// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "net/third_party/quiche/src/quic/core/quic_session.h" #include #include #include #include #include "absl/base/macros.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "net/third_party/quiche/src/quic/core/crypto/crypto_protocol.h" #include "net/third_party/quiche/src/quic/core/crypto/null_decrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/null_encrypter.h" #include "net/third_party/quiche/src/quic/core/crypto/transport_parameters.h" #include "net/third_party/quiche/src/quic/core/frames/quic_max_streams_frame.h" #include "net/third_party/quiche/src/quic/core/quic_crypto_stream.h" #include "net/third_party/quiche/src/quic/core/quic_data_writer.h" #include "net/third_party/quiche/src/quic/core/quic_error_codes.h" #include "net/third_party/quiche/src/quic/core/quic_packets.h" #include "net/third_party/quiche/src/quic/core/quic_stream.h" #include "net/third_party/quiche/src/quic/core/quic_utils.h" #include "net/third_party/quiche/src/quic/core/quic_versions.h" #include "net/third_party/quiche/src/quic/platform/api/quic_expect_bug.h" #include "net/third_party/quiche/src/quic/platform/api/quic_flags.h" #include "net/third_party/quiche/src/quic/platform/api/quic_map_util.h" #include "net/third_party/quiche/src/quic/platform/api/quic_mem_slice_storage.h" #include "net/third_party/quiche/src/quic/platform/api/quic_ptr_util.h" #include "net/third_party/quiche/src/quic/platform/api/quic_test.h" #include "net/third_party/quiche/src/quic/platform/api/quic_test_mem_slice_vector.h" #include "net/third_party/quiche/src/quic/test_tools/mock_quic_session_visitor.h" #include "net/third_party/quiche/src/quic/test_tools/quic_config_peer.h" #include "net/third_party/quiche/src/quic/test_tools/quic_connection_peer.h" #include "net/third_party/quiche/src/quic/test_tools/quic_flow_controller_peer.h" #include "net/third_party/quiche/src/quic/test_tools/quic_session_peer.h" #include "net/third_party/quiche/src/quic/test_tools/quic_stream_id_manager_peer.h" #include "net/third_party/quiche/src/quic/test_tools/quic_stream_peer.h" #include "net/third_party/quiche/src/quic/test_tools/quic_stream_send_buffer_peer.h" #include "net/third_party/quiche/src/quic/test_tools/quic_test_utils.h" #include "net/third_party/quiche/src/common/platform/api/quiche_str_cat.h" using spdy::kV3HighestPriority; using spdy::SpdyPriority; using ::testing::_; using ::testing::AnyNumber; using ::testing::AtLeast; using ::testing::InSequence; using ::testing::Invoke; using ::testing::NiceMock; using ::testing::Return; using ::testing::StrictMock; using ::testing::WithArg; namespace quic { namespace test { namespace { class TestCryptoStream : public QuicCryptoStream, public QuicCryptoHandshaker { public: explicit TestCryptoStream(QuicSession* session) : QuicCryptoStream(session), QuicCryptoHandshaker(this, session), encryption_established_(false), one_rtt_keys_available_(false), params_(new QuicCryptoNegotiatedParameters) { // Simulate a negotiated cipher_suite with a fake value. params_->cipher_suite = 1; } void EstablishZeroRttEncryption() { encryption_established_ = true; session()->connection()->SetEncrypter( ENCRYPTION_ZERO_RTT, std::make_unique(session()->perspective())); } void OnHandshakeMessage(const CryptoHandshakeMessage& /*message*/) override { encryption_established_ = true; one_rtt_keys_available_ = true; QuicErrorCode error; std::string error_details; session()->config()->SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); session()->config()->SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); if (session()->version().AuthenticatesHandshakeConnectionIds()) { if (session()->perspective() == Perspective::IS_CLIENT) { session()->config()->SetOriginalConnectionIdToSend( session()->connection()->connection_id()); session()->config()->SetInitialSourceConnectionIdToSend( session()->connection()->connection_id()); } else { session()->config()->SetInitialSourceConnectionIdToSend( session()->connection()->client_connection_id()); } } if (session()->connection()->version().handshake_protocol == PROTOCOL_TLS1_3) { TransportParameters transport_parameters; EXPECT_TRUE( session()->config()->FillTransportParameters(&transport_parameters)); error = session()->config()->ProcessTransportParameters( transport_parameters, /* is_resumption = */ false, &error_details); } else { CryptoHandshakeMessage msg; session()->config()->ToHandshakeMessage(&msg, transport_version()); error = session()->config()->ProcessPeerHello(msg, CLIENT, &error_details); } EXPECT_THAT(error, IsQuicNoError()); session()->OnNewEncryptionKeyAvailable( ENCRYPTION_FORWARD_SECURE, std::make_unique(session()->perspective())); session()->OnConfigNegotiated(); if (session()->connection()->version().handshake_protocol == PROTOCOL_TLS1_3) { session()->OnTlsHandshakeComplete(); } else { session()->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); } session()->DiscardOldEncryptionKey(ENCRYPTION_INITIAL); } // QuicCryptoStream implementation ssl_early_data_reason_t EarlyDataReason() const override { return ssl_early_data_unknown; } bool encryption_established() const override { return encryption_established_; } bool one_rtt_keys_available() const override { return one_rtt_keys_available_; } const QuicCryptoNegotiatedParameters& crypto_negotiated_params() const override { return *params_; } CryptoMessageParser* crypto_message_parser() override { return QuicCryptoHandshaker::crypto_message_parser(); } void OnPacketDecrypted(EncryptionLevel /*level*/) override {} void OnOneRttPacketAcknowledged() override {} void OnHandshakePacketSent() override {} void OnHandshakeDoneReceived() override {} HandshakeState GetHandshakeState() const override { return one_rtt_keys_available() ? HANDSHAKE_COMPLETE : HANDSHAKE_START; } void SetServerApplicationStateForResumption( std::unique_ptr /*application_state*/) override {} MOCK_METHOD(bool, KeyUpdateSupportedLocally, (), (const, override)); MOCK_METHOD(std::unique_ptr, AdvanceKeysAndCreateCurrentOneRttDecrypter, (), (override)); MOCK_METHOD(std::unique_ptr, CreateCurrentOneRttEncrypter, (), (override)); MOCK_METHOD(void, OnCanWrite, (), (override)); bool HasPendingCryptoRetransmission() const override { return false; } MOCK_METHOD(bool, HasPendingRetransmission, (), (const, override)); void OnConnectionClosed(QuicErrorCode /*error*/, ConnectionCloseSource /*source*/) override {} private: using QuicCryptoStream::session; bool encryption_established_; bool one_rtt_keys_available_; QuicReferenceCountedPointer params_; }; class TestStream : public QuicStream { public: TestStream(QuicStreamId id, QuicSession* session, StreamType type) : TestStream(id, session, /*is_static=*/false, type) {} TestStream(QuicStreamId id, QuicSession* session, bool is_static, StreamType type) : QuicStream(id, session, is_static, type) {} TestStream(PendingStream* pending, QuicSession* session, StreamType type) : QuicStream(pending, session, type, /*is_static=*/false) {} using QuicStream::CloseWriteSide; using QuicStream::WriteMemSlices; void OnDataAvailable() override {} MOCK_METHOD(void, OnCanWrite, (), (override)); MOCK_METHOD(bool, RetransmitStreamData, (QuicStreamOffset, QuicByteCount, bool, TransmissionType), (override)); MOCK_METHOD(bool, HasPendingRetransmission, (), (const, override)); }; class TestSession : public QuicSession { public: explicit TestSession(QuicConnection* connection, MockQuicSessionVisitor* session_visitor) : QuicSession(connection, session_visitor, DefaultQuicConfig(), CurrentSupportedVersions(), /*num_expected_unidirectional_static_streams = */ 0), crypto_stream_(this), writev_consumes_all_data_(false), uses_pending_streams_(false), num_incoming_streams_created_(0) { EXPECT_CALL(*GetMutableCryptoStream(), KeyUpdateSupportedLocally()) .WillRepeatedly(Return(false)); Initialize(); this->connection()->SetEncrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique(connection->perspective())); if (this->connection()->version().SupportsAntiAmplificationLimit()) { QuicConnectionPeer::SetAddressValidated(this->connection()); } } ~TestSession() override { DeleteConnection(); } TestCryptoStream* GetMutableCryptoStream() override { return &crypto_stream_; } const TestCryptoStream* GetCryptoStream() const override { return &crypto_stream_; } TestStream* CreateOutgoingBidirectionalStream() { QuicStreamId id = GetNextOutgoingBidirectionalStreamId(); if (id == QuicUtils::GetInvalidStreamId(connection()->transport_version())) { return nullptr; } TestStream* stream = new TestStream(id, this, BIDIRECTIONAL); ActivateStream(QuicWrapUnique(stream)); return stream; } TestStream* CreateOutgoingUnidirectionalStream() { TestStream* stream = new TestStream(GetNextOutgoingUnidirectionalStreamId(), this, WRITE_UNIDIRECTIONAL); ActivateStream(QuicWrapUnique(stream)); return stream; } TestStream* CreateIncomingStream(QuicStreamId id) override { // Enforce the limit on the number of open streams. if (!VersionHasIetfQuicFrames(connection()->transport_version()) && stream_id_manager().num_open_incoming_streams() + 1 > max_open_incoming_bidirectional_streams()) { // No need to do this test for version 99; it's done by // QuicSession::GetOrCreateStream. connection()->CloseConnection( QUIC_TOO_MANY_OPEN_STREAMS, "Too many streams!", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET); return nullptr; } TestStream* stream = new TestStream( id, this, DetermineStreamType(id, connection()->version(), perspective(), /*is_incoming=*/true, BIDIRECTIONAL)); ActivateStream(QuicWrapUnique(stream)); ++num_incoming_streams_created_; return stream; } TestStream* CreateIncomingStream(PendingStream* pending) override { QuicStreamId id = pending->id(); TestStream* stream = new TestStream( pending, this, DetermineStreamType(id, connection()->version(), perspective(), /*is_incoming=*/true, BIDIRECTIONAL)); ActivateStream(QuicWrapUnique(stream)); ++num_incoming_streams_created_; return stream; } // QuicSession doesn't do anything in this method. So it's overridden here to // test that the session handles pending streams correctly in terms of // receiving stream frames. bool ProcessPendingStream(PendingStream* pending) override { struct iovec iov; if (pending->sequencer()->GetReadableRegion(&iov)) { // Create TestStream once the first byte is received. CreateIncomingStream(pending); return true; } return false; } bool IsClosedStream(QuicStreamId id) { return QuicSession::IsClosedStream(id); } QuicStream* GetOrCreateStream(QuicStreamId stream_id) { return QuicSession::GetOrCreateStream(stream_id); } bool ShouldKeepConnectionAlive() const override { return GetNumActiveStreams() > 0; } QuicConsumedData WritevData(QuicStreamId id, size_t write_length, QuicStreamOffset offset, StreamSendingState state, TransmissionType type, absl::optional level) override { bool fin = state != NO_FIN; QuicConsumedData consumed(write_length, fin); if (!writev_consumes_all_data_) { consumed = QuicSession::WritevData(id, write_length, offset, state, type, level); } QuicSessionPeer::GetWriteBlockedStreams(this)->UpdateBytesForStream( id, consumed.bytes_consumed); return consumed; } MOCK_METHOD(void, OnCanCreateNewOutgoingStream, (bool unidirectional), (override)); void set_writev_consumes_all_data(bool val) { writev_consumes_all_data_ = val; } QuicConsumedData SendStreamData(QuicStream* stream) { struct iovec iov; if (!QuicUtils::IsCryptoStreamId(connection()->transport_version(), stream->id()) && this->connection()->encryption_level() != ENCRYPTION_FORWARD_SECURE) { this->connection()->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); } MakeIOVector("not empty", &iov); QuicStreamPeer::SendBuffer(stream).SaveStreamData(&iov, 1, 0, 9); QuicConsumedData consumed = WritevData(stream->id(), 9, 0, FIN, NOT_RETRANSMISSION, GetEncryptionLevelToSendApplicationData()); QuicStreamPeer::SendBuffer(stream).OnStreamDataConsumed( consumed.bytes_consumed); return consumed; } const QuicFrame& save_frame() { return save_frame_; } bool SaveFrame(const QuicFrame& frame) { save_frame_ = frame; DeleteFrame(&const_cast(frame)); return true; } QuicConsumedData SendLargeFakeData(QuicStream* stream, int bytes) { DCHECK(writev_consumes_all_data_); return WritevData(stream->id(), bytes, 