.remaining_space(); ix += line_start.bytes_scanned(); let next_ix = ix + scan_nextline(&bytes[ix..]); self.append_code_text(remaining_space, ix, next_ix); ix = next_ix; } self.pop(ix); // try to read trailing whitespace or it will register as a completely blank line ix + scan_blank_line(&bytes[ix..]).unwrap_or(0) } fn append_code_text(&mut self, remaining_space: usize, start: usize, end: usize) { if remaining_space > 0 { let cow_ix = self.allocs.allocate_cow(" "[..remaining_space].into()); self.tree.append(Item { start, end: start, body: ItemBody::SynthesizeText(cow_ix), }); } if self.text.as_bytes()[end - 2] == b'\r' { // Normalize CRLF to LF self.tree.append_text(start, end - 2); self.tree.append_text(end - 1, end); } else { self.tree.append_text(start, end); } } /// Appends a line of HTML to the tree. fn append_html_line(&mut self, remaining_space: usize, start: usize, end: usize) { if remaining_space > 0 { let cow_ix = self.allocs.allocate_cow(" "[..remaining_space].into()); self.tree.append(Item { start, end: start, // TODO: maybe this should synthesize to html rather than text? body: ItemBody::SynthesizeText(cow_ix), }); } if self.text.as_bytes()[end - 2] == b'\r' { // Normalize CRLF to LF self.tree.append(Item { start, end: end - 2, body: ItemBody::Html, }); self.tree.append(Item { start: end - 1, end, body: ItemBody::Html, }); } else { self.tree.append(Item { start, end, body: ItemBody::Html, }); } } /// Pop a container, setting its end. fn pop(&mut self, ix: usize) { let cur_ix = self.tree.pop().unwrap(); self.tree[cur_ix].item.end = ix; if let ItemBody::List(true, _, _) = self.tree[cur_ix].item.body { surgerize_tight_list(&mut self.tree, cur_ix); } } /// Close a list if it's open. Also set loose if last line was blank fn finish_list(&mut self, ix: usize) { if let Some(node_ix) = self.tree.peek_up() { if let ItemBody::List(_, _, _) = self.tree[node_ix].item.body { self.pop(ix); self.list_nesting -= 1; } } if self.last_line_blank { if let Some(node_ix) = self.tree.peek_grandparent() { if let ItemBody::List(ref mut is_tight, _, _) = self.tree[node_ix].item.body { *is_tight = false; } } self.last_line_blank = false; } } /// Continue an existing list or start a new one if there's not an open /// list that matches. fn continue_list(&mut self, start: usize, ch: u8, index: u64) { if let Some(node_ix) = self.tree.peek_up() { if let ItemBody::List(ref mut is_tight, existing_ch, _) = self.tree[node_ix].item.body { if existing_ch == ch { if self.last_line_blank { *is_tight = false; self.last_line_blank = false; } return; } } // TODO: this is not the best choice for end; maybe get end from last list item. self.finish_list(start); } self.tree.append(Item { start, end: 0, // will get set later body: ItemBody::List(true, ch, index), }); self.list_nesting += 1; self.tree.push(); self.last_line_blank = false; } /// Parse a thematic break. /// /// Returns index of start of next line. fn parse_hrule(&mut self, hrule_size: usize, ix: usize) -> usize { self.tree.append(Item { start: ix, end: ix + hrule_size, body: ItemBody::Rule, }); ix + hrule_size } /// Parse an ATX heading. /// /// Returns index of start of next line. fn parse_atx_heading(&mut self, mut ix: usize, atx_size: usize) -> usize { let heading_ix = self.tree.append(Item { start: ix, end: 0, // set later body: ItemBody::Heading(atx_size as u32), }); ix += atx_size; // next char is space or eol (guaranteed by scan_atx_heading) let bytes = self.text.as_bytes(); if let Some(eol_bytes) = scan_eol(&bytes[ix..]) { self.tree[heading_ix].item.end = ix + eol_bytes; return ix + eol_bytes; } // skip leading spaces let skip_spaces = scan_whitespace_no_nl(&bytes[ix..]); ix += skip_spaces; // now handle the header text let header_start = ix; let header_node_idx = self.tree.push(); // so that we can set the endpoint later ix = self.parse_line(ix, TableParseMode::Disabled).0; self.tree[header_node_idx].item.end = ix; // remove trailing matter from header text if let Some(cur_ix) = self.tree.cur() { let header_text = &bytes[header_start..ix]; let mut limit = header_text .iter() .rposition(|&b| !(b == b'\n' || b == b'\r' || b == b' ')) .map_or(0, |i| i + 1); let closer = header_text[..limit] .iter() .rposition(|&b| b != b'#') .map_or(0, |i| i + 1); if closer == 0 { limit = closer; } else { let spaces = scan_rev_while(&header_text[..closer], |b| b == b' '); if spaces > 0 { limit = closer - spaces; } } self.tree[cur_ix].item.end = limit + header_start; } self.tree.pop(); ix } /// Returns the number of bytes scanned on success. fn parse_footnote(&mut self, start: usize) -> Option { let bytes = &self.text.as_bytes()[start..]; if !bytes.starts_with(b"[^") { return None; } let (mut i, label) = self.parse_refdef_label(start + 2)?; i += 2; if scan_ch(&bytes[i..], b':') == 0 { return None; } i += 1; self.finish_list(start); self.tree.append(Item { start, end: 0, // will get set later // TODO: check whether the label here is strictly necessary body: ItemBody::FootnoteDefinition(self.allocs.allocate_cow(label)), }); self.tree.push(); Some(i) } /// Tries to parse a reference label, which can be interrupted by new blocks. /// On success, returns the number of bytes of the label and the label itself. fn parse_refdef_label(&self, start: usize) -> Option<(usize, CowStr<'a>)> { scan_link_label_rest(&self.text[start..], &|bytes| { let mut line_start = LineStart::new(bytes); let _ = scan_containers(&self.tree, &mut line_start); let bytes_scanned = line_start.bytes_scanned(); let suffix = &bytes[bytes_scanned..]; if self.interrupt_paragraph_by_list(suffix) || scan_paragraph_interrupt(suffix) { None } else { Some(bytes_scanned) } }) } /// Returns number of bytes scanned, label and definition on success. fn parse_refdef_total(&mut self, start: usize) -> Option<(usize, LinkLabel<'a>, LinkDef<'a>)> { let bytes = &self.text.as_bytes()[start..]; if scan_ch(bytes, b'[') == 0 { return None; } let (mut i, label) = self.parse_refdef_label(start + 1)?; i += 1; if scan_ch(&bytes[i..], b':') == 0 { return None; } i += 1; let (bytecount, link_def) = self.scan_refdef(start + i)?; Some((bytecount + i, UniCase::new(label), link_def)) } /// Returns number of bytes and number of newlines fn scan_refdef_space(&self, bytes: &[u8], mut i: usize) -> Option<(usize, usize)> { let mut newlines = 0; loop { let whitespaces = scan_whitespace_no_nl(&bytes[i..]); i += whitespaces; if let Some(eol_bytes) = scan_eol(&bytes[i..]) { i += eol_bytes; newlines += 1; if newlines > 1 { return None; } } else { break; } let mut line_start = LineStart::new(&bytes[i..]); if self.tree.spine_len() != scan_containers(&self.tree, &mut line_start) { return None; } i += line_start.bytes_scanned(); } Some((i, newlines)) } /// Returns # of bytes and definition. /// Assumes the label of the reference including colon