0, FIN, NOT_RETRANSMISSION, GetEncryptionLevelToSendApplicationData()); } bool UsesPendingStreams() const override { return uses_pending_streams_; } void set_uses_pending_streams(bool uses_pending_streams) { uses_pending_streams_ = uses_pending_streams; } int num_incoming_streams_created() const { return num_incoming_streams_created_; } using QuicSession::ActivateStream; using QuicSession::CanOpenNextOutgoingBidirectionalStream; using QuicSession::CanOpenNextOutgoingUnidirectionalStream; using QuicSession::closed_streams; using QuicSession::GetNextOutgoingBidirectionalStreamId; using QuicSession::GetNextOutgoingUnidirectionalStreamId; using QuicSession::stream_map; private: StrictMock crypto_stream_; bool writev_consumes_all_data_; bool uses_pending_streams_; QuicFrame save_frame_; int num_incoming_streams_created_; }; class QuicSessionTestBase : public QuicTestWithParam { protected: QuicSessionTestBase(Perspective perspective, bool configure_session) : connection_( new StrictMock(&helper_, &alarm_factory_, perspective, SupportedVersions(GetParam()))), session_(connection_, &session_visitor_), configure_session_(configure_session) { session_.config()->SetInitialStreamFlowControlWindowToSend( kInitialStreamFlowControlWindowForTest); session_.config()->SetInitialSessionFlowControlWindowToSend( kInitialSessionFlowControlWindowForTest); if (configure_session) { if (VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(session_, OnCanCreateNewOutgoingStream(false)).Times(1); EXPECT_CALL(session_, OnCanCreateNewOutgoingStream(true)).Times(1); } QuicConfigPeer::SetReceivedMaxBidirectionalStreams( session_.config(), kDefaultMaxStreamsPerConnection); QuicConfigPeer::SetReceivedMaxUnidirectionalStreams( session_.config(), kDefaultMaxStreamsPerConnection); QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesUnidirectional( session_.config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesIncomingBidirectional( session_.config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesOutgoingBidirectional( session_.config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow( session_.config(), kMinimumFlowControlSendWindow); connection_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); session_.OnConfigNegotiated(); } TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream(); EXPECT_CALL(*crypto_stream, HasPendingRetransmission()) .Times(testing::AnyNumber()); testing::Mock::VerifyAndClearExpectations(&session_); } ~QuicSessionTestBase() { if (configure_session_) { EXPECT_TRUE(session_.is_configured()); } } void CheckClosedStreams() { QuicStreamId first_stream_id = QuicUtils::GetFirstBidirectionalStreamId( connection_->transport_version(), Perspective::IS_CLIENT); if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { first_stream_id = QuicUtils::GetCryptoStreamId(connection_->transport_version()); } for (QuicStreamId i = first_stream_id; i < 100; i++) { if (!QuicContainsKey(closed_streams_, i)) { EXPECT_FALSE(session_.IsClosedStream(i)) << " stream id: " << i; } else { EXPECT_TRUE(session_.IsClosedStream(i)) << " stream id: " << i; } } } void CloseStream(QuicStreamId id) { if (VersionHasIetfQuicFrames(transport_version())) { if (QuicUtils::GetStreamType( id, session_.perspective(), session_.IsIncomingStream(id), connection_->version()) == READ_UNIDIRECTIONAL) { // Verify STOP_SENDING but no RESET_STREAM is sent for // READ_UNIDIRECTIONAL streams. EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(1) .WillOnce(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(id, _)).Times(1); } else if (QuicUtils::GetStreamType( id, session_.perspective(), session_.IsIncomingStream(id), connection_->version()) == WRITE_UNIDIRECTIONAL) { // Verify RESET_STREAM but not STOP_SENDING is sent for write-only // stream. EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(1) .WillOnce(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(id, _)); } else { // Verify RESET_STREAM and STOP_SENDING are sent for BIDIRECTIONAL // streams. EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(2) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(id, _)); } } else { EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(id, _)); } session_.ResetStream(id, QUIC_STREAM_CANCELLED); closed_streams_.insert(id); } void CompleteHandshake() { CryptoHandshakeMessage msg; if (connection_->version().HasHandshakeDone() && connection_->perspective() == Perspective::IS_SERVER) { EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); } session_.GetMutableCryptoStream()->OnHandshakeMessage(msg); } QuicTransportVersion transport_version() const { return connection_->transport_version(); } QuicStreamId GetNthClientInitiatedBidirectionalId(int n) { return QuicUtils::GetFirstBidirectionalStreamId( connection_->transport_version(), Perspective::IS_CLIENT) + QuicUtils::StreamIdDelta(connection_->transport_version()) * n; } QuicStreamId GetNthClientInitiatedUnidirectionalId(int n) { return QuicUtils::GetFirstUnidirectionalStreamId( connection_->transport_version(), Perspective::IS_CLIENT) + QuicUtils::StreamIdDelta(connection_->transport_version()) * n; } QuicStreamId GetNthServerInitiatedBidirectionalId(int n) { return QuicUtils::GetFirstBidirectionalStreamId( connection_->transport_version(), Perspective::IS_SERVER) + QuicUtils::StreamIdDelta(connection_->transport_version()) * n; } QuicStreamId GetNthServerInitiatedUnidirectionalId(int n) { return QuicUtils::GetFirstUnidirectionalStreamId( connection_->transport_version(), Perspective::IS_SERVER) + QuicUtils::StreamIdDelta(connection_->transport_version()) * n; } QuicStreamId StreamCountToId(QuicStreamCount stream_count, Perspective perspective, bool bidirectional) { // Calculate and build up stream ID rather than use // GetFirst... because tests that rely on this method // needs to do the stream count where #1 is 0/1/2/3, and not // take into account that stream 0 is special. QuicStreamId id = ((stream_count - 1) * QuicUtils::StreamIdDelta(transport_version())); if (!bidirectional) { id |= 0x2; } if (perspective == Perspective::IS_SERVER) { id |= 0x1; } return id; } MockQuicConnectionHelper helper_; MockAlarmFactory alarm_factory_; NiceMock session_visitor_; StrictMock* connection_; TestSession session_; std::set closed_streams_; bool configure_session_; }; class QuicSessionTestServer : public QuicSessionTestBase { public: // CheckMultiPathResponse validates that a written packet // contains both expected path responses. WriteResult CheckMultiPathResponse(const char* buffer, size_t buf_len, const QuicIpAddress& /*self_address*/, const QuicSocketAddress& /*peer_address*/, PerPacketOptions* /*options*/) { QuicEncryptedPacket packet(buffer, buf_len); { InSequence s; EXPECT_CALL(framer_visitor_, OnPacket()); EXPECT_CALL(framer_visitor_, OnUnauthenticatedPublicHeader(_)); EXPECT_CALL(framer_visitor_, OnUnauthenticatedHeader(_)); EXPECT_CALL(framer_visitor_, OnDecryptedPacket(_)); EXPECT_CALL(framer_visitor_, OnPacketHeader(_)); EXPECT_CALL(framer_visitor_, OnPathResponseFrame(_)) .WillOnce( WithArg<0>(Invoke([this](const QuicPathResponseFrame& frame) { EXPECT_EQ(path_frame_buffer1_, frame.data_buffer); return true; }))); EXPECT_CALL(framer_visitor_, OnPathResponseFrame(_)) .WillOnce( WithArg<0>(Invoke([this](const QuicPathResponseFrame& frame) { EXPECT_EQ(path_frame_buffer2_, frame.data_buffer); return true; }))); EXPECT_CALL(framer_visitor_, OnPacketComplete()); } client_framer_.ProcessPacket(packet); return WriteResult(WRITE_STATUS_OK, 0); } protected: QuicSessionTestServer() : QuicSessionTestBase(Perspective::IS_SERVER, /*configure_session=*/true), path_frame_buffer1_({0, 1, 2, 3, 4, 5, 6, 7}), path_frame_buffer2_({8, 9, 10, 11, 12, 13, 14, 15}), client_framer_(SupportedVersions(GetParam()), QuicTime::Zero(), Perspective::IS_CLIENT, kQuicDefaultConnectionIdLength) { client_framer_.set_visitor(&framer_visitor_); client_framer_.SetInitialObfuscators(TestConnectionId()); if (client_framer_.version().KnowsWhichDecrypterToUse()) { client_framer_.InstallDecrypter( ENCRYPTION_FORWARD_SECURE, std::make_unique(Perspective::IS_CLIENT)); } } QuicPathFrameBuffer path_frame_buffer1_; QuicPathFrameBuffer path_frame_buffer2_; StrictMock framer_visitor_; // Framer used to process packets sent by server. QuicFramer client_framer_; }; INSTANTIATE_TEST_SUITE_P(Tests, QuicSessionTestServer, ::testing::ValuesIn(AllSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicSessionTestServer, PeerAddress) { EXPECT_EQ(QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort), session_.peer_address()); } TEST_P(QuicSessionTestServer, SelfAddress) { EXPECT_TRUE(session_.self_address().IsInitialized()); } TEST_P(QuicSessionTestServer, DontCallOnWriteBlockedForDisconnectedConnection) { EXPECT_CALL(*connection_, CloseConnection(_, _, _)) .WillOnce( Invoke(connection_, &MockQuicConnection::ReallyCloseConnection)); connection_->CloseConnection(QUIC_NO_ERROR, "Everything is fine.", ConnectionCloseBehavior::SILENT_CLOSE); ASSERT_FALSE(connection_->connected()); EXPECT_CALL(session_visitor_, OnWriteBlocked(_)).Times(0); session_.OnWriteBlocked(); } TEST_P(QuicSessionTestServer, OneRttKeysAvailable) { EXPECT_FALSE(session_.OneRttKeysAvailable()); CompleteHandshake(); EXPECT_TRUE(session_.OneRttKeysAvailable()); } TEST_P(QuicSessionTestServer, IsClosedStreamDefault) { // Ensure that no streams are initially closed. QuicStreamId first_stream_id = QuicUtils::GetFirstBidirectionalStreamId( connection_->transport_version(), Perspective::IS_CLIENT); if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { first_stream_id = QuicUtils::GetCryptoStreamId(connection_->transport_version()); } for (QuicStreamId i = first_stream_id; i < 100; i++) { EXPECT_FALSE(session_.IsClosedStream(i)) << "stream id: " << i; } } TEST_P(QuicSessionTestServer, AvailableBidirectionalStreams) { ASSERT_TRUE(session_.GetOrCreateStream( GetNthClientInitiatedBidirectionalId(3)) != nullptr); // Smaller bidirectional streams should be available. EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthClientInitiatedBidirectionalId(1))); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthClientInitiatedBidirectionalId(2))); ASSERT_TRUE(session_.GetOrCreateStream( GetNthClientInitiatedBidirectionalId(2)) != nullptr); ASSERT_TRUE(session_.GetOrCreateStream( GetNthClientInitiatedBidirectionalId(1)) != nullptr); } TEST_P(QuicSessionTestServer, AvailableUnidirectionalStreams) { ASSERT_TRUE(session_.GetOrCreateStream( GetNthClientInitiatedUnidirectionalId(3)) != nullptr); // Smaller unidirectional streams should be available. EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthClientInitiatedUnidirectionalId(1))); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthClientInitiatedUnidirectionalId(2))); ASSERT_TRUE(session_.GetOrCreateStream( GetNthClientInitiatedUnidirectionalId(2)) != nullptr); ASSERT_TRUE(session_.GetOrCreateStream( GetNthClientInitiatedUnidirectionalId(1)) != nullptr); } TEST_P(QuicSessionTestServer, MaxAvailableBidirectionalStreams) { if (VersionHasIetfQuicFrames(transport_version())) { EXPECT_EQ(session_.max_open_incoming_bidirectional_streams(), session_.MaxAvailableBidirectionalStreams()); } else { // The protocol specification requires that there can be at least 10 times // as many available streams as the connection's maximum open streams. EXPECT_EQ(session_.max_open_incoming_bidirectional_streams() * kMaxAvailableStreamsMultiplier, session_.MaxAvailableBidirectionalStreams()); } } TEST_P(QuicSessionTestServer, MaxAvailableUnidirectionalStreams) { if (VersionHasIetfQuicFrames(transport_version())) { EXPECT_EQ(session_.max_open_incoming_unidirectional_streams(), session_.MaxAvailableUnidirectionalStreams()); } else { // The protocol specification requires that there can be at least 10 times // as many available streams as the connection's maximum open