has already been scanned. fn scan_refdef(&self, start: usize) -> Option<(usize, LinkDef<'a>)> { let bytes = self.text.as_bytes(); // whitespace between label and url (including up to one newline) let (mut i, _newlines) = self.scan_refdef_space(bytes, start)?; // scan link dest let (dest_length, dest) = scan_link_dest(self.text, i, 1)?; if dest_length == 0 { return None; } let dest = unescape(dest); i += dest_length; // no title let mut backup = (i - start, LinkDef { dest, title: None }); // scan whitespace between dest and label let (mut i, newlines) = if let Some((new_i, mut newlines)) = self.scan_refdef_space(bytes, i) { if i == self.text.len() { newlines += 1; } if new_i == i && newlines == 0 { return None; } if newlines > 1 { return Some(backup); }; (new_i, newlines) } else { return Some(backup); }; // scan title // if this fails but newline == 1, return also a refdef without title if let Some((title_length, title)) = scan_refdef_title(&self.text[i..]) { i += title_length; backup.1.title = Some(unescape(title)); } else if newlines > 0 { return Some(backup); } else { return None; }; // scan EOL if let Some(bytes) = scan_blank_line(&bytes[i..]) { backup.0 = i + bytes - start; Some(backup) } else if newlines > 0 { Some(backup) } else { None } } } /// Returns number of containers scanned. fn scan_containers(tree: &Tree, line_start: &mut LineStart) -> usize { let mut i = 0; for &node_ix in tree.walk_spine() { match tree[node_ix].item.body { ItemBody::BlockQuote => { let save = line_start.clone(); if !line_start.scan_blockquote_marker() { *line_start = save; break; } } ItemBody::ListItem(indent) => { let save = line_start.clone(); if !line_start.scan_space(indent) { if !line_start.is_at_eol() { *line_start = save; break; } } } _ => (), } i += 1; } i } /// Computes the number of header columns in a table line by computing the number of dividing pipes /// that aren't followed or preceeded by whitespace. fn count_header_cols( bytes: &[u8], mut pipes: usize, mut start: usize, last_pipe_ix: usize, ) -> usize { // was first pipe preceeded by whitespace? if so, subtract one start += scan_whitespace_no_nl(&bytes[start..]); if bytes[start] == b'|' { pipes -= 1; } // was last pipe followed by whitespace? if so, sub one if scan_blank_line(&bytes[(last_pipe_ix + 1)..]).is_some() { pipes } else { pipes + 1 } } impl<'a> Tree { fn append_text(&mut self, start: usize, end: usize) { if end > start { if let Some(ix) = self.cur() { if ItemBody::Text == self[ix].item.body && self[ix].item.end == start { self[ix].item.end = end; return; } } self.append(Item { start, end, body: ItemBody::Text, }); } } } /// Determines whether the delimiter run starting at given index is /// left-flanking, as defined by the commonmark spec (and isn't intraword /// for _ delims). /// suffix is &s[ix..], which is passed in as an optimization, since taking /// a string subslice is O(n). fn delim_run_can_open(s: &str, suffix: &str, run_len: usize, ix: usize) -> bool { let next_char = if let Some(c) = suffix.chars().nth(run_len) { c } else { return false; }; if next_char.is_whitespace() { return false; } if ix == 0 { return true; } let delim = suffix.chars().next().unwrap(); if delim == '*' && !is_punctuation(next_char) { return true; } let prev_char = s[..ix].chars().last().unwrap(); prev_char.is_whitespace() || is_punctuation(prev_char) && (delim != '\'' || ![']', ')'].contains(&prev_char)) } /// Determines whether the delimiter run starting at given index is /// left-flanking, as defined by the commonmark spec (and isn't intraword /// for _ delims) fn delim_run_can_close(s: &str, suffix: &str, run_len: usize, ix: usize) -> bool { if ix == 0 { return false; } let prev_char = s[..ix].chars().last().unwrap(); if prev_char.is_whitespace() { return false; } let next_char = if let Some(c) = suffix.chars().nth(run_len) { c } else { return true; }; let delim = suffix.chars().next().unwrap(); if delim == '*' && !is_punctuation(prev_char) { return true; } next_char.is_whitespace() || is_punctuation(next_char) } /// Checks whether we should break a paragraph on the given input. /// Note: lists are dealt with in `interrupt_paragraph_by_list`, because determing /// whether to break on a list requires additional context. fn scan_paragraph_interrupt(bytes: &[u8]) -> bool { if scan_eol(bytes).is_some() || scan_hrule(bytes).is_ok() || scan_atx_heading(bytes).is_some() || scan_code_fence(bytes).is_some() || scan_blockquote_start(bytes).is_some() { return true; } bytes.starts_with(b"<") && (get_html_end_tag(&bytes[1..]).is_some() || is_html_tag(scan_html_block_tag(&bytes[1..]).1)) } /// Assumes `text_bytes` is preceded by `<`. fn get_html_end_tag(text_bytes: &[u8]) -> Option<&'static str> { static BEGIN_TAGS: &[&[u8]; 3] = &[b"pre", b"style", b"script"]; static ST_BEGIN_TAGS: &[&[u8]; 3] = &[b"!--", b"?", b"![CDATA["]; for (beg_tag, end_tag) in BEGIN_TAGS .iter() .zip(["", "", ""].iter()) { let tag_len = beg_tag.len(); if text_bytes.len() < tag_len { // begin tags are increasing in size break; } if !text_bytes[..tag_len].eq_ignore_ascii_case(beg_tag) { continue; } // Must either be the end of the line... if text_bytes.len() == tag_len { return Some(end_tag); } // ...or be followed by whitespace, newline, or '>'. let s = text_bytes[tag_len]; if is_ascii_whitespace(s) || s == b'>' { return Some(end_tag); } } for (beg_tag, end_tag) in ST_BEGIN_TAGS.iter().zip(["-->", "?>", "]]>"].iter()) { if text_bytes.starts_with(beg_tag) { return Some(end_tag); } } if text_bytes.len() > 1 && text_bytes[0] == b'!' && text_bytes[1] >= b'A' && text_bytes[1] <= b'Z' { Some(">") } else { None } } #[derive(Copy, Clone, Debug)] struct InlineEl { start: TreeIndex, // offset of tree node count: usize, c: u8, // b'*' or b'_' both: bool, // can both open and close } #[derive(Debug, Clone, Default)] struct InlineStack { stack: Vec, // Lower bounds for matching indices in the stack. For example // a strikethrough delimiter will never match with any element // in the stack with index smaller than // `lower_bounds[InlineStack::TILDES]`. lower_bounds: [usize; 7], } impl InlineStack { /// These are indices into the lower bounds array. /// Not both refers to the property that the delimiter can not both /// be opener as a closer. const UNDERSCORE_NOT_BOTH: usize = 0; const ASTERISK_NOT_BOTH: usize = 1; const ASTERISK_BASE: usize = 2; const TILDES: usize = 5; const UNDERSCORE_BOTH: usize = 6; fn pop_all(&mut self, tree: &mut Tree) { for el in self.stack.drain(..) { for i in 0..el.count { tree[el.start + i].item.body = ItemBody::Text; } } self.lower_bounds = [0; 7]; } fn get_lowerbound(&self, c: u8, count: usize, both: bool) -> usize { if c == b'_' { if both { self.lower_bounds[InlineStack::UNDERSCORE_BOTH] } else { self.lower_bounds[InlineStack::UNDERSCORE_NOT_BOTH] } } else if c == b'*' { let mod3_lower = self.lower_bounds[InlineStack::ASTERISK_BASE + count % 3]; if both { mod3_lower } else { min( mod3_lower, self.lower_bounds[InlineStack::ASTERISK_NOT_BOTH], ) } } else { self.lower_bounds[InlineStack::TILDES] } } fn set_lowerbound(&mut self, c: u8, count: usize, both: bool, new_bound: usize) { if c == b'_' { if both { self.lower_bounds[InlineStack::UNDERSCORE_BOTH] = new_bound; } else { self.lower_bounds[InlineStack::UNDERSCORE_NOT_BOTH] = new_bound; } } else if c == b'*' { self.lower_bounds[InlineStack::ASTERISK_BASE + count % 3] = new_bound; if !both { self.lower_bounds[InlineStack::ASTERISK_NOT_BOTH] = new_bound; } } else { self.lower_bounds[InlineStack::TILDES] = new_bound; } } fn find_match( &mut self, tree: &mut Tree, c: u8, count: usize, both: bool, ) -> Option { let lowerbound = min(self.stack.len(), self.get_lowerbound(c, count, both)); let res = self.stack[lowerbound..] .iter() .cloned() .enumerate() .rfind(|(_, el)| { el.c == c && (!both && !el.both || (count + el.count) % 3 != 0 || count % 3 == 0) }); if let Some((matching_ix, matching_el)) = res { let matching_ix = matching_ix + lowerbound; for el in &self.stack[(matching_ix + 1)..] { for i in 0..el.count { tree[el.start + i].item.body = ItemBody::Text; } } self.stack.truncate(matching_ix); Some(matching_el) } else { self.set_lowerbound(c, count, both, self.stack.len()); None } } fn push(&mut self, el: InlineEl) { self.stack.push(el) } } #[derive(Debug, Clone)] enum RefScan<'a> { // label, source ix of label end LinkLabel(CowStr<'a>, usize), // contains next node index Collapsed(Option), Failed, } /// Skips forward within a block to a node which spans (ends inclusive) the given /// index into the source. fn scan_nodes_to_ix( tree: &Tree, mut node: Option, ix: usize, ) -> Option { while let Some(node_ix) = node { if tree[node_ix].item.end <= ix { node = tree[node_ix].next; } else { break; } } node } /// Scans an inline link label, which cannot be interrupted. /// Returns number of bytes (including brackets) and label on success. fn scan_link_label<'text, 'tree>( tree: &'tree Tree, text: &'text str, allow_footnote_refs: bool, ) -> Option<(usize, ReferenceLabel<'text>)> { let bytes = &text.as_bytes(); if bytes.len() < 2 || bytes[0] != b'[' { return None; } let linebreak_handler = |bytes: &[u8]| { let mut line_start = LineStart::new(bytes); let _ = scan_containers(tree, &mut line_start); Some(line_start.bytes_scanned()) }; let pair = if allow_footnote_refs && b'^' == bytes[1] { let (byte_index, cow) = scan_link_label_rest(&text[2..], &linebreak_handler)?; (byte_index + 2, ReferenceLabel::Footnote(cow)) } else { let (byte_index, cow) = scan_link_label_rest(&text[1..], &linebreak_handler)?; (byte_index + 1, ReferenceLabel::Link(cow)) }; Some(pair) } fn scan_reference<'a, 'b>( tree: &'a Tree, text: &'b str, cur: Option, allow_footnote_refs: bool, ) -> RefScan<'b> { let cur_ix = match cur { None => return RefScan::Failed, Some(cur_ix) => cur_ix, }; let start = tree[cur_ix].item.start; let tail = &text.as_bytes()[start..]; if tail.starts_with(b"[]") { let closing_node = tree[cur_ix].next.unwrap(); RefScan::Collapsed(tree[closing_node].next) } else if let Some((ix, ReferenceLabel::Link(label))) = scan_link_label(tree, &text[start..], allow_footnote_refs) { RefScan::LinkLabel(label, start + ix) } else { RefScan::Failed } } #[derive(Clone, Default)] struct LinkStack { inner: Vec, disabled_ix: usize, } impl LinkStack { fn push(&mut self, el: LinkStackEl) { self.inner.push(el); } fn pop(&mut self) -> Option { let el = self.inner.pop(); self.disabled_ix = std::cmp::min(self.disabled_ix, self.inner.len()); el } fn clear(&mut self) { self.inner.clear(); self.disabled_ix = 0; } fn disable_all_links(&mut self) { for el in &mut self.inner[self.disabled_ix..] { if el.ty == LinkStackTy::Link { el.ty = LinkStackTy::Disabled; } } self.disabled_ix = self.inner.len(); } } #[derive(Clone, Debug)] struct LinkStackEl { node: TreeIndex, ty: LinkStackTy, } #[derive(PartialEq, Clone, Debug)] enum LinkStackTy { Link, Image, Disabled, } #[derive(Clone)] struct LinkDef<'a> { dest: CowStr<'a>, title: Option>, } /// Tracks tree indices of code span delimiters of each length. It should prevent /// quadratic scanning behaviours by providing (amortized) constant time lookups. struct CodeDelims { inner: HashMap>, seen_first: bool, } impl CodeDelims { fn new() -> Self { Self { inner: Default::default(), seen_first: false, } } fn insert(&mut self, count: usize, ix: TreeIndex) { if self.seen_first { self.inner .entry(count) .or_insert_with(Default::default) .push_back(ix); } else { // Skip the first insert, since that delimiter will always // be an opener and not a closer. self.seen_first = true; } } fn is_populated(&self) -> bool { !self.inner.is_empty() } fn find(&mut self, open_ix: TreeIndex, count: usize) -> Option { while let Some(ix) = self.inner.get_mut(&count)?.pop_front() { if ix > open_ix { return Some(ix); } } None } fn clear(&mut self) { self.inner.clear(); self.seen_first = false; } } #[derive(Copy, Clone, PartialEq, Eq, Debug)] struct LinkIndex(usize); #[derive(Copy, Clone, PartialEq, Eq, Debug)] struct CowIndex(usize); #[derive(Copy, Clone, PartialEq, Eq, Debug)] struct AlignmentIndex(usize); #[derive(Clone)] struct Allocations<'a> { refdefs: HashMap, LinkDef<'a>>, links: Vec<(LinkType, CowStr<'a>, CowStr<'a>)>, cows: Vec>, alignments: Vec>, } impl<'a> Allocations<'a> { fn new() -> Self { Self { refdefs: HashMap::new(), links: Vec::with_capacity(128), cows: Vec::new(), alignments: Vec::new(), } } fn allocate_cow(&mut self, cow: CowStr<'a>) -> CowIndex { let ix = self.cows.len(); self.cows.push(cow); CowIndex(ix) } fn allocate_link(&mut self, ty: LinkType, url: CowStr<'a>, title: CowStr<'a>) -> LinkIndex { let ix = self.links.len(); self.links.push((ty, url, title)); LinkIndex(ix) } fn allocate_alignment(&mut self, alignment: Vec) -> AlignmentIndex { let ix = self.alignments.len(); self.alignments.push(alignment); AlignmentIndex(ix) } } impl<'a> Index for Allocations<'a> { type Output = CowStr<'a>; fn index(&self, ix: CowIndex) -> &Self::Output { self.cows.index(ix.0) } } impl<'a> Index for Allocations<'a> { type Output = (LinkType, CowStr<'a>, CowStr<'a>); fn index(&self, ix: LinkIndex) -> &Self::Output { self.links.index(ix.0) } } impl<'a> Index for Allocations<'a> { type Output = Vec; fn index(&self, ix: AlignmentIndex) -> &Self::Output { self.alignments.index(ix.0) } } /// A struct containing information on the reachability of certain inline HTML /// elements. In particular, for cdata elements (` [bool; 256] { let mut bytes = [false; 256]; let standard_bytes = [ b'\n', b'\r', b'*', b'_', b'&', b'\\', b'[', b']', b'<', b'!', b'`', ]; for &byte in &standard_bytes { bytes[byte as usize] = true; } if