streams. EXPECT_EQ(session_.max_open_incoming_unidirectional_streams() * kMaxAvailableStreamsMultiplier, session_.MaxAvailableUnidirectionalStreams()); } } TEST_P(QuicSessionTestServer, IsClosedBidirectionalStreamLocallyCreated) { CompleteHandshake(); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); EXPECT_EQ(GetNthServerInitiatedBidirectionalId(0), stream2->id()); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); EXPECT_EQ(GetNthServerInitiatedBidirectionalId(1), stream4->id()); CheckClosedStreams(); CloseStream(GetNthServerInitiatedBidirectionalId(0)); CheckClosedStreams(); CloseStream(GetNthServerInitiatedBidirectionalId(1)); CheckClosedStreams(); } TEST_P(QuicSessionTestServer, IsClosedUnidirectionalStreamLocallyCreated) { CompleteHandshake(); TestStream* stream2 = session_.CreateOutgoingUnidirectionalStream(); EXPECT_EQ(GetNthServerInitiatedUnidirectionalId(0), stream2->id()); TestStream* stream4 = session_.CreateOutgoingUnidirectionalStream(); EXPECT_EQ(GetNthServerInitiatedUnidirectionalId(1), stream4->id()); CheckClosedStreams(); CloseStream(GetNthServerInitiatedUnidirectionalId(0)); CheckClosedStreams(); CloseStream(GetNthServerInitiatedUnidirectionalId(1)); CheckClosedStreams(); } TEST_P(QuicSessionTestServer, IsClosedBidirectionalStreamPeerCreated) { CompleteHandshake(); QuicStreamId stream_id1 = GetNthClientInitiatedBidirectionalId(0); QuicStreamId stream_id2 = GetNthClientInitiatedBidirectionalId(1); session_.GetOrCreateStream(stream_id1); session_.GetOrCreateStream(stream_id2); CheckClosedStreams(); CloseStream(stream_id1); CheckClosedStreams(); CloseStream(stream_id2); // Create a stream, and make another available. QuicStream* stream3 = session_.GetOrCreateStream( stream_id2 + 2 * QuicUtils::StreamIdDelta(connection_->transport_version())); CheckClosedStreams(); // Close one, but make sure the other is still not closed CloseStream(stream3->id()); CheckClosedStreams(); } TEST_P(QuicSessionTestServer, IsClosedUnidirectionalStreamPeerCreated) { CompleteHandshake(); QuicStreamId stream_id1 = GetNthClientInitiatedUnidirectionalId(0); QuicStreamId stream_id2 = GetNthClientInitiatedUnidirectionalId(1); session_.GetOrCreateStream(stream_id1); session_.GetOrCreateStream(stream_id2); CheckClosedStreams(); CloseStream(stream_id1); CheckClosedStreams(); CloseStream(stream_id2); // Create a stream, and make another available. QuicStream* stream3 = session_.GetOrCreateStream( stream_id2 + 2 * QuicUtils::StreamIdDelta(connection_->transport_version())); CheckClosedStreams(); // Close one, but make sure the other is still not closed CloseStream(stream3->id()); CheckClosedStreams(); } TEST_P(QuicSessionTestServer, MaximumAvailableOpenedBidirectionalStreams) { QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); session_.GetOrCreateStream(stream_id); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); EXPECT_NE(nullptr, session_.GetOrCreateStream(GetNthClientInitiatedBidirectionalId( session_.max_open_incoming_bidirectional_streams() - 1))); } TEST_P(QuicSessionTestServer, MaximumAvailableOpenedUnidirectionalStreams) { QuicStreamId stream_id = GetNthClientInitiatedUnidirectionalId(0); session_.GetOrCreateStream(stream_id); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); EXPECT_NE(nullptr, session_.GetOrCreateStream(GetNthClientInitiatedUnidirectionalId( session_.max_open_incoming_unidirectional_streams() - 1))); } TEST_P(QuicSessionTestServer, TooManyAvailableBidirectionalStreams) { QuicStreamId stream_id1 = GetNthClientInitiatedBidirectionalId(0); QuicStreamId stream_id2; EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id1)); // A stream ID which is too large to create. stream_id2 = GetNthClientInitiatedBidirectionalId( session_.MaxAvailableBidirectionalStreams() + 2); if (VersionHasIetfQuicFrames(transport_version())) { // IETF QUIC terminates the connection with invalid stream id EXPECT_CALL(*connection_, CloseConnection(QUIC_INVALID_STREAM_ID, _, _)); } else { // other versions terminate the connection with // QUIC_TOO_MANY_AVAILABLE_STREAMS. EXPECT_CALL(*connection_, CloseConnection(QUIC_TOO_MANY_AVAILABLE_STREAMS, _, _)); } EXPECT_EQ(nullptr, session_.GetOrCreateStream(stream_id2)); } TEST_P(QuicSessionTestServer, TooManyAvailableUnidirectionalStreams) { QuicStreamId stream_id1 = GetNthClientInitiatedUnidirectionalId(0); QuicStreamId stream_id2; EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id1)); // A stream ID which is too large to create. stream_id2 = GetNthClientInitiatedUnidirectionalId( session_.MaxAvailableUnidirectionalStreams() + 2); if (VersionHasIetfQuicFrames(transport_version())) { // IETF QUIC terminates the connection with invalid stream id EXPECT_CALL(*connection_, CloseConnection(QUIC_INVALID_STREAM_ID, _, _)); } else { // other versions terminate the connection with // QUIC_TOO_MANY_AVAILABLE_STREAMS. EXPECT_CALL(*connection_, CloseConnection(QUIC_TOO_MANY_AVAILABLE_STREAMS, _, _)); } EXPECT_EQ(nullptr, session_.GetOrCreateStream(stream_id2)); } TEST_P(QuicSessionTestServer, ManyAvailableBidirectionalStreams) { // When max_open_streams_ is 200, should be able to create 200 streams // out-of-order, that is, creating the one with the largest stream ID first. if (VersionHasIetfQuicFrames(transport_version())) { QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&session_, 200); // Smaller limit on unidirectional streams to help detect crossed wires. QuicSessionPeer::SetMaxOpenIncomingUnidirectionalStreams(&session_, 50); } else { QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, 200); } // Create a stream at the start of the range. QuicStreamId stream_id = GetNthClientInitiatedBidirectionalId(0); EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id)); // Create the largest stream ID of a threatened total of 200 streams. // GetNth... starts at 0, so for 200 streams, get the 199th. EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); EXPECT_NE(nullptr, session_.GetOrCreateStream( GetNthClientInitiatedBidirectionalId(199))); if (VersionHasIetfQuicFrames(transport_version())) { // If IETF QUIC, check to make sure that creating bidirectional // streams does not mess up the unidirectional streams. stream_id = GetNthClientInitiatedUnidirectionalId(0); EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id)); // Now try to get the last possible unidirectional stream. EXPECT_NE(nullptr, session_.GetOrCreateStream( GetNthClientInitiatedUnidirectionalId(49))); // and this should fail because it exceeds the unidirectional limit // (but not the bi-) EXPECT_CALL( *connection_, CloseConnection(QUIC_INVALID_STREAM_ID, "Stream id 798 would exceed stream count limit 50", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)) .Times(1); EXPECT_EQ(nullptr, session_.GetOrCreateStream( GetNthClientInitiatedUnidirectionalId(199))); } } TEST_P(QuicSessionTestServer, ManyAvailableUnidirectionalStreams) { // When max_open_streams_ is 200, should be able to create 200 streams // out-of-order, that is, creating the one with the largest stream ID first. if (VersionHasIetfQuicFrames(transport_version())) { QuicSessionPeer::SetMaxOpenIncomingUnidirectionalStreams(&session_, 200); // Smaller limit on unidirectional streams to help detect crossed wires. QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&session_, 50); } else { QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, 200); } // Create one stream. QuicStreamId stream_id = GetNthClientInitiatedUnidirectionalId(0); EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id)); // Create the largest stream ID of a threatened total of 200 streams. // GetNth... starts at 0, so for 200 streams, get the 199th. EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); EXPECT_NE(nullptr, session_.GetOrCreateStream( GetNthClientInitiatedUnidirectionalId(199))); if (VersionHasIetfQuicFrames(transport_version())) { // If IETF QUIC, check to make sure that creating unidirectional // streams does not mess up the bidirectional streams. stream_id = GetNthClientInitiatedBidirectionalId(0); EXPECT_NE(nullptr, session_.GetOrCreateStream(stream_id)); // Now try to get the last possible bidirectional stream. EXPECT_NE(nullptr, session_.GetOrCreateStream( GetNthClientInitiatedBidirectionalId(49))); // and this should fail because it exceeds the bnidirectional limit // (but not the uni-) std::string error_detail; if (QuicVersionUsesCryptoFrames(transport_version())) { error_detail = "Stream id 796 would exceed stream count limit 50"; } else { error_detail = "Stream id 800 would exceed stream count limit 50"; } EXPECT_CALL( *connection_, CloseConnection(QUIC_INVALID_STREAM_ID, error_detail, ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)) .Times(1); EXPECT_EQ(nullptr, session_.GetOrCreateStream( GetNthClientInitiatedBidirectionalId(199))); } } TEST_P(QuicSessionTestServer, DebugDFatalIfMarkingClosedStreamWriteBlocked) { CompleteHandshake(); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); QuicStreamId closed_stream_id = stream2->id(); // Close the stream. EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(closed_stream_id, _)); stream2->Reset(QUIC_BAD_APPLICATION_PAYLOAD); std::string msg = quiche::QuicheStrCat("Marking unknown stream ", closed_stream_id, " blocked."); EXPECT_QUIC_BUG(session_.MarkConnectionLevelWriteBlocked(closed_stream_id), msg); } TEST_P(QuicSessionTestServer, OnCanWrite) { CompleteHandshake(); session_.set_writev_consumes_all_data(true); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); InSequence s; // Reregister, to test the loop limit. EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendStreamData(stream2); session_.MarkConnectionLevelWriteBlocked(stream2->id()); })); // 2 will get called a second time as it didn't finish its block EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendStreamData(stream2); })); EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() { session_.SendStreamData(stream6); })); // 4 will not get called, as we exceeded the loop limit. session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, TestBatchedWrites) { session_.set_writev_consumes_all_data(true); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); session_.set_writev_consumes_all_data(true); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); // With two sessions blocked, we should get two write calls. They should both // go to the first stream as it will only write 6k and mark itself blocked // again. InSequence s; EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendLargeFakeData(stream2, 6000); session_.MarkConnectionLevelWriteBlocked(stream2->id()); })); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendLargeFakeData(stream2, 6000); session_.MarkConnectionLevelWriteBlocked(stream2->id()); })); session_.OnCanWrite(); // We should get one more call for stream2, at which point it has used its // write quota and we move over to stream 4. EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendLargeFakeData(stream2, 6000); session_.MarkConnectionLevelWriteBlocked(stream2->id()); })); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_.SendLargeFakeData(stream4, 6000); session_.MarkConnectionLevelWriteBlocked(stream4->id()); })); session_.OnCanWrite(); // Now let stream 4 do the 2nd of its 3 writes, but add a block for a high // priority stream 6. 4 should be preempted. 