options.contains(Options::ENABLE_TABLES) { bytes[b'|' as usize] = true; } if options.contains(Options::ENABLE_STRIKETHROUGH) { bytes[b'~' as usize] = true; } if options.contains(Options::ENABLE_SMART_PUNCTUATION) { for &byte in &[b'.', b'-', b'"', b'\''] { bytes[byte as usize] = true; } } bytes } pub(crate) fn create_lut(options: &Options) -> LookupTable { #[cfg(all(target_arch = "x86_64", feature = "simd"))] { LookupTable { simd: crate::simd::compute_lookup(options), scalar: special_bytes(options), } } #[cfg(not(all(target_arch = "x86_64", feature = "simd")))] { special_bytes(options) } } pub type BrokenLinkCallback<'a> = Option<&'a mut dyn FnMut(BrokenLink) -> Option<(CowStr<'a>, CowStr<'a>)>>; /// Markdown event iterator. pub struct Parser<'a> { text: &'a str, options: Options, tree: Tree, allocs: Allocations<'a>, broken_link_callback: BrokenLinkCallback<'a>, html_scan_guard: HtmlScanGuard, // used by inline passes. store them here for reuse inline_stack: InlineStack, link_stack: LinkStack, } impl<'a> Parser<'a> { /// Creates a new event iterator for a markdown string without any options enabled. pub fn new(text: &'a str) -> Parser<'a> { Parser::new_ext(text, Options::empty()) } /// Creates a new event iterator for a markdown string with given options. pub fn new_ext(text: &'a str, options: Options) -> Parser<'a> { Parser::new_with_broken_link_callback(text, options, None) } /// In case the parser encounters any potential links that have a broken /// reference (e.g `[foo]` when there is no `[foo]: ` entry at the bottom) /// the provided callback will be called with the reference name, /// and the returned pair will be used as the link name and title if it is not /// `None`. pub fn new_with_broken_link_callback( text: &'a str, options: Options, broken_link_callback: BrokenLinkCallback<'a>, ) -> Parser<'a> { let lut = create_lut(&options); let first_pass = FirstPass::new(text, options, &lut); let (mut tree, allocs) = first_pass.run(); tree.reset(); let inline_stack = Default::default(); let link_stack = Default::default(); let html_scan_guard = Default::default(); Parser { text, options, tree, allocs, broken_link_callback, inline_stack, link_stack, html_scan_guard, } } /// Handle inline markup. /// /// When the parser encounters any item indicating potential inline markup, all /// inline markup passes are run on the remainder of the chain. /// /// Note: there's some potential for optimization here, but that's future work. fn handle_inline(&mut self) { self.handle_inline_pass1(); self.handle_emphasis(); } /// Handle inline HTML, code spans, and links. /// /// This function handles both inline HTML and code spans, because they have /// the same precedence. It also handles links, even though they have lower /// precedence, because the URL of links must not be processed. fn handle_inline_pass1(&mut self) { let mut code_delims = CodeDelims::new(); let mut cur = self.tree.cur(); let mut prev = None; let block_end = self.tree[self.tree.peek_up().unwrap()].item.end; let block_text = &self.text[..block_end]; while let Some(mut cur_ix) = cur { match self.tree[cur_ix].item.body { ItemBody::MaybeHtml => { let next = self.tree[cur_ix].next; let autolink = if let Some(next_ix) = next { scan_autolink(block_text, self.tree[next_ix].item.start) } else { None }; if let Some((ix, uri, link_type)) = autolink { let node = scan_nodes_to_ix(&self.tree, next, ix); let text_node = self.tree.create_node(Item { start: self.tree[cur_ix].item.start + 1, end: ix - 1, body: ItemBody::Text, }); let link_ix = self.allocs.allocate_link(link_type, uri, "".into()); self.tree[cur_ix].item.body = ItemBody::Link(link_ix); self.tree[cur_ix].item.end = ix; self.tree[cur_ix].next = node; self.tree[cur_ix].child = Some(text_node); prev = cur; cur = node; if let Some(node_ix) = cur { self.tree[node_ix].item.start = max(self.tree[node_ix].item.start, ix); } continue; } else { let inline_html = next.and_then(|next_ix| { self.scan_inline_html( block_text.as_bytes(), self.tree[next_ix].item.start, ) }); if let Some((span, ix)) = inline_html { let node = scan_nodes_to_ix(&self.tree, next, ix); self.tree[cur_ix].item.body = if !span.is_empty() { let converted_string = String::from_utf8(span).expect("invalid utf8"); ItemBody::OwnedHtml( self.allocs.allocate_cow(converted_string.into()), ) } else { ItemBody::Html }; self.tree[cur_ix].item.end = ix; self.tree[cur_ix].next = node; prev = cur; cur = node; if let Some(node_ix) = cur { self.tree[node_ix].item.start = max(self.tree[node_ix].item.start, ix); } continue; } } self.tree[cur_ix].item.body = ItemBody::Text; } ItemBody::MaybeCode(mut search_count, preceded_by_backslash) => { if preceded_by_backslash { search_count -= 1; if search_count == 0 { self.tree[cur_ix].item.body = ItemBody::Text; prev = cur; cur = self.tree[cur_ix].next; continue; } } if code_delims.is_populated() { // we have previously scanned all codeblock delimiters, // so we can reuse that work if let Some(scan_ix) = code_delims.find(cur_ix, search_count) { self.make_code_span(cur_ix, scan_ix, preceded_by_backslash); } else { self.tree[cur_ix].item.body = ItemBody::Text; } } else { // we haven't previously scanned all codeblock delimiters, // so walk the AST let mut scan = if search_count > 0 { self.tree[cur_ix].next } else { None }; while let Some(scan_ix) = scan { if let ItemBody::MaybeCode(delim_count, _) = self.tree[scan_ix].item.body { if search_count == delim_count { self.make_code_span(cur_ix, scan_ix, preceded_by_backslash); code_delims.clear(); break; } else { code_delims.insert(delim_count, scan_ix); } } scan = self.tree[scan_ix].next; } if scan == None { self.tree[cur_ix].item.body = ItemBody::Text; } } } ItemBody::MaybeLinkOpen => { self.tree[cur_ix].item.body = ItemBody::Text; self.link_stack.push(LinkStackEl { node: cur_ix, ty: LinkStackTy::Link, }); } ItemBody::MaybeImage => { self.tree[cur_ix].item.body = ItemBody::Text; self.link_stack.push(LinkStackEl { node: cur_ix, ty: LinkStackTy::Image, }); } ItemBody::MaybeLinkClose(could_be_ref) => { self.tree[cur_ix].item.body = ItemBody::Text; if let Some(tos) = self.link_stack.pop() { if tos.ty == LinkStackTy::Disabled { continue; } let next = self.tree[cur_ix].next; if let Some((next_ix, url, title)) = self.scan_inline_link(block_text, self.tree[cur_ix].item.end, next) { let next_node = scan_nodes_to_ix(&self.tree, next, next_ix); if let Some(prev_ix) = prev { self.tree[prev_ix].next = None; } cur = Some(tos.node); cur_ix = tos.node; let link_ix = self.allocs.allocate_link(LinkType::Inline, url, title); self.tree[cur_ix].item.body = if tos.ty == LinkStackTy::Image { ItemBody::Image(link_ix) } else { ItemBody::Link(link_ix) }; self.tree[cur_ix].child = self.tree[cur_ix].next; self.tree[cur_ix].next = next_node; self.tree[cur_ix].item.end = next_ix; if let