6 will write but *not* block so // will cede back to 4. stream6->SetPriority(spdy::SpdyStreamPrecedence(kV3HighestPriority)); EXPECT_CALL(*stream4, OnCanWrite()) .WillOnce(Invoke([this, stream4, stream6]() { session_.SendLargeFakeData(stream4, 6000); session_.MarkConnectionLevelWriteBlocked(stream4->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); })); EXPECT_CALL(*stream6, OnCanWrite()) .WillOnce(Invoke([this, stream4, stream6]() { session_.SendStreamData(stream6); session_.SendLargeFakeData(stream4, 6000); })); session_.OnCanWrite(); // Stream4 alread did 6k worth of writes, so after doing another 12k it should // cede and 2 should resume. EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_.SendLargeFakeData(stream4, 12000); session_.MarkConnectionLevelWriteBlocked(stream4->id()); })); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendLargeFakeData(stream2, 6000); session_.MarkConnectionLevelWriteBlocked(stream2->id()); })); session_.OnCanWrite(); } TEST_P(QuicSessionTestServer, Http2Priority) { if (VersionHasIetfQuicFrames(GetParam().transport_version)) { // The test is using HTTP/2 priority which is not supported in IETF QUIC. return; } QuicTagVector copt; copt.push_back(kH2PR); QuicConfigPeer::SetReceivedConnectionOptions(session_.config(), copt); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_.OnConfigNegotiated(); ASSERT_TRUE(session_.use_http2_priority_write_scheduler()); session_.set_writev_consumes_all_data(true); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); session_.set_writev_consumes_all_data(true); /* 0 /|\ 2 4 6 */ session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); // Verify streams are scheduled round robin. InSequence s; EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream4, OnCanWrite()); EXPECT_CALL(*stream6, OnCanWrite()); session_.OnCanWrite(); /* 0 | 4 / \ 2 6 */ // Update stream 4's priority. stream4->SetPriority( spdy::SpdyStreamPrecedence(0, spdy::kHttp2DefaultStreamWeight, true)); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_.MarkConnectionLevelWriteBlocked(stream4->id()); })); EXPECT_CALL(*stream4, OnCanWrite()); EXPECT_CALL(*stream2, OnCanWrite()); session_.OnCanWrite(); EXPECT_CALL(*stream6, OnCanWrite()); session_.OnCanWrite(); /* 0 | 6 | 4 | 2 */ // Update stream 6's priority. stream6->SetPriority( spdy::SpdyStreamPrecedence(0, spdy::kHttp2DefaultStreamWeight, true)); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() { session_.MarkConnectionLevelWriteBlocked(stream6->id()); })); EXPECT_CALL(*stream6, OnCanWrite()); EXPECT_CALL(*stream4, OnCanWrite()); session_.OnCanWrite(); EXPECT_CALL(*stream2, OnCanWrite()); session_.OnCanWrite(); } TEST_P(QuicSessionTestServer, RoundRobinScheduling) { if (VersionHasIetfQuicFrames(GetParam().transport_version)) { // IETF QUIC currently doesn't support PRIORITY. return; } QuicTagVector copt; copt.push_back(kRRWS); QuicConfigPeer::SetReceivedConnectionOptions(session_.config(), copt); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_.OnConfigNegotiated(); session_.set_writev_consumes_all_data(true); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); session_.set_writev_consumes_all_data(true); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); // Verify streams are scheduled round robin. InSequence s; EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream4, OnCanWrite()); EXPECT_CALL(*stream6, OnCanWrite()); session_.OnCanWrite(); /* 2, 4, 6, 8 */ TestStream* stream8 = session_.CreateOutgoingBidirectionalStream(); // Verify updated priority is ignored. stream4->SetPriority(spdy::SpdyStreamPrecedence(spdy::kV3HighestPriority)); session_.MarkConnectionLevelWriteBlocked(stream8->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); EXPECT_CALL(*stream8, OnCanWrite()); EXPECT_CALL(*stream4, OnCanWrite()); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream6, OnCanWrite()); session_.OnCanWrite(); } TEST_P(QuicSessionTestServer, OnCanWriteBundlesStreams) { // Encryption needs to be established before data can be sent. CompleteHandshake(); MockPacketWriter* writer = static_cast( QuicConnectionPeer::GetWriter(session_.connection())); // Drive congestion control manually. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true)); EXPECT_CALL(*send_algorithm, GetCongestionWindow()) .WillRepeatedly(Return(kMaxOutgoingPacketSize * 10)); EXPECT_CALL(*send_algorithm, InRecovery()).WillRepeatedly(Return(false)); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendStreamData(stream2); })); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_.SendStreamData(stream4); })); EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() { session_.SendStreamData(stream6); })); // Expect that we only send one packet, the writes from different streams // should be bundled together. EXPECT_CALL(*writer, WritePacket(_, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(*send_algorithm, OnPacketSent(_, _, _, _, _)); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, OnCanWriteCongestionControlBlocks) { CompleteHandshake(); session_.set_writev_consumes_all_data(true); InSequence s; // Drive congestion control manually. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendStreamData(stream2); })); EXPECT_CALL(*send_algorithm, GetCongestionWindow()).Times(AnyNumber()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream6, OnCanWrite()).WillOnce(Invoke([this, stream6]() { session_.SendStreamData(stream6); })); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(false)); // stream4->OnCanWrite is not called. session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); // Still congestion-control blocked. EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(false)); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); // stream4->OnCanWrite is called once the connection stops being // congestion-control blocked. EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_.SendStreamData(stream4); })); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, OnCanWriteWriterBlocks) { CompleteHandshake(); // Drive congestion control manually in order to ensure that // application-limited signaling is handled correctly. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true)); // Drive packet writer manually. MockPacketWriter* writer = static_cast( QuicConnectionPeer::GetWriter(session_.connection())); EXPECT_CALL(*writer, IsWriteBlocked()).WillRepeatedly(Return(true)); EXPECT_CALL(*writer, WritePacket(_, _, _, _, _)).Times(0); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream2->id()); EXPECT_CALL(*stream2, OnCanWrite()).Times(0); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)).Times(0); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, SendStreamsBlocked) { if (!VersionHasIetfQuicFrames(transport_version())) { return; } CompleteHandshake(); for (size_t i = 0; i < kDefaultMaxStreamsPerConnection; ++i) { ASSERT_TRUE(session_.CanOpenNextOutgoingBidirectionalStream()); session_.GetNextOutgoingBidirectionalStreamId(); } // Next checking causes STREAMS_BLOCKED to be sent. EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke([](const QuicFrame& frame) { EXPECT_FALSE(frame.streams_blocked_frame.unidirectional); EXPECT_EQ(kDefaultMaxStreamsPerConnection, frame.streams_blocked_frame.stream_count); ClearControlFrame(frame); return true; })); EXPECT_FALSE(session_.CanOpenNextOutgoingBidirectionalStream()); for (size_t i = 0; i < kDefaultMaxStreamsPerConnection; ++i) { ASSERT_TRUE(session_.CanOpenNextOutgoingUnidirectionalStream()); session_.GetNextOutgoingUnidirectionalStreamId(); } // Next checking causes STREAM_BLOCKED to be sent. EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke([](const QuicFrame& frame) { EXPECT_TRUE(frame.streams_blocked_frame.unidirectional); EXPECT_EQ(kDefaultMaxStreamsPerConnection, frame.streams_blocked_frame.stream_count); ClearControlFrame(frame); return true; })); EXPECT_FALSE(session_.CanOpenNextOutgoingUnidirectionalStream()); } TEST_P(QuicSessionTestServer, BufferedHandshake) { // This test is testing behavior of crypto stream flow control, but when // CRYPTO frames are used, there is no flow control for the crypto handshake. if (QuicVersionUsesCryptoFrames(connection_->transport_version())) { return; } session_.set_writev_consumes_all_data(true); EXPECT_FALSE(session_.HasPendingHandshake()); // Default value. // Test that blocking other streams does not change our status. TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream2->id()); EXPECT_FALSE(session_.HasPendingHandshake()); TestStream* stream3 = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream3->id()); EXPECT_FALSE(session_.HasPendingHandshake()); // Blocking (due to buffering of) the Crypto stream is detected. session_.MarkConnectionLevelWriteBlocked( QuicUtils::GetCryptoStreamId(connection_->transport_version())); EXPECT_TRUE(session_.HasPendingHandshake()); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream4->id()); EXPECT_TRUE(session_.HasPendingHandshake()); InSequence s; // Force most streams to re-register, which is common scenario when we block // the Crypto stream, and only the crypto stream can "really" write. // Due to prioritization, we *should* be asked to write the crypto stream // first. // Don't re-register the crypto stream (which signals complete writing). TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream(); EXPECT_CALL(*crypto_stream, OnCanWrite()); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendStreamData(stream2); })); EXPECT_CALL(*stream3, OnCanWrite()).WillOnce(Invoke([this, stream3]() { session_.SendStreamData(stream3); })); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_.SendStreamData(stream4); session_.MarkConnectionLevelWriteBlocked(stream4->id()); })); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); EXPECT_FALSE(session_.HasPendingHandshake()); // Crypto stream wrote. } TEST_P(QuicSessionTestServer, OnCanWriteWithClosedStream) { CompleteHandshake(); session_.set_writev_consumes_all_data(true); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); CloseStream(stream6->id()); InSequence s; EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*stream2, OnCanWrite()).WillOnce(Invoke([this, stream2]() { session_.SendStreamData(stream2); })); EXPECT_CALL(*stream4, OnCanWrite()).WillOnce(Invoke([this, stream4]() { session_.SendStreamData(stream4); })); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, OnCanWriteLimitsNumWritesIfFlowControlBlocked) { // Drive congestion control manually in order to ensure that // application-limited signaling is handled correctly. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(true)); // Ensure connection level flow control blockage. QuicFlowControllerPeer::SetSendWindowOffset(session_.flow_controller(), 0); EXPECT_TRUE(session_.flow_controller()->IsBlocked()); EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); // Mark the crypto and headers streams as write blocked, we expect them to be // allowed to write later. if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { session_.MarkConnectionLevelWriteBlocked( QuicUtils::GetCryptoStreamId(connection_->transport_version())); } // Create a data stream, and although it is write blocked we never expect it // to be allowed to write as we are connection level flow control blocked. TestStream* stream = session_.CreateOutgoingBidirectionalStream(); session_.MarkConnectionLevelWriteBlocked(stream->id()); EXPECT_CALL(*stream, OnCanWrite()).Times(0); // The crypto and headers streams should be called even though we are // connection flow control blocked. if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream(); EXPECT_CALL(*crypto_stream, OnCanWrite()); } // After the crypto and header streams perform a write, the connection will be // blocked by the flow control, hence it should become application-limited. EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, SendGoAway) { if (VersionHasIetfQuicFrames(transport_version())) { // In IETF QUIC, GOAWAY lives up in the HTTP layer. return; } CompleteHandshake(); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); MockPacketWriter* writer = static_cast( QuicConnectionPeer::GetWriter(session_.connection())); EXPECT_CALL(*writer, WritePacket(_, _, _, _, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce( Invoke(connection_, &MockQuicConnection::ReallySendControlFrame)); session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); EXPECT_TRUE(session_.transport_goaway_sent()); const QuicStreamId kTestStreamId = 5u; EXPECT_CALL(*connection_, SendControlFrame(_)).Times(0); EXPECT_CALL(*connection_, OnStreamReset(kTestStreamId, QUIC_STREAM_PEER_GOING_AWAY)) .Times(0); EXPECT_TRUE(session_.GetOrCreateStream(kTestStreamId)); } TEST_P(QuicSessionTestServer, DoNotSendGoAwayTwice) { CompleteHandshake(); if (VersionHasIetfQuicFrames(transport_version())) { // In IETF QUIC, GOAWAY lives up in the HTTP layer. return; } EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); EXPECT_TRUE(session_.transport_goaway_sent()); session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); } TEST_P(QuicSessionTestServer, InvalidGoAway) { if (VersionHasIetfQuicFrames(transport_version())) { // In IETF QUIC, GOAWAY lives up in the HTTP layer. return; } QuicGoAwayFrame go_away(kInvalidControlFrameId, QUIC_PEER_GOING_AWAY, session_.next_outgoing_bidirectional_stream_id(), ""); session_.OnGoAway(go_away); } // Test that server session will send a connectivity probe in response to a // connectivity probe on the same path. TEST_P(QuicSessionTestServer, ServerReplyToConnectivityProbe) { if (connection_->send_path_response() && VersionHasIetfQuicFrames(transport_version())) { return; } connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); QuicSocketAddress old_peer_address = QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort); EXPECT_EQ(old_peer_address, session_.peer_address()); QuicSocketAddress new_peer_address = QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort + 1); MockPacketWriter* writer = static_cast( QuicConnectionPeer::GetWriter(session_.connection())); EXPECT_CALL(*writer, WritePacket(_, _, _, new_peer_address, _)) .WillOnce(Return(WriteResult(WRITE_STATUS_OK, 0))); if (connection_->send_path_response()) { EXPECT_CALL(*connection_, SendConnectivityProbingPacket(_, _)) .WillOnce( Invoke(connection_, &MockQuicConnection::ReallySendConnectivityProbingPacket)); } else { EXPECT_CALL(*connection_, SendConnectivityProbingResponsePacket(_)) .WillOnce(Invoke( connection_, &MockQuicConnection::ReallySendConnectivityProbingResponsePacket)); } if (VersionHasIetfQuicFrames(transport_version())) { // Need to explicitly do this to emulate the reception of a PathChallenge, // which stores its payload for use in generating the response. connection_->OnPathChallengeFrame( QuicPathChallengeFrame(0, path_frame_buffer1_)); } session_.OnPacketReceived(session_.self_address(), new_peer_address, /*is_connectivity_probe=*/true); EXPECT_EQ(old_peer_address, session_.peer_address()); } // Same as above, but check that if there are two PATH_CHALLENGE frames in the // packet, the response has both of them AND we do not do migration. This for // IETF QUIC only. TEST_P(QuicSessionTestServer, ServerReplyToConnectivityProbes) { if (connection_->send_path_response() || !VersionHasIetfQuicFrames(transport_version())) { return; } connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); QuicSocketAddress old_peer_address = QuicSocketAddress(QuicIpAddress::Loopback4(), kTestPort); EXPECT_EQ(old_peer_address, session_.peer_address()); MockPacketWriter* writer = static_cast( QuicConnectionPeer::GetWriter(session_.connection())); // CheckMultiPathResponse validates that the written packet // contains both path responses. EXPECT_CALL(*writer, WritePacket(_, _, _, old_peer_address, _)) .WillOnce(Invoke(this, &QuicSessionTestServer::CheckMultiPathResponse)); EXPECT_CALL(*connection_, SendConnectivityProbingResponsePacket(_)) .WillOnce(Invoke( connection_, &MockQuicConnection::ReallySendConnectivityProbingResponsePacket)); QuicConnectionPeer::SetLastHeaderFormat(connection_, IETF_QUIC_SHORT_HEADER_PACKET); // Need to explicitly do this to emulate the reception of a PathChallenge, // which stores its payload for use in generating the response. connection_->OnPathChallengeFrame( QuicPathChallengeFrame(0, path_frame_buffer1_)); connection_->OnPathChallengeFrame( QuicPathChallengeFrame(0, path_frame_buffer2_)); session_.OnPacketReceived(session_.self_address(), old_peer_address, /*is_connectivity_probe=*/true); } TEST_P(QuicSessionTestServer, IncreasedTimeoutAfterCryptoHandshake) { EXPECT_EQ(kInitialIdleTimeoutSecs + 3, QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); CompleteHandshake(); EXPECT_EQ(kMaximumIdleTimeoutSecs + 3, QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); } TEST_P(QuicSessionTestServer, OnStreamFrameFinStaticStreamId) { if (VersionUsesHttp3(connection_->transport_version())) { // The test relies on headers stream, which no longer exists in IETF QUIC. return; } QuicStreamId headers_stream_id = QuicUtils::GetHeadersStreamId(connection_->transport_version()); std::unique_ptr fake_headers_stream = std::make_unique(headers_stream_id, &session_, /*is_static*/ true, BIDIRECTIONAL); QuicSessionPeer::ActivateStream(&session_, std::move(fake_headers_stream)); // Send two bytes of payload. QuicStreamFrame data1(headers_stream_id, true, 0, absl::string_view("HT")); EXPECT_CALL(*connection_, CloseConnection( QUIC_INVALID_STREAM_ID, "Attempt to close a static stream", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_.OnStreamFrame(data1); } TEST_P(QuicSessionTestServer, OnStreamFrameInvalidStreamId) { // Send two bytes of payload. QuicStreamFrame data1( QuicUtils::GetInvalidStreamId(connection_->transport_version()), true, 0, absl::string_view("HT")); EXPECT_CALL(*connection_, CloseConnection( QUIC_INVALID_STREAM_ID, "Received data for an invalid stream", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_.OnStreamFrame(data1); } TEST_P(QuicSessionTestServer, OnRstStreamInvalidStreamId) { // Send two bytes of payload. QuicRstStreamFrame rst1( kInvalidControlFrameId, QuicUtils::GetInvalidStreamId(connection_->transport_version()), QUIC_ERROR_PROCESSING_STREAM, 0); EXPECT_CALL(*connection_, CloseConnection( QUIC_INVALID_STREAM_ID, "Received data for an invalid stream", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); session_.OnRstStream(rst1); } TEST_P(QuicSessionTestServer, HandshakeUnblocksFlowControlBlockedStream) { if (connection_->version().handshake_protocol == PROTOCOL_TLS1_3) { // This test requires Google QUIC crypto because it assumes streams start // off unblocked. return; } // Test that if a stream is flow control blocked, then on receipt of the SHLO // containing a suitable send window offset, the stream becomes unblocked. // Ensure that Writev consumes all the data it is given (simulate no socket // blocking). session_.set_writev_consumes_all_data(true); session_.GetMutableCryptoStream()->EstablishZeroRttEncryption(); // Create a stream, and send enough data to make it flow control blocked. TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); std::string body(kMinimumFlowControlSendWindow, '.'); EXPECT_FALSE(stream2->IsFlowControlBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); EXPECT_CALL(*connection_, SendControlFrame(_)).Times(AtLeast(1)); stream2->WriteOrBufferData(body, false, nullptr); EXPECT_TRUE(stream2->IsFlowControlBlocked()); EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); // Now complete the crypto handshake, resulting in an increased flow control // send window. CompleteHandshake(); EXPECT_TRUE(QuicSessionPeer::IsStreamWriteBlocked(&session_, stream2->id())); // Stream is now unblocked. EXPECT_FALSE(stream2->IsFlowControlBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } TEST_P(QuicSessionTestServer, HandshakeUnblocksFlowControlBlockedCryptoStream) { if (QuicVersionUsesCryptoFrames(GetParam().transport_version) || connection_->encrypted_control_frames()) { // QUIC version 47 onwards uses CRYPTO frames for the handshake, so this // test doesn't make sense for those versions since CRYPTO frames aren't // flow controlled. return; } // Test that if the crypto stream is flow control blocked, then if the SHLO // contains a larger send window offset, the stream becomes unblocked. session_.set_writev_consumes_all_data(true); TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream(); EXPECT_FALSE(crypto_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); for (QuicStreamId i = 0; !crypto_stream->IsFlowControlBlocked() && i < 1000u; i++) { EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); QuicStreamOffset offset = crypto_stream->stream_bytes_written(); QuicConfig config; CryptoHandshakeMessage crypto_message; config.ToHandshakeMessage(&crypto_message, transport_version()); crypto_stream->SendHandshakeMessage(crypto_message, ENCRYPTION_INITIAL); char buf[1000]; QuicDataWriter writer(1000, buf, quiche::NETWORK_BYTE_ORDER); crypto_stream->WriteStreamData(offset, crypto_message.size(), &writer); } EXPECT_TRUE(crypto_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); EXPECT_FALSE(session_.HasDataToWrite()); EXPECT_TRUE(crypto_stream->HasBufferedData()); // Now complete the crypto handshake, resulting in an increased flow control // send window. CompleteHandshake(); EXPECT_TRUE(QuicSessionPeer::IsStreamWriteBlocked( &session_, QuicUtils::GetCryptoStreamId(connection_->transport_version()))); // Stream is now unblocked and will no longer have buffered data. EXPECT_FALSE(crypto_stream->IsFlowControlBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } TEST_P(QuicSessionTestServer, ConnectionFlowControlAccountingRstOutOfOrder) { CompleteHandshake(); // Test that when we receive an out of order stream RST we correctly adjust // our connection level flow control receive window. // On close, the stream should mark as consumed all bytes between the highest // byte consumed so far and the final byte offset from the RST frame. TestStream* stream = session_.CreateOutgoingBidirectionalStream(); const QuicStreamOffset kByteOffset = 1 + kInitialSessionFlowControlWindowForTest / 2; EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(2) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream->id(), QUIC_STREAM_CANCELLED, kByteOffset); session_.OnRstStream(rst_frame); if (VersionHasIetfQuicFrames(transport_version())) { // The test requires the stream to be fully closed in both directions. For // IETF QUIC, the RST_STREAM only closes one side. QuicStopSendingFrame frame(kInvalidControlFrameId, stream->id(), QUIC_STREAM_CANCELLED); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStopSendingFrame(frame); } EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed()); } TEST_P(QuicSessionTestServer, ConnectionFlowControlAccountingFinAndLocalReset) { CompleteHandshake(); // Test the situation where we receive a FIN on a stream, and before we fully // consume all the data from the sequencer buffer we locally RST the stream. // The bytes between highest consumed byte, and the final byte offset that we // determined when the FIN arrived, should be marked as consumed at the // connection level flow controller when the stream is reset. TestStream* stream = session_.CreateOutgoingBidirectionalStream(); const QuicStreamOffset kByteOffset = kInitialSessionFlowControlWindowForTest / 2 - 1; QuicStreamFrame frame(stream->id(), true, kByteOffset, "."); session_.OnStreamFrame(frame); EXPECT_TRUE(connection_->connected()); EXPECT_EQ(0u, session_.flow_controller()->bytes_consumed()); EXPECT_EQ(kByteOffset + frame.data_length, stream->highest_received_byte_offset()); // Reset stream locally. EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); stream->Reset(QUIC_STREAM_CANCELLED); EXPECT_EQ(kByteOffset + frame.data_length, session_.flow_controller()->bytes_consumed()); } TEST_P(QuicSessionTestServer, ConnectionFlowControlAccountingFinAfterRst) { CompleteHandshake(); // Test that when we RST the stream (and tear down stream state), and then // receive a FIN from the peer, we correctly adjust our connection level flow // control receive window. // Connection starts with some non-zero highest received byte offset, // due to other active streams. const uint64_t kInitialConnectionBytesConsumed = 567; const uint64_t kInitialConnectionHighestReceivedOffset = 1234; EXPECT_LT(kInitialConnectionBytesConsumed, kInitialConnectionHighestReceivedOffset); session_.flow_controller()->UpdateHighestReceivedOffset( kInitialConnectionHighestReceivedOffset); session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed); // Reset our stream: this results in the stream being closed locally. TestStream* stream = session_.CreateOutgoingBidirectionalStream(); EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); stream->Reset(QUIC_STREAM_CANCELLED); // Now receive a response from the peer with a FIN. We should handle this by // adjusting the connection level flow control receive window to take into // account the total number of bytes sent by the peer. const QuicStreamOffset kByteOffset = 5678; std::string body = "hello"; QuicStreamFrame frame(stream->id(), true, kByteOffset, absl::string_view(body)); session_.OnStreamFrame(frame); QuicStreamOffset total_stream_bytes_sent_by_peer = kByteOffset + body.length(); EXPECT_EQ(kInitialConnectionBytesConsumed + total_stream_bytes_sent_by_peer, session_.flow_controller()->bytes_consumed()); EXPECT_EQ( kInitialConnectionHighestReceivedOffset + total_stream_bytes_sent_by_peer, session_.flow_controller()->highest_received_byte_offset()); } TEST_P(QuicSessionTestServer, ConnectionFlowControlAccountingRstAfterRst) { CompleteHandshake(); // Test