Some(next_node_ix) = next_node { self.tree[next_node_ix].item.start = max(self.tree[next_node_ix].item.start, next_ix); } if tos.ty == LinkStackTy::Link { self.link_stack.disable_all_links(); } } else { // ok, so its not an inline link. maybe it is a reference // to a defined link? let scan_result = scan_reference( &self.tree, block_text, next, self.options.contains(Options::ENABLE_FOOTNOTES), ); let (node_after_link, link_type) = match scan_result { // [label][reference] RefScan::LinkLabel(_, end_ix) => { // Toggle reference viability of the last closing bracket, // so that we can skip it on future iterations in case // it fails in this one. In particular, we won't call // the broken link callback twice on one reference. let reference_close_node = scan_nodes_to_ix(&self.tree, next, end_ix - 1).unwrap(); self.tree[reference_close_node].item.body = ItemBody::MaybeLinkClose(false); let next_node = self.tree[reference_close_node].next; (next_node, LinkType::Reference) } // [reference][] RefScan::Collapsed(next_node) => { // This reference has already been tried, and it's not // valid. Skip it. if !could_be_ref { continue; } (next_node, LinkType::Collapsed) } // [shortcut] // // [shortcut]: /blah RefScan::Failed => { if !could_be_ref { continue; } (next, LinkType::Shortcut) } }; // FIXME: references and labels are mixed in the naming of variables // below. Disambiguate! // (label, source_ix end) let label: Option<(ReferenceLabel<'a>, usize)> = match scan_result { RefScan::LinkLabel(l, end_ix) => { Some((ReferenceLabel::Link(l), end_ix)) } RefScan::Collapsed(..) | RefScan::Failed => { // No label? maybe it is a shortcut reference let label_start = self.tree[tos.node].item.end - 1; scan_link_label( &self.tree, &self.text[label_start..self.tree[cur_ix].item.end], self.options.contains(Options::ENABLE_FOOTNOTES), ) .map(|(ix, label)| (label, label_start + ix)) } }; // see if it's a footnote reference if let Some((ReferenceLabel::Footnote(l), end)) = label { self.tree[tos.node].next = node_after_link; self.tree[tos.node].child = None; self.tree[tos.node].item.body = ItemBody::FootnoteReference(self.allocs.allocate_cow(l)); self.tree[tos.node].item.end = end; prev = Some(tos.node); cur = node_after_link; self.link_stack.clear(); continue; } else if let Some((ReferenceLabel::Link(link_label), end)) = label { let type_url_title = self .allocs .refdefs .get(&UniCase::new(link_label.as_ref().into())) .map(|matching_def| { // found a matching definition! let title = matching_def .title .as_ref() .cloned() .unwrap_or_else(|| "".into()); let url = matching_def.dest.clone(); (link_type, url, title) }) .or_else(|| { match self.broken_link_callback.as_mut() { Some(callback) => { // Construct a BrokenLink struct, which will be passed to the callback let broken_link = BrokenLink { span: (self.tree[tos.node].item.start)..end, link_type: link_type, reference: link_label.as_ref(), }; callback(broken_link).map(|(url, title)| { (link_type.to_unknown(), url, title) }) } None => None, } }); if let Some((def_link_type, url, title)) = type_url_title { let link_ix = self.allocs.allocate_link(def_link_type, url, title); self.tree[tos.node].item.body = if tos.ty == LinkStackTy::Image { ItemBody::Image(link_ix) } else { ItemBody::Link(link_ix) }; let label_node = self.tree[tos.node].next; // lets do some tree surgery to add the link to the tree // 1st: skip the label node and close node self.tree[tos.node].next = node_after_link; // then, if it exists, add the label node as a child to the link node if label_node != cur { self.tree[tos.node].child = label_node; // finally: disconnect list of children if let Some(prev_ix) = prev { self.tree[prev_ix].next = None; } } self.tree[tos.node].item.end = end; // set up cur so next node will be node_after_link cur = Some(tos.node); cur_ix = tos.node; if tos.ty == LinkStackTy::Link { self.link_stack.disable_all_links(); } } } } } } _ => (), } prev = cur; cur = self.tree[cur_ix].next; } self.link_stack.clear(); } fn handle_emphasis(&mut self) { let mut prev = None; let mut prev_ix: TreeIndex; let mut cur = self.tree.cur(); let mut single_quote_open: Option = None; let mut double_quote_open: bool = false; while let Some(mut cur_ix) = cur { match self.tree[cur_ix].item.body { ItemBody::MaybeEmphasis(mut count, can_open, can_close) => { let c = self.text.as_bytes()[self.tree[cur_ix].item.start]; let both = can_open && can_close; if can_close { while let Some(el) = self.inline_stack.find_match(&mut self.tree, c, count, both) { // have a match! if let Some(prev_ix) = prev { self.tree[prev_ix].next = None; } let match_count = min(count, el.count); // start, end are tree node indices let mut end = cur_ix - 1; let mut start = el.start + el.count; // work from the inside out while start > el.start + el.count - match_count { let (inc, ty) = if c == b'~' { (2, ItemBody::Strikethrough) } else if start > el.start + el.count - match_count + 1 { (2, ItemBody::Strong) } else { (1, ItemBody::Emphasis) }; let root = start - inc; end = end + inc; self.tree[root].item.body = ty; self.tree[root].item.end = self.tree[end].item.end; self.tree[root].child = Some(start); self.tree[root].next = None; start = root; } // set next for top most emph level prev_ix = el.start + el.count - match_count; prev = Some(prev_ix); cur = self.tree[cur_ix + match_count - 1].next; self.tree[prev_ix].next = cur; if el.count > match_count { self.inline_stack.push(InlineEl { start: el.start, count: el.count - match_count, c: el.c, both, }) } count -= match_count; if count > 0 { cur_ix = cur.unwrap(); } else { break; } } } if count > 0 { if can_open { self.inline_stack.push(InlineEl { start: cur_ix, count, c, both, }); } else { for i in 0..count { self.tree[cur_ix + i].item.body = ItemBody::Text; } } prev_ix = cur_ix + count - 1; prev = Some(prev_ix); cur = self.tree[prev_ix].next; } } ItemBody::MaybeSmartQuote(c, can_open, can_close) => { self.tree[cur_ix].item.body = match c { b'\'' => { if let (Some(open_ix), true) = (single_quote_open, can_close) { self.tree[open_ix].item.body = ItemBody::SynthesizeChar('‘'); single_quote_open = None; } else if can_open { single_quote_open = Some(cur_ix); } ItemBody::SynthesizeChar('’') } _ /* double quote */ => { if can_close && double_quote_open { double_quote_open = false; ItemBody::SynthesizeChar('”') } else { if can_open && !double_quote_open { double_quote_open = true; } ItemBody::SynthesizeChar('“') } } }; prev = cur; cur = self.tree[cur_ix].next; } _ => { prev = cur; cur = self.tree[cur_ix].next; } } } self.inline_stack.pop_all(&mut self.tree); } /// Returns next byte index, url and title. fn scan_inline_link( &self, underlying: &'a str, mut ix: usize, node: Option, ) -> Option<(usize, CowStr<'a>, CowStr<'a>)> { if scan_ch(&underlying.as_bytes()[ix..], b'(') == 0 { return None; } ix += 1; ix += scan_while(&underlying.as_bytes()[ix..], is_ascii_whitespace); let (dest_length, dest) = scan_link_dest(underlying, ix, LINK_MAX_NESTED_PARENS)?; let dest = unescape(dest); ix += dest_length; ix += scan_while(&underlying.as_bytes()[ix..], is_ascii_whitespace); let title = if let Some((bytes_scanned, t)) = self.scan_link_title(underlying, ix, node) { ix += bytes_scanned; ix += scan_while(&underlying.as_bytes()[ix..], is_ascii_whitespace); t } else { "".into() }; if scan_ch(&underlying.as_bytes()[ix..], b')') == 0 { return None; } ix += 1; Some((ix, dest, title)) } // returns (bytes scanned, title cow) fn scan_link_title( &self, text: &'a str, start_ix: usize, node: Option, ) -> Option<(usize, CowStr<'a>)> { let bytes = text.as_bytes(); let open = match bytes.get(start_ix) { Some(b @ b'\'') | Some(b @ b'\"') | Some(b @ b'(') => *b, _ => return None, }; let close = if open == b'(' { b')' } else { open }; let mut title = String::new(); let mut mark = start_ix + 1; let mut i = start_ix + 1; while i < bytes.len() { let c = bytes[i]; if c == close { let cow = if mark == 1 { (i - start_ix + 1, text[mark..i].into()) } else { title.push_str(&text[mark..i]); (i - start_ix + 1, title.into()) }; return Some(cow); } if c == open { return None; } if c == b'\n' || c == b'\r' { if let Some(node_ix) = scan_nodes_to_ix(&self.tree, node, i + 1) { if self.tree[node_ix].item.start > i { title.push_str(&text[mark..i]); title.push('\n'); i = self.tree[node_ix].item.start; mark = i; continue; } } } if c == b'&' { if let (n, Some(value)) = scan_entity(&bytes[i..]) { title.push_str(&text[mark..i]); title.push_str(&value); i += n; mark = i; continue; } } if c == b'\\' && i + 1 < bytes.len() && is_ascii_punctuation(bytes[i + 1]) { title.push_str(&text[mark..i]); i += 1; mark = i; } i += 1; } None } /// Make a code span. /// /// Both `open` and `close` are matching MaybeCode items. fn make_code_span(&mut self, open: TreeIndex, close: TreeIndex, preceding_backslash: bool) { let first_ix = open + 1; let last_ix = close - 1; let bytes = self.text.as_bytes(); let mut span_start = self.tree[open].item.end; let mut span_end = self.tree[close].item.start; let mut buf: Option = None; // detect all-space sequences, since they are kept as-is as of commonmark 0.29 if !bytes[span_start..span_end].iter().all(|&b| b == b' ') { let opening = match bytes[span_start] { b' ' | b'\r' | b'\n' => true, _ => false, }; let closing = match bytes[span_end - 1] { b' ' | b'\r' | b'\n' => true, _ => false, }; let drop_enclosing_whitespace = opening && closing; if drop_enclosing_whitespace { span_start += 1; if span_start < span_end { span_end -= 1; } } let mut ix = first_ix; while ix < close { if let ItemBody::HardBreak | ItemBody::SoftBreak = self.tree[ix].item.body { if drop_enclosing_whitespace { // check whether break should be ignored if ix == first_ix { ix = ix + 1; span_start = min(span_end, self.tree[ix].item.start); continue; } else if ix == last_ix && last_ix > first_ix { ix = ix + 1; continue; } } let end = bytes[self.tree[ix].item.start..] .iter() .position(|&b| b == b'\r' || b == b'\n') .unwrap() + self.tree[ix].item.start; if let Some(ref mut buf) = buf { buf.push_str(&self.text[self.tree[ix].item.start..end]); buf.push(' '); } else { let mut new_buf = String::with_capacity(span_end - span_start); new_buf.push_str(&self.text[span_start..end]); new_buf.push(' '); buf = Some(new_buf); } } else if let Some(ref mut buf) = buf { let end = if ix == last_ix { span_end } else { self.tree[ix].item.end }; buf.push_str(&self.text[self.tree[ix].item.start..end]); } ix = ix + 1; } } let cow = if let Some(buf) = buf { buf.into() } else { self.text[span_start..span_end].into() }; if preceding_backslash { self.tree[open].item.body = ItemBody::Text; self.tree[open].item.end = self.tree[open].item.start + 1; self.tree[open].next = Some(close); self.tree[close].item.body = ItemBody::Code(self.allocs.allocate_cow(cow)); self.tree[close].item.start = self.tree[open].item.start + 1; } else { self.tree[open].item.body = ItemBody::Code(self.allocs.allocate_cow(cow)); self.tree[open].item.end = self.tree[close].item.end; self.tree[open].next = self.tree[close].next; } } /// On success, returns a buffer containing the inline html and byte offset. /// When no bytes were skipped, the buffer will be empty and the html can be /// represented as a subslice of the input string. fn scan_inline_html(&mut self, bytes: &[u8], ix: usize) -> Option<(Vec, usize)> { let c = *bytes.get(ix)?; if c == b'!' { Some(( vec![], scan_inline_html_comment(bytes, ix + 1, &mut self.html_scan_guard)?, )) } else if c == b'?' { Some(( vec![], scan_inline_html_processing(bytes, ix + 1, &mut self.html_scan_guard)?, )) } else { let (span, i) = scan_html_block_inner( // Subtract 1 to include the < character &bytes[(ix - 1)..], Some(&|_bytes| { let mut line_start = LineStart::new(bytes); let _ = scan_containers(&self.tree, &mut line_start); line_start.bytes_scanned() }), )?; Some((span, i + ix - 1)) } } /// Consumes the event iterator and produces an iterator that produces /// `(Event, Range)` pairs, where the `Range` value maps to the corresponding /// range in the markdown source. pub fn into_offset_iter(self) -> OffsetIter<'a> { OffsetIter { inner: self } } } pub(crate) enum LoopInstruction { /// Continue looking for more special bytes, but skip next few bytes. ContinueAndSkip(usize), /// Break looping immediately, returning with the given index and value. BreakAtWith(usize, T), } #[cfg(all(target_arch = "x86_64", feature = "simd"))] pub(crate) struct LookupTable { pub simd: [u8; 16], pub scalar: [bool; 256], } #[cfg(not(all(target_arch = "x86_64", feature = "simd")))] type LookupTable = [bool; 256]; /// This function walks the byte slices from the given index and /// calls the callback function on all bytes (and their indices) that are in the following set: /// `` ` ``, `\`, `&`, `*`, `_`, `~`, `!`, `<`, `[`, `]`, `|`, `\r`, `\n` /// It is guaranteed not call the callback on other bytes. /// Whenever `callback(ix, byte)` returns a `ContinueAndSkip(n)` value, the callback /// will not be called with an index that is less than `ix + n + 1`. /// When the callback returns a `BreakAtWith(end_ix, opt+val)`, no more callbacks will be /// called and the function returns immediately with the return value `(end_ix, opt_val)`. /// If `BreakAtWith(..)