that when we RST the stream (and tear down stream state), and then // receive a RST from the peer, we correctly adjust our connection level flow // control receive window. // Connection starts with some non-zero highest received byte offset, // due to other active streams. const uint64_t kInitialConnectionBytesConsumed = 567; const uint64_t kInitialConnectionHighestReceivedOffset = 1234; EXPECT_LT(kInitialConnectionBytesConsumed, kInitialConnectionHighestReceivedOffset); session_.flow_controller()->UpdateHighestReceivedOffset( kInitialConnectionHighestReceivedOffset); session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed); // Reset our stream: this results in the stream being closed locally. TestStream* stream = session_.CreateOutgoingBidirectionalStream(); EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); stream->Reset(QUIC_STREAM_CANCELLED); EXPECT_TRUE(QuicStreamPeer::read_side_closed(stream)); // Now receive a RST from the peer. We should handle this by adjusting the // connection level flow control receive window to take into account the total // number of bytes sent by the peer. const QuicStreamOffset kByteOffset = 5678; QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream->id(), QUIC_STREAM_CANCELLED, kByteOffset); session_.OnRstStream(rst_frame); EXPECT_EQ(kInitialConnectionBytesConsumed + kByteOffset, session_.flow_controller()->bytes_consumed()); EXPECT_EQ(kInitialConnectionHighestReceivedOffset + kByteOffset, session_.flow_controller()->highest_received_byte_offset()); } TEST_P(QuicSessionTestServer, InvalidStreamFlowControlWindowInHandshake) { // Test that receipt of an invalid (< default) stream flow control window from // the peer results in the connection being torn down. const uint32_t kInvalidWindow = kMinimumFlowControlSendWindow - 1; QuicConfigPeer::SetReceivedInitialStreamFlowControlWindow(session_.config(), kInvalidWindow); if (connection_->version().handshake_protocol != PROTOCOL_TLS1_3) { EXPECT_CALL(*connection_, CloseConnection(QUIC_FLOW_CONTROL_INVALID_WINDOW, _, _)); } else { EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); } connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_.OnConfigNegotiated(); } // Test negotiation of custom server initial flow control window. TEST_P(QuicSessionTestServer, CustomFlowControlWindow) { QuicTagVector copt; copt.push_back(kIFW7); QuicConfigPeer::SetReceivedConnectionOptions(session_.config(), copt); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_.OnConfigNegotiated(); EXPECT_EQ(192 * 1024u, QuicFlowControllerPeer::ReceiveWindowSize( session_.flow_controller())); } TEST_P(QuicSessionTestServer, FlowControlWithInvalidFinalOffset) { CompleteHandshake(); // Test that if we receive a stream RST with a highest byte offset that // violates flow control, that we close the connection. const uint64_t kLargeOffset = kInitialSessionFlowControlWindowForTest + 1; EXPECT_CALL(*connection_, CloseConnection(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA, _, _)) .Times(2); // Check that stream frame + FIN results in connection close. TestStream* stream = session_.CreateOutgoingBidirectionalStream(); EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); stream->Reset(QUIC_STREAM_CANCELLED); QuicStreamFrame frame(stream->id(), true, kLargeOffset, absl::string_view()); session_.OnStreamFrame(frame); // Check that RST results in connection close. QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream->id(), QUIC_STREAM_CANCELLED, kLargeOffset); session_.OnRstStream(rst_frame); } TEST_P(QuicSessionTestServer, TooManyUnfinishedStreamsCauseServerRejectStream) { CompleteHandshake(); // If a buggy/malicious peer creates too many streams that are not ended // with a FIN or RST then we send an RST to refuse streams. For IETF QUIC the // connection is closed. const QuicStreamId kMaxStreams = 5; if (VersionHasIetfQuicFrames(transport_version())) { QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&session_, kMaxStreams); } else { QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, kMaxStreams); } const QuicStreamId kFirstStreamId = GetNthClientInitiatedBidirectionalId(0); const QuicStreamId kFinalStreamId = GetNthClientInitiatedBidirectionalId(kMaxStreams); // Create kMaxStreams data streams, and close them all without receiving a // FIN or a RST_STREAM from the client. for (QuicStreamId i = kFirstStreamId; i < kFinalStreamId; i += QuicUtils::StreamIdDelta(connection_->transport_version())) { QuicStreamFrame data1(i, false, 0, absl::string_view("HT")); session_.OnStreamFrame(data1); CloseStream(i); } if (VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL( *connection_, CloseConnection(QUIC_INVALID_STREAM_ID, "Stream id 20 would exceed stream count limit 5", _)); } else { EXPECT_CALL(*connection_, SendControlFrame(_)).Times(1); EXPECT_CALL(*connection_, OnStreamReset(kFinalStreamId, QUIC_REFUSED_STREAM)) .Times(1); } // Create one more data streams to exceed limit of open stream. QuicStreamFrame data1(kFinalStreamId, false, 0, absl::string_view("HT")); session_.OnStreamFrame(data1); } TEST_P(QuicSessionTestServer, DrainingStreamsDoNotCountAsOpenedOutgoing) { // Verify that a draining stream (which has received a FIN but not consumed // it) does not count against the open quota (because it is closed from the // protocol point of view). CompleteHandshake(); TestStream* stream = session_.CreateOutgoingBidirectionalStream(); QuicStreamId stream_id = stream->id(); QuicStreamFrame data1(stream_id, true, 0, absl::string_view("HT")); session_.OnStreamFrame(data1); EXPECT_CALL(session_, OnCanCreateNewOutgoingStream(false)).Times(1); session_.StreamDraining(stream_id, /*unidirectional=*/false); } TEST_P(QuicSessionTestServer, NoPendingStreams) { session_.set_uses_pending_streams(false); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); QuicStreamFrame data1(stream_id, true, 10, absl::string_view("HT")); session_.OnStreamFrame(data1); EXPECT_EQ(1, session_.num_incoming_streams_created()); QuicStreamFrame data2(stream_id, false, 0, absl::string_view("HT")); session_.OnStreamFrame(data2); EXPECT_EQ(1, session_.num_incoming_streams_created()); } TEST_P(QuicSessionTestServer, PendingStreams) { if (!VersionUsesHttp3(transport_version())) { return; } session_.set_uses_pending_streams(true); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); QuicStreamFrame data1(stream_id, true, 10, absl::string_view("HT")); session_.OnStreamFrame(data1); EXPECT_TRUE(QuicSessionPeer::GetPendingStream(&session_, stream_id)); EXPECT_EQ(0, session_.num_incoming_streams_created()); QuicStreamFrame data2(stream_id, false, 0, absl::string_view("HT")); session_.OnStreamFrame(data2); EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&session_, stream_id)); EXPECT_EQ(1, session_.num_incoming_streams_created()); } TEST_P(QuicSessionTestServer, RstPendingStreams) { if (!VersionUsesHttp3(transport_version())) { return; } session_.set_uses_pending_streams(true); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); QuicStreamFrame data1(stream_id, true, 10, absl::string_view("HT")); session_.OnStreamFrame(data1); EXPECT_TRUE(QuicSessionPeer::GetPendingStream(&session_, stream_id)); EXPECT_EQ(0, session_.num_incoming_streams_created()); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&session_)); QuicRstStreamFrame rst1(kInvalidControlFrameId, stream_id, QUIC_ERROR_PROCESSING_STREAM, 12); session_.OnRstStream(rst1); EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&session_, stream_id)); EXPECT_EQ(0, session_.num_incoming_streams_created()); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&session_)); QuicStreamFrame data2(stream_id, false, 0, absl::string_view("HT")); session_.OnStreamFrame(data2); EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&session_, stream_id)); EXPECT_EQ(0, session_.num_incoming_streams_created()); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&session_)); } TEST_P(QuicSessionTestServer, OnFinPendingStreams) { if (!VersionUsesHttp3(transport_version())) { return; } session_.set_uses_pending_streams(true); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); QuicStreamFrame data(stream_id, true, 0, ""); session_.OnStreamFrame(data); EXPECT_FALSE(QuicSessionPeer::GetPendingStream(&session_, stream_id)); EXPECT_EQ(0, session_.num_incoming_streams_created()); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&session_)); } TEST_P(QuicSessionTestServer, PendingStreamOnWindowUpdate) { if (!VersionUsesHttp3(transport_version())) { return; } session_.set_uses_pending_streams(true); QuicStreamId stream_id = QuicUtils::GetFirstUnidirectionalStreamId( transport_version(), Perspective::IS_CLIENT); QuicStreamFrame data1(stream_id, true, 10, absl::string_view("HT")); session_.OnStreamFrame(data1); EXPECT_TRUE(QuicSessionPeer::GetPendingStream(&session_, stream_id)); EXPECT_EQ(0, session_.num_incoming_streams_created()); QuicWindowUpdateFrame window_update_frame(kInvalidControlFrameId, stream_id, 0); EXPECT_CALL( *connection_, CloseConnection( QUIC_WINDOW_UPDATE_RECEIVED_ON_READ_UNIDIRECTIONAL_STREAM, "WindowUpdateFrame received on READ_UNIDIRECTIONAL stream.", _)); session_.OnWindowUpdateFrame(window_update_frame); } TEST_P(QuicSessionTestServer, DrainingStreamsDoNotCountAsOpened) { // Verify that a draining stream (which has received a FIN but not consumed // it) does not count against the open quota (because it is closed from the // protocol point of view). CompleteHandshake(); if (VersionHasIetfQuicFrames(transport_version())) { // On IETF QUIC, we will expect to see a MAX_STREAMS go out when there are // not enough streams to create the next one. EXPECT_CALL(*connection_, SendControlFrame(_)).Times(1); } else { EXPECT_CALL(*connection_, SendControlFrame(_)).Times(0); } EXPECT_CALL(*connection_, OnStreamReset(_, QUIC_REFUSED_STREAM)).Times(0); const QuicStreamId kMaxStreams = 5; if (VersionHasIetfQuicFrames(transport_version())) { QuicSessionPeer::SetMaxOpenIncomingBidirectionalStreams(&session_, kMaxStreams); } else { QuicSessionPeer::SetMaxOpenIncomingStreams(&session_, kMaxStreams); } // Create kMaxStreams + 1 data streams, and mark them draining. const QuicStreamId kFirstStreamId = GetNthClientInitiatedBidirectionalId(0); const QuicStreamId kFinalStreamId = GetNthClientInitiatedBidirectionalId(2 * kMaxStreams + 1); for (QuicStreamId i = kFirstStreamId; i < kFinalStreamId; i += QuicUtils::StreamIdDelta(connection_->transport_version())) { QuicStreamFrame data1(i, true, 0, absl::string_view("HT")); session_.OnStreamFrame(data1); EXPECT_EQ(1u, QuicSessionPeer::GetNumOpenDynamicStreams(&session_)); session_.StreamDraining(i, /*unidirectional=*/false); EXPECT_EQ(0u, QuicSessionPeer::GetNumOpenDynamicStreams(&session_)); } } class QuicSessionTestClient : public QuicSessionTestBase { protected: QuicSessionTestClient() : QuicSessionTestBase(Perspective::IS_CLIENT, /*configure_session=*/true) {} }; INSTANTIATE_TEST_SUITE_P(Tests, QuicSessionTestClient, ::testing::ValuesIn(AllSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicSessionTestClient, AvailableBidirectionalStreamsClient) { ASSERT_TRUE(session_.GetOrCreateStream( GetNthServerInitiatedBidirectionalId(2)) != nullptr); // Smaller bidirectional streams should be available. EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthServerInitiatedBidirectionalId(0))); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthServerInitiatedBidirectionalId(1))); ASSERT_TRUE(session_.GetOrCreateStream( GetNthServerInitiatedBidirectionalId(0)) != nullptr); ASSERT_TRUE(session_.GetOrCreateStream( GetNthServerInitiatedBidirectionalId(1)) != nullptr); // And 5 should be not available. EXPECT_FALSE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthClientInitiatedBidirectionalId(1))); } TEST_P(QuicSessionTestClient, InvalidSessionFlowControlWindowInHandshake) { // Test that receipt of an invalid (< default for gQUIC, < current for TLS) // session flow control window from the peer results in the connection being // torn down. const uint32_t kInvalidWindow = kMinimumFlowControlSendWindow - 1; QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow(session_.config(), kInvalidWindow); EXPECT_CALL( *connection_, CloseConnection(connection_->version().AllowsLowFlowControlLimits() ? QUIC_ZERO_RTT_RESUMPTION_LIMIT_REDUCED : QUIC_FLOW_CONTROL_INVALID_WINDOW, _, _)); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_.OnConfigNegotiated(); } TEST_P(QuicSessionTestClient, InvalidBidiStreamLimitInHandshake) { // IETF QUIC only feature. if (!VersionHasIetfQuicFrames(transport_version())) { return; } QuicConfigPeer::SetReceivedMaxBidirectionalStreams( session_.config(), kDefaultMaxStreamsPerConnection - 1); EXPECT_CALL(*connection_, CloseConnection(QUIC_ZERO_RTT_RESUMPTION_LIMIT_REDUCED, _, _)); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_.OnConfigNegotiated(); } TEST_P(QuicSessionTestClient, InvalidUniStreamLimitInHandshake) { // IETF QUIC only feature. if (!VersionHasIetfQuicFrames(transport_version())) { return; } QuicConfigPeer::SetReceivedMaxUnidirectionalStreams( session_.config(), kDefaultMaxStreamsPerConnection - 1); EXPECT_CALL(*connection_, CloseConnection(QUIC_ZERO_RTT_RESUMPTION_LIMIT_REDUCED, _, _)); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_.OnConfigNegotiated(); } TEST_P(QuicSessionTestClient, InvalidStreamFlowControlWindowInHandshake) { // IETF QUIC only feature. if (!VersionHasIetfQuicFrames(transport_version())) { return; } session_.CreateOutgoingBidirectionalStream(); session_.CreateOutgoingBidirectionalStream(); QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesOutgoingBidirectional( session_.config(), kMinimumFlowControlSendWindow - 1); EXPECT_CALL(*connection_, CloseConnection(_, _, _)) .WillOnce( Invoke(connection_, &MockQuicConnection::ReallyCloseConnection)); EXPECT_CALL(*connection_, SendConnectionClosePacket(_, _)); connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); session_.OnConfigNegotiated(); } TEST_P(QuicSessionTestClient, OnMaxStreamFrame) { if (!VersionUsesHttp3(transport_version())) { return; } QuicMaxStreamsFrame frame; frame.unidirectional = false; frame.stream_count = 120; EXPECT_CALL(session_, OnCanCreateNewOutgoingStream(false)).Times(1); session_.OnMaxStreamsFrame(frame); QuicMaxStreamsFrame frame2; frame2.unidirectional = false; frame2.stream_count = 110; EXPECT_CALL(session_, OnCanCreateNewOutgoingStream(false)).Times(0); session_.OnMaxStreamsFrame(frame2); } TEST_P(QuicSessionTestClient, AvailableUnidirectionalStreamsClient) { ASSERT_TRUE(session_.GetOrCreateStream( GetNthServerInitiatedUnidirectionalId(2)) != nullptr); // Smaller unidirectional streams should be available. EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthServerInitiatedUnidirectionalId(0))); EXPECT_TRUE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthServerInitiatedUnidirectionalId(1))); ASSERT_TRUE(session_.GetOrCreateStream( GetNthServerInitiatedUnidirectionalId(0)) != nullptr); ASSERT_TRUE(session_.GetOrCreateStream( GetNthServerInitiatedUnidirectionalId(1)) != nullptr); // And 5 should be not available. EXPECT_FALSE(QuicSessionPeer::IsStreamAvailable( &session_, GetNthClientInitiatedUnidirectionalId(1))); } TEST_P(QuicSessionTestClient, RecordFinAfterReadSideClosed) { CompleteHandshake(); // Verify that an incoming FIN is recorded in a stream object even if the read // side has been closed. This prevents an entry from being made in // locally_closed_streams_highest_offset_ (which will never be deleted). TestStream* stream = session_.CreateOutgoingBidirectionalStream(); QuicStreamId stream_id = stream->id(); // Close the read side manually. QuicStreamPeer::CloseReadSide(stream); // Receive a stream data frame with FIN. QuicStreamFrame frame(stream_id, true, 0, absl::string_view()); session_.OnStreamFrame(frame); EXPECT_TRUE(stream->fin_received()); // Reset stream locally. EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); stream->Reset(QUIC_STREAM_CANCELLED); EXPECT_TRUE(QuicStreamPeer::read_side_closed(stream)); EXPECT_TRUE(connection_->connected()); EXPECT_TRUE(QuicSessionPeer::IsStreamClosed(&session_, stream_id)); EXPECT_FALSE(QuicSessionPeer::IsStreamCreated(&session_, stream_id)); // The stream is not waiting for the arrival of the peer's final offset as it // was received with the FIN earlier. EXPECT_EQ( 0u, QuicSessionPeer::GetLocallyClosedStreamsHighestOffset(&session_).size()); } TEST_P(QuicSessionTestClient, IncomingStreamWithClientInitiatedStreamId) { const QuicErrorCode expected_error = VersionHasIetfQuicFrames(transport_version()) ? QUIC_HTTP_STREAM_WRONG_DIRECTION : QUIC_INVALID_STREAM_ID; EXPECT_CALL( *connection_, CloseConnection(expected_error, "Data for nonexistent stream", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); QuicStreamFrame frame(GetNthClientInitiatedBidirectionalId(1), /* fin = */ false, /* offset = */ 0, absl::string_view("foo")); session_.OnStreamFrame(frame); } TEST_P(QuicSessionTestClient, MinAckDelaySetOnTheClientQuicConfig) { if (!session_.version().HasIetfQuicFrames()) { return; } session_.config()->SetClientConnectionOptions({kAFFE}); session_.Initialize(); ASSERT_EQ(session_.config()->GetMinAckDelayToSendMs(), kDefaultMinAckDelayTimeMs); ASSERT_TRUE(session_.connection()->can_receive_ack_frequency_frame()); } TEST_P(QuicSessionTestClient, KeyUpdateFlagNotSet) { SetQuicReloadableFlag(quic_key_update_supported, false); EXPECT_CALL(*session_.GetMutableCryptoStream(), KeyUpdateSupportedLocally()) .Times(0); session_.Initialize(); EXPECT_FALSE(session_.config()->KeyUpdateSupportedLocally()); } TEST_P(QuicSessionTestClient, KeyUpdateNotSupportedLocallyAndFlagSet) { SetQuicReloadableFlag(quic_key_update_supported, true); EXPECT_CALL(*session_.GetMutableCryptoStream(), KeyUpdateSupportedLocally()) .WillOnce(Return(false)); session_.Initialize(); EXPECT_FALSE(session_.config()->KeyUpdateSupportedLocally()); } TEST_P(QuicSessionTestClient, KeyUpdateSupportedLocallyAndFlagSet) { SetQuicReloadableFlag(quic_key_update_supported, true); EXPECT_CALL(*session_.GetMutableCryptoStream(), KeyUpdateSupportedLocally()) .WillOnce(Return(true)); session_.Initialize(); EXPECT_TRUE(session_.config()->KeyUpdateSupportedLocally()); } TEST_P(QuicSessionTestClient, FailedToCreateStreamIfTooCloseToIdleTimeout) { connection_->SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); EXPECT_TRUE(session_.CanOpenNextOutgoingBidirectionalStream()); QuicTime deadline = QuicConnectionPeer::GetIdleNetworkDeadline(connection_); ASSERT_TRUE(deadline.IsInitialized()); QuicTime::Delta timeout = deadline - helper_.GetClock()->ApproximateNow(); // Advance time to very close idle timeout. connection_->AdvanceTime(timeout - QuicTime::Delta::FromMilliseconds(1)); // Verify creation of new stream gets pushed back and connectivity probing // packet gets sent. EXPECT_CALL(*connection_, SendConnectivityProbingPacket(_, _)).Times(1); EXPECT_FALSE(session_.CanOpenNextOutgoingBidirectionalStream()); // New packet gets received, idle deadline gets extended. EXPECT_CALL(session_, OnCanCreateNewOutgoingStream(false)); QuicConnectionPeer::GetIdleNetworkDetector(connection_) .OnPacketReceived(helper_.GetClock()->ApproximateNow()); session_.OnPacketDecrypted(ENCRYPTION_FORWARD_SECURE); EXPECT_TRUE(session_.CanOpenNextOutgoingBidirectionalStream()); } TEST_P(QuicSessionTestServer, ZombieStreams) { CompleteHandshake(); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); QuicStreamPeer::SetStreamBytesWritten(3, stream2); EXPECT_TRUE(stream2->IsWaitingForAcks()); CloseStream(stream2->id()); ASSERT_EQ(1u, session_.closed_streams()->size()); EXPECT_EQ(stream2->id(), session_.closed_streams()->front()->id()); session_.MaybeCloseZombieStream(stream2->id()); EXPECT_EQ(1u, session_.closed_streams()->size()); EXPECT_EQ(stream2->id(), session_.closed_streams()->front()->id()); } TEST_P(QuicSessionTestServer, RstStreamReceivedAfterRstStreamSent) { CompleteHandshake(); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); QuicStreamPeer::SetStreamBytesWritten(3, stream2); EXPECT_TRUE(stream2->IsWaitingForAcks()); EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream2->id(), _)); EXPECT_CALL(session_, OnCanCreateNewOutgoingStream(false)).Times(0); stream2->Reset(quic::QUIC_STREAM_CANCELLED); QuicRstStreamFrame rst1(kInvalidControlFrameId, stream2->id(), QUIC_ERROR_PROCESSING_STREAM, 0); if (!VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(session_, OnCanCreateNewOutgoingStream(false)).Times(1); } session_.OnRstStream(rst1); } // Regression test of b/71548958. TEST_P(QuicSessionTestServer, TestZombieStreams) { CompleteHandshake(); session_.set_writev_consumes_all_data(true); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); std::string body(100, '.'); stream2->WriteOrBufferData(body, false, nullptr); EXPECT_TRUE(stream2->IsWaitingForAcks()); EXPECT_EQ(1u, QuicStreamPeer::SendBuffer(stream2).size()); QuicRstStreamFrame rst_frame(kInvalidControlFrameId, stream2->id(), QUIC_STREAM_CANCELLED, 1234); // Just for the RST_STREAM EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); if (VersionHasIetfQuicFrames(transport_version())) { EXPECT_CALL(*connection_, OnStreamReset(stream2->id(), QUIC_STREAM_CANCELLED)); } else { EXPECT_CALL(*connection_, OnStreamReset(stream2->id(), QUIC_RST_ACKNOWLEDGEMENT)); } stream2->OnStreamReset(rst_frame); if (VersionHasIetfQuicFrames(transport_version())) { // The test requires the stream to be fully closed in both directions. For // IETF QUIC, the RST_STREAM only closes one side. QuicStopSendingFrame frame(kInvalidControlFrameId, stream2->id(), QUIC_STREAM_CANCELLED); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStopSendingFrame(frame); } ASSERT_EQ(1u, session_.closed_streams()->size()); EXPECT_EQ(stream2->id(), session_.closed_streams()->front()->id()); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); if (VersionHasIetfQuicFrames(transport_version())) { // Once for the RST_STREAM, once for the STOP_SENDING EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(2) .WillRepeatedly(Invoke(&ClearControlFrame)); } else { // Just for the RST_STREAM EXPECT_CALL(*connection_, SendControlFrame(_)).Times(1); } EXPECT_CALL(*connection_, OnStreamReset(stream4->id(), QUIC_STREAM_CANCELLED)); stream4->WriteOrBufferData(body, false, nullptr); // Note well: Reset() actually closes the stream in both directions. For // GOOGLE QUIC it sends a RST_STREAM (which does a 2-way close), for IETF // QUIC it sends both a RST_STREAM and a STOP_SENDING (each of which // closes in only one direction). stream4->Reset(QUIC_STREAM_CANCELLED); EXPECT_EQ(2u, session_.closed_streams()->size()); } TEST_P(QuicSessionTestServer, OnStreamFrameLost) { CompleteHandshake(); InSequence s; // Drive congestion control manually. MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream(); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); QuicStreamFrame frame1; if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { frame1 = QuicStreamFrame( QuicUtils::GetCryptoStreamId(connection_->transport_version()), false, 0, 1300); } QuicStreamFrame frame2(stream2->id(), false, 0, 9); QuicStreamFrame frame3(stream4->id(), false, 0, 9); // Lost data on cryption stream, streams 2 and 4. EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(true)); if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { EXPECT_CALL(*crypto_stream, HasPendingRetransmission()) .WillOnce(Return(true)); } EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(true)); session_.OnFrameLost(QuicFrame(frame3)); if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { session_.OnFrameLost(QuicFrame(frame1)); } else { QuicCryptoFrame crypto_frame(ENCRYPTION_INITIAL, 0, 1300); session_.OnFrameLost(QuicFrame(&crypto_frame)); } session_.OnFrameLost(QuicFrame(frame2)); EXPECT_TRUE(session_.WillingAndAbleToWrite()); // Mark streams 2 and 4 write blocked. session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); // Lost data is retransmitted before new data, and retransmissions for crypto // stream go first. // Do not check congestion window when crypto stream has lost data. EXPECT_CALL(*send_algorithm, CanSend(_)).Times(0); if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { EXPECT_CALL(*crypto_stream, OnCanWrite()); EXPECT_CALL(*crypto_stream, HasPendingRetransmission()) .WillOnce(Return(false)); } // Check congestion window for non crypto