` is never returned, this function will return the first /// index that is outside the byteslice bound and a `None` value. fn iterate_special_bytes( lut: &LookupTable, bytes: &[u8], ix: usize, callback: F, ) -> (usize, Option) where F: FnMut(usize, u8) -> LoopInstruction>, { #[cfg(all(target_arch = "x86_64", feature = "simd"))] { crate::simd::iterate_special_bytes(lut, bytes, ix, callback) } #[cfg(not(all(target_arch = "x86_64", feature = "simd")))] { scalar_iterate_special_bytes(lut, bytes, ix, callback) } } pub(crate) fn scalar_iterate_special_bytes( lut: &[bool; 256], bytes: &[u8], mut ix: usize, mut callback: F, ) -> (usize, Option) where F: FnMut(usize, u8) -> LoopInstruction>, { while ix < bytes.len() { let b = bytes[ix]; if lut[b as usize] { match callback(ix, b) { LoopInstruction::ContinueAndSkip(skip) => { ix += skip; } LoopInstruction::BreakAtWith(ix, val) => { return (ix, val); } } } ix += 1; } (ix, None) } /// Markdown event and source range iterator. /// /// Generates tuples where the first element is the markdown event and the second /// is a the corresponding range in the source string. /// /// Constructed from a `Parser` using its /// [`into_offset_iter`](struct.Parser.html#method.into_offset_iter) method. pub struct OffsetIter<'a> { inner: Parser<'a>, } impl<'a> Iterator for OffsetIter<'a> { type Item = (Event<'a>, Range); fn next(&mut self) -> Option { match self.inner.tree.cur() { None => { let ix = self.inner.tree.pop()?; let tag = item_to_tag(&self.inner.tree[ix].item, &self.inner.allocs); self.inner.tree.next_sibling(ix); Some(( Event::End(tag), self.inner.tree[ix].item.start..self.inner.tree[ix].item.end, )) } Some(cur_ix) => { if self.inner.tree[cur_ix].item.body.is_inline() { self.inner.handle_inline(); } let node = self.inner.tree[cur_ix]; let item = node.item; let event = item_to_event(item, self.inner.text, &self.inner.allocs); if let Event::Start(..) = event { self.inner.tree.push(); } else { self.inner.tree.next_sibling(cur_ix); } Some((event, item.start..item.end)) } } } } fn item_to_tag<'a>(item: &Item, allocs: &Allocations<'a>) -> Tag<'a> { match item.body { ItemBody::Paragraph => Tag::Paragraph, ItemBody::Emphasis => Tag::Emphasis, ItemBody::Strong => Tag::Strong, ItemBody::Strikethrough => Tag::Strikethrough, ItemBody::Link(link_ix) => { let &(ref link_type, ref url, ref title) = allocs.index(link_ix); Tag::Link(*link_type, url.clone(), title.clone()) } ItemBody::Image(link_ix) => { let &(ref link_type, ref url, ref title) = allocs.index(link_ix); Tag::Image(*link_type, url.clone(), title.clone()) } ItemBody::Heading(level) => Tag::Heading(level), ItemBody::FencedCodeBlock(cow_ix) => { Tag::CodeBlock(CodeBlockKind::Fenced(allocs[cow_ix].clone())) } ItemBody::IndentCodeBlock => Tag::CodeBlock(CodeBlockKind::Indented), ItemBody::BlockQuote => Tag::BlockQuote, ItemBody::List(_, c, listitem_start) => { if c == b'.' || c == b')' { Tag::List(Some(listitem_start)) } else { Tag::List(None) } } ItemBody::ListItem(_) => Tag::Item, ItemBody::TableHead => Tag::TableHead, ItemBody::TableCell => Tag::TableCell, ItemBody::TableRow => Tag::TableRow, ItemBody::Table(alignment_ix) => Tag::Table(allocs[alignment_ix].clone()), ItemBody::FootnoteDefinition(cow_ix) => Tag::FootnoteDefinition(allocs[cow_ix].clone()), _ => panic!("unexpected item body {:?}", item.body), } } fn item_to_event<'a>(item: Item, text: &'a str, allocs: &Allocations<'a>) -> Event<'a> { let tag = match item.body { ItemBody::Text => return Event::Text(text[item.start..item.end].into()), ItemBody::Code(cow_ix) => return Event::Code(allocs[cow_ix].clone()), ItemBody::SynthesizeText(cow_ix) => return Event::Text(allocs[cow_ix].clone()), ItemBody::SynthesizeChar(c) => return Event::Text(c.into()), ItemBody::Html => return Event::Html(text[item.start..item.end].into()), ItemBody::OwnedHtml(cow_ix) => return Event::Html(allocs[cow_ix].clone()), ItemBody::SoftBreak => return Event::SoftBreak, ItemBody::HardBreak => return Event::HardBreak, ItemBody::FootnoteReference(cow_ix) => { return Event::FootnoteReference(allocs[cow_ix].clone()) } ItemBody::TaskListMarker(checked) => return Event::TaskListMarker(checked), ItemBody::Rule => return Event::Rule, ItemBody::Paragraph => Tag::Paragraph, ItemBody::Emphasis => Tag::Emphasis, ItemBody::Strong => Tag::Strong, ItemBody::Strikethrough => Tag::Strikethrough, ItemBody::Link(link_ix) => { let &(ref link_type, ref url, ref title) = allocs.index(link_ix); Tag::Link(*link_type, url.clone(), title.clone()) } ItemBody::Image(link_ix) => { let &(ref link_type, ref url, ref title) = allocs.index(link_ix); Tag::Image(*link_type, url.clone(), title.clone()) } ItemBody::Heading(level) => Tag::Heading(level), ItemBody::FencedCodeBlock(cow_ix) => { Tag::CodeBlock(CodeBlockKind::Fenced(allocs[cow_ix].clone())) } ItemBody::IndentCodeBlock => Tag::CodeBlock(CodeBlockKind::Indented), ItemBody::BlockQuote => Tag::BlockQuote, ItemBody::List(_, c, listitem_start) => { if c == b'.' || c == b')' { Tag::List(Some(listitem_start)) } else { Tag::List(None) } } ItemBody::ListItem(_) => Tag::Item, ItemBody::TableHead => Tag::TableHead, ItemBody::TableCell => Tag::TableCell, ItemBody::TableRow => Tag::TableRow, ItemBody::Table(alignment_ix) => Tag::Table(allocs[alignment_ix].clone()), ItemBody::FootnoteDefinition(cow_ix) => Tag::FootnoteDefinition(allocs[cow_ix].clone()), _ => panic!("unexpected item body {:?}", item.body), }; Event::Start(tag) } // https://english.stackexchange.com/a/285573 fn surgerize_tight_list(tree: &mut Tree, list_ix: TreeIndex) { let mut list_item = tree[list_ix].child; while let Some(listitem_ix) = list_item { // first child is special, controls how we repoint list_item.child let list_item_firstborn = tree[listitem_ix].child; // Check that list item has children - this is not necessarily the case! if let Some(firstborn_ix) = list_item_firstborn { if let ItemBody::Paragraph = tree[firstborn_ix].item.body { tree[listitem_ix].child = tree[firstborn_ix].child; } let mut list_item_child = Some(firstborn_ix); let mut node_to_repoint = None; while let Some(child_ix) = list_item_child { // surgerize paragraphs let repoint_ix = if let ItemBody::Paragraph = tree[child_ix].item.body { if let Some(child_firstborn) = tree[child_ix].child { if let Some(repoint_ix) = node_to_repoint { tree[repoint_ix].next = Some(child_firstborn); } let mut child_lastborn = child_firstborn; while let Some(lastborn_next_ix) = tree[child_lastborn].next { child_lastborn = lastborn_next_ix; } child_lastborn } else { child_ix } } else { child_ix }; node_to_repoint = Some(repoint_ix); tree[repoint_ix].next = tree[child_ix].next; list_item_child = tree[child_ix].next; } } list_item = tree[listitem_ix].next; } } impl<'a> Iterator for Parser<'a> { type Item = Event<'a>; fn next(&mut self) -> Option> { match self.tree.cur() { None => { let ix = self.tree.pop()?; let tag = item_to_tag(&self.tree[ix].item, &self.allocs); self.tree.next_sibling(ix); Some(Event::End(tag)) } Some(cur_ix) => { if self.tree[cur_ix].item.body.is_inline() { self.handle_inline(); } let node = self.tree[cur_ix]; let item = node.item; let event = item_to_event(item, self.text, &self.allocs); if let Event::Start(..) = event { self.tree.push(); } else { self.tree.next_sibling(cur_ix); } Some(event) } } } } #[cfg(test)] mod test { use super::*; use crate::tree::Node; // TODO: move these tests to tests/html.rs? fn parser_with_extensions(text: &str) -> Parser<'_> { let mut opts = Options::empty(); opts.insert(Options::ENABLE_TABLES); opts.insert(Options::ENABLE_FOOTNOTES); opts.insert(Options::ENABLE_STRIKETHROUGH); opts.insert(Options::ENABLE_TASKLISTS); Parser::new_ext(text, opts) } #[test] #[cfg(target_pointer_width = "64")] fn node_size() { let node_size = std::mem::size_of::>(); assert_eq!(48, node_size); } #[test] #[cfg(target_pointer_width = "64")] fn body_size() { let body_size = std::mem::size_of::(); assert_eq!(16, body_size); } #[test] fn single_open_fish_bracket() { // dont crash assert_eq!(3, Parser::new("<").count()); } #[test] fn lone_hashtag() { // dont crash assert_eq!(2, Parser::new("#").count()); } #[test] fn lots_of_backslashes() { // dont crash Parser::new("\\\\\r\r").count(); Parser::new("\\\r\r\\.\\\\\r\r\\.\\").count(); } #[test] fn issue_320() { // dont crash parser_with_extensions(":\r\t> |\r:\r\t> |\r").count(); } #[test] fn issue_319() { // dont crash parser_with_extensions("|\r-]([^|\r-]([^").count(); parser_with_extensions("|\r\r=][^|\r\r=][^car").count(); } #[test] fn issue_303() { // dont crash parser_with_extensions("[^\r\ra]").count(); parser_with_extensions("\r\r]Z[^\x00\r\r]Z[^\x00").count(); } #[test] fn issue_313() { // dont crash parser_with_extensions("*]0[^\r\r*]0[^").count(); parser_with_extensions("[^\r> `][^\r> `][^\r> `][").count(); } #[test] fn issue_311() { // dont crash parser_with_extensions("\\\u{0d}-\u{09}\\\u{0d}-\u{09}").count(); } #[test] fn issue_283() { let input = std::str::from_utf8(b"\xf0\x9b\xb2\x9f - \\\n> - ").count(); parser_with_extensions("- \n\n").count(); } #[test] fn issue_306() { // dont crash parser_with_extensions("*\r_<__*\r_<__*\r_<__*\r_<__").count(); } #[test] fn issue_305() { // dont crash parser_with_extensions("_6**6*_*").count(); } #[test] fn another_emphasis_panic() { parser_with_extensions("*__#_#__*").count(); } #[test] fn offset_iter() { let event_offsets: Vec<_> = Parser::new("*hello* world") .into_offset_iter() .map(|(_ev, range)| range) .collect(); let expected_offsets = vec![(0..13), (0..7), (1..6), (0..7), (7..13), (0..13)]; assert_eq!(expected_offsets, event_offsets); } #[test] fn reference_link_offsets() { let range = Parser::new("# H1\n[testing][Some reference]\n\n[Some reference]: https://github.com") .into_offset_iter() .filter_map(|(ev, range)| match ev { Event::Start(Tag::Link(LinkType::Reference, ..), ..) => Some(range), _ => None, }) .next() .unwrap(); assert_eq!(5..30, range); } #[test] fn footnote_offsets() { let range = parser_with_extensions("Testing this[^1] out.\n\n[^1]: Footnote.") .into_offset_iter() .filter_map(|(ev, range)| match ev { Event::FootnoteReference(..) => Some(range), _ => None, }) .next() .unwrap(); assert_eq!(12..16, range); } #[test] fn table_offset() { let markdown = "a\n\nTesting|This|Outtt\n--|:--:|--:\nSome Data|Other data|asdf"; let event_offset = parser_with_extensions(markdown) .into_offset_iter() .map(|(_ev, range)| range) .nth(3) .unwrap(); let expected_offset = 3..59; assert_eq!(expected_offset, event_offset); } #[test] fn offset_iter_issue_378() { let event_offsets: Vec<_> = Parser::new("a [b](c) d") .into_offset_iter() .map(|(_ev, range)| range) .collect(); let expected_offsets = vec![(0..10), (0..2), (2..8), (3..4), (2..8), (8..10), (0..10)]; assert_eq!(expected_offsets, event_offsets); } #[test] fn offset_iter_issue_404() { let event_offsets: Vec<_> = Parser::new("###\n") .into_offset_iter() .map(|(_ev, range)| range) .collect(); let expected_offsets = vec![(0..4), (0..4)]; assert_eq!(expected_offsets, event_offsets); } // FIXME: add this one regression suite #[test] fn link_def_at_eof() { let test_str = "[My site][world]\n\n[world]: https://vincentprouillet.com"; let expected = "

My site

\n"; let mut buf = String::new(); crate::html::push_html(&mut buf, Parser::new(test_str)); assert_eq!(expected, buf); } #[test] fn no_footnote_refs_without_option() { let test_str = "a [^a]\n\n[^a]: yolo"; let expected = "

a ^a

\n"; let mut buf = String::new(); crate::html::push_html(&mut buf, Parser::new(test_str)); assert_eq!(expected, buf); } #[test] fn ref_def_at_eof() { let test_str = "[test]:\\"; let expected = ""; let mut buf = String::new(); crate::html::push_html(&mut buf, Parser::new(test_str)); assert_eq!(expected, buf); } #[test] fn ref_def_cr_lf() { let test_str = "[a]: /u\r\n\n[a]"; let expected = "

a

\n"; let mut buf = String::new(); crate::html::push_html(&mut buf, Parser::new(test_str)); assert_eq!(expected, buf); } #[test] fn no_dest_refdef() { let test_str = "[a]:"; let expected = "

[a]:

\n"; let mut buf = String::new(); crate::html::push_html(&mut buf, Parser::new(test_str)); assert_eq!(expected, buf); } #[test] fn broken_links_called_only_once() { for &(markdown, expected) in &[ ("See also [`g()`][crate::g].", 1), ("See also [`g()`][crate::g][].", 1), ("[brokenlink1] some other node [brokenlink2]", 2), ] { let mut times_called = 0; let callback = &mut |_broken_link: BrokenLink| { times_called += 1; None }; let parser = Parser::new_with_broken_link_callback(markdown, Options::empty(), Some(callback)); for _ in parser {} assert_eq!(times_called, expected); } } #[test] fn simple_broken_link_callback() { let test_str = "This is a link w/o def: [hello][world]"; let mut callback = |broken_link: BrokenLink| { assert_eq!("world", broken_link.reference); assert_eq!(&test_str[broken_link.span], "[hello][world]"); let url = "YOLO".into(); let title = "SWAG".to_owned().into(); Some((url, title)) }; let parser = Parser::new_with_broken_link_callback(test_str, Options::empty(), Some(&mut callback)); let mut link_tag_count = 0; for (typ, url, title) in parser.filter_map(|event| match event { Event::Start(tag) | Event::End(tag) => match tag { Tag::Link(typ, url, title) => Some((typ, url, title)), _ => None, }, _ => None, }) { link_tag_count += 1; assert_eq!(typ, LinkType::ReferenceUnknown); assert_eq!(url.as_ref(), "YOLO"); assert_eq!(title.as_ref(), "SWAG"); } assert!(link_tag_count > 0); } #[test] fn code_block_kind_check_fenced() { let parser = Parser::new("hello\n```test\ntadam\n```"); let mut found = 0; for (ev, _range) in parser.into_offset_iter() { match ev { Event::Start(Tag::CodeBlock(CodeBlockKind::Fenced(syntax))) => { assert_eq!(syntax.as_ref(), "test"); found += 1; } _ => {} } } assert_eq!(found, 1); } #[test] fn code_block_kind_check_indented() { let parser = Parser::new("hello\n\n ```test\n tadam\nhello"); let mut found = 0; for (ev, _range) in parser.into_offset_iter() { match ev { Event::Start(Tag::CodeBlock(CodeBlockKind::Indented)) => { found += 1; } _ => {} } } assert_eq!(found, 1); } }