streams. EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream4, OnCanWrite()); EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(false)); // Connection is blocked. EXPECT_CALL(*send_algorithm, CanSend(_)).WillRepeatedly(Return(false)); session_.OnCanWrite(); EXPECT_TRUE(session_.WillingAndAbleToWrite()); // Unblock connection. // Stream 2 retransmits lost data. EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(false)); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); // Stream 2 sends new data. EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*send_algorithm, CanSend(_)).WillOnce(Return(true)); EXPECT_CALL(*stream4, OnCanWrite()); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_.OnCanWrite(); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } TEST_P(QuicSessionTestServer, DonotRetransmitDataOfClosedStreams) { CompleteHandshake(); InSequence s; TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); QuicStreamFrame frame1(stream2->id(), false, 0, 9); QuicStreamFrame frame2(stream4->id(), false, 0, 9); QuicStreamFrame frame3(stream6->id(), false, 0, 9); EXPECT_CALL(*stream6, HasPendingRetransmission()).WillOnce(Return(true)); EXPECT_CALL(*stream4, HasPendingRetransmission()).WillOnce(Return(true)); EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(true)); session_.OnFrameLost(QuicFrame(frame3)); session_.OnFrameLost(QuicFrame(frame2)); session_.OnFrameLost(QuicFrame(frame1)); session_.MarkConnectionLevelWriteBlocked(stream2->id()); session_.MarkConnectionLevelWriteBlocked(stream4->id()); session_.MarkConnectionLevelWriteBlocked(stream6->id()); // Reset stream 4 locally. EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream4->id(), _)); stream4->Reset(QUIC_STREAM_CANCELLED); // Verify stream 4 is removed from streams with lost data list. EXPECT_CALL(*stream6, OnCanWrite()); EXPECT_CALL(*stream6, HasPendingRetransmission()).WillOnce(Return(false)); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream2, HasPendingRetransmission()).WillOnce(Return(false)); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*stream2, OnCanWrite()); EXPECT_CALL(*stream6, OnCanWrite()); session_.OnCanWrite(); } TEST_P(QuicSessionTestServer, RetransmitFrames) { CompleteHandshake(); MockSendAlgorithm* send_algorithm = new StrictMock; QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); InSequence s; TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream4 = session_.CreateOutgoingBidirectionalStream(); TestStream* stream6 = session_.CreateOutgoingBidirectionalStream(); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); session_.SendWindowUpdate(stream2->id(), 9); QuicStreamFrame frame1(stream2->id(), false, 0, 9); QuicStreamFrame frame2(stream4->id(), false, 0, 9); QuicStreamFrame frame3(stream6->id(), false, 0, 9); QuicWindowUpdateFrame window_update(1, stream2->id(), 9); QuicFrames frames; frames.push_back(QuicFrame(frame1)); frames.push_back(QuicFrame(&window_update)); frames.push_back(QuicFrame(frame2)); frames.push_back(QuicFrame(frame3)); EXPECT_FALSE(session_.WillingAndAbleToWrite()); EXPECT_CALL(*stream2, RetransmitStreamData(_, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&ClearControlFrame)); EXPECT_CALL(*stream4, RetransmitStreamData(_, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*stream6, RetransmitStreamData(_, _, _, _)) .WillOnce(Return(true)); EXPECT_CALL(*send_algorithm, OnApplicationLimited(_)); session_.RetransmitFrames(frames, TLP_RETRANSMISSION); } // Regression test of b/110082001. TEST_P(QuicSessionTestServer, RetransmitLostDataCausesConnectionClose) { CompleteHandshake(); // This test mimics the scenario when a dynamic stream retransmits lost data // and causes connection close. TestStream* stream = session_.CreateOutgoingBidirectionalStream(); QuicStreamFrame frame(stream->id(), false, 0, 9); EXPECT_CALL(*stream, HasPendingRetransmission()) .Times(2) .WillOnce(Return(true)) .WillOnce(Return(false)); session_.OnFrameLost(QuicFrame(frame)); // Retransmit stream data causes connection close. Stream has not sent fin // yet, so an RST is sent. EXPECT_CALL(*stream, OnCanWrite()).WillOnce(Invoke([this, stream]() { session_.ResetStream(stream->id(), QUIC_STREAM_CANCELLED); })); if (VersionHasIetfQuicFrames(transport_version())) { // Once for the RST_STREAM, once for the STOP_SENDING EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(2) .WillRepeatedly(Invoke(&session_, &TestSession::SaveFrame)); } else { // Just for the RST_STREAM EXPECT_CALL(*connection_, SendControlFrame(_)) .WillOnce(Invoke(&session_, &TestSession::SaveFrame)); } EXPECT_CALL(*connection_, OnStreamReset(stream->id(), _)); session_.OnCanWrite(); } TEST_P(QuicSessionTestServer, SendMessage) { // Cannot send message when encryption is not established. EXPECT_FALSE(session_.OneRttKeysAvailable()); quic::QuicMemSliceStorage storage(nullptr, 0, nullptr, 0); EXPECT_EQ(MessageResult(MESSAGE_STATUS_ENCRYPTION_NOT_ESTABLISHED, 0), session_.SendMessage( MakeSpan(connection_->helper()->GetStreamSendBufferAllocator(), "", &storage))); CompleteHandshake(); EXPECT_TRUE(session_.OneRttKeysAvailable()); absl::string_view message; EXPECT_CALL(*connection_, SendMessage(1, _, false)) .WillOnce(Return(MESSAGE_STATUS_SUCCESS)); EXPECT_EQ(MessageResult(MESSAGE_STATUS_SUCCESS, 1), session_.SendMessage( MakeSpan(connection_->helper()->GetStreamSendBufferAllocator(), message, &storage))); // Verify message_id increases. EXPECT_CALL(*connection_, SendMessage(2, _, false)) .WillOnce(Return(MESSAGE_STATUS_TOO_LARGE)); EXPECT_EQ(MessageResult(MESSAGE_STATUS_TOO_LARGE, 0), session_.SendMessage( MakeSpan(connection_->helper()->GetStreamSendBufferAllocator(), message, &storage))); // Verify unsent message does not consume a message_id. EXPECT_CALL(*connection_, SendMessage(2, _, false)) .WillOnce(Return(MESSAGE_STATUS_SUCCESS)); EXPECT_EQ(MessageResult(MESSAGE_STATUS_SUCCESS, 2), session_.SendMessage( MakeSpan(connection_->helper()->GetStreamSendBufferAllocator(), message, &storage))); QuicMessageFrame frame(1); QuicMessageFrame frame2(2); EXPECT_FALSE(session_.IsFrameOutstanding(QuicFrame(&frame))); EXPECT_FALSE(session_.IsFrameOutstanding(QuicFrame(&frame2))); // Lost message 2. session_.OnMessageLost(2); EXPECT_FALSE(session_.IsFrameOutstanding(QuicFrame(&frame2))); // message 1 gets acked. session_.OnMessageAcked(1, QuicTime::Zero()); EXPECT_FALSE(session_.IsFrameOutstanding(QuicFrame(&frame))); } // Regression test of b/115323618. TEST_P(QuicSessionTestServer, LocallyResetZombieStreams) { CompleteHandshake(); session_.set_writev_consumes_all_data(true); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); std::string body(100, '.'); QuicStreamPeer::CloseReadSide(stream2); stream2->WriteOrBufferData(body, true, nullptr); EXPECT_TRUE(stream2->IsWaitingForAcks()); // Verify stream2 is a zombie streams. ASSERT_TRUE(QuicContainsKey(session_.stream_map(), stream2->id())); auto* stream = session_.stream_map().find(stream2->id())->second.get(); EXPECT_TRUE(stream->IsZombie()); QuicStreamFrame frame(stream2->id(), true, 0, 100); EXPECT_CALL(*stream2, HasPendingRetransmission()) .WillRepeatedly(Return(true)); session_.OnFrameLost(QuicFrame(frame)); // Reset stream2 locally. EXPECT_CALL(*connection_, SendControlFrame(_)) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(stream2->id(), _)); stream2->Reset(QUIC_STREAM_CANCELLED); // Verify stream 2 gets closed. EXPECT_TRUE(session_.IsClosedStream(stream2->id())); EXPECT_CALL(*stream2, OnCanWrite()).Times(0); session_.OnCanWrite(); } TEST_P(QuicSessionTestServer, CleanUpClosedStreamsAlarm) { CompleteHandshake(); EXPECT_FALSE( QuicSessionPeer::GetCleanUpClosedStreamsAlarm(&session_)->IsSet()); session_.set_writev_consumes_all_data(true); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); EXPECT_FALSE(stream2->IsWaitingForAcks()); CloseStream(stream2->id()); EXPECT_EQ(1u, session_.closed_streams()->size()); EXPECT_TRUE( QuicSessionPeer::GetCleanUpClosedStreamsAlarm(&session_)->IsSet()); alarm_factory_.FireAlarm( QuicSessionPeer::GetCleanUpClosedStreamsAlarm(&session_)); EXPECT_TRUE(session_.closed_streams()->empty()); } TEST_P(QuicSessionTestServer, WriteUnidirectionalStream) { session_.set_writev_consumes_all_data(true); TestStream* stream4 = new TestStream(GetNthServerInitiatedUnidirectionalId(1), &session_, WRITE_UNIDIRECTIONAL); session_.ActivateStream(QuicWrapUnique(stream4)); std::string body(100, '.'); stream4->WriteOrBufferData(body, false, nullptr); stream4->WriteOrBufferData(body, true, nullptr); ASSERT_TRUE(QuicContainsKey(session_.stream_map(), stream4->id())); auto* stream = session_.stream_map().find(stream4->id())->second.get(); EXPECT_TRUE(stream->IsZombie()); } TEST_P(QuicSessionTestServer, ReceivedDataOnWriteUnidirectionalStream) { TestStream* stream4 = new TestStream(GetNthServerInitiatedUnidirectionalId(1), &session_, WRITE_UNIDIRECTIONAL); session_.ActivateStream(QuicWrapUnique(stream4)); EXPECT_CALL( *connection_, CloseConnection(QUIC_DATA_RECEIVED_ON_WRITE_UNIDIRECTIONAL_STREAM, _, _)) .Times(1); QuicStreamFrame stream_frame(GetNthServerInitiatedUnidirectionalId(1), false, 0, 2); session_.OnStreamFrame(stream_frame); } TEST_P(QuicSessionTestServer, ReadUnidirectionalStream) { TestStream* stream4 = new TestStream(GetNthClientInitiatedUnidirectionalId(1), &session_, READ_UNIDIRECTIONAL); session_.ActivateStream(QuicWrapUnique(stream4)); EXPECT_FALSE(stream4->IsWaitingForAcks()); // Discard all incoming data. stream4->StopReading(); std::string data(100, '.'); QuicStreamFrame stream_frame(GetNthClientInitiatedUnidirectionalId(1), false, 0, data); stream4->OnStreamFrame(stream_frame); EXPECT_TRUE(session_.closed_streams()->empty()); QuicStreamFrame stream_frame2(GetNthClientInitiatedUnidirectionalId(1), true, 100, data); stream4->OnStreamFrame(stream_frame2); EXPECT_EQ(1u, session_.closed_streams()->size()); } TEST_P(QuicSessionTestServer, WriteOrBufferDataOnReadUnidirectionalStream) { TestStream* stream4 = new TestStream(GetNthClientInitiatedUnidirectionalId(1), &session_, READ_UNIDIRECTIONAL); session_.ActivateStream(QuicWrapUnique(stream4)); EXPECT_CALL(*connection_, CloseConnection( QUIC_TRY_TO_WRITE_DATA_ON_READ_UNIDIRECTIONAL_STREAM, _, _)) .Times(1); std::string body(100, '.'); stream4->WriteOrBufferData(body, false, nullptr); } TEST_P(QuicSessionTestServer, WritevDataOnReadUnidirectionalStream) { TestStream* stream4 = new TestStream(GetNthClientInitiatedUnidirectionalId(1), &session_, READ_UNIDIRECTIONAL); session_.ActivateStream(QuicWrapUnique(stream4)); EXPECT_CALL(*connection_, CloseConnection( QUIC_TRY_TO_WRITE_DATA_ON_READ_UNIDIRECTIONAL_STREAM, _, _)) .Times(1); std::string body(100, '.'); struct iovec iov = {const_cast(body.data()), body.length()}; QuicMemSliceStorage storage( &iov, 1, session_.connection()->helper()->GetStreamSendBufferAllocator(), 1024); stream4->WriteMemSlices(storage.ToSpan(), false); } TEST_P(QuicSessionTestServer, WriteMemSlicesOnReadUnidirectionalStream) { TestStream* stream4 = new TestStream(GetNthClientInitiatedUnidirectionalId(1), &session_, READ_UNIDIRECTIONAL); session_.ActivateStream(QuicWrapUnique(stream4)); EXPECT_CALL(*connection_, CloseConnection( QUIC_TRY_TO_WRITE_DATA_ON_READ_UNIDIRECTIONAL_STREAM, _, _)) .Times(1); char data[1024]; std::vector> buffers; buffers.push_back(std::make_pair(data, ABSL_ARRAYSIZE(data))); buffers.push_back(std::make_pair(data, ABSL_ARRAYSIZE(data))); QuicTestMemSliceVector vector(buffers); stream4->WriteMemSlices(vector.span(), false); } // Test code that tests that an incoming stream frame with a new (not previously // seen) stream id is acceptable. The ID must not be larger than has been // advertised. It may be equal to what has been advertised. These tests // invoke QuicStreamIdManager::MaybeIncreaseLargestPeerStreamId by calling // QuicSession::OnStreamFrame in order to check that all the steps are connected // properly and that nothing in the call path interferes with the check. // First test make sure that streams with ids below the limit are accepted. TEST_P(QuicSessionTestServer, NewStreamIdBelowLimit) { if (!VersionHasIetfQuicFrames(transport_version())) { // Applicable only to IETF QUIC return; } QuicStreamId bidirectional_stream_id = StreamCountToId( QuicSessionPeer::ietf_streamid_manager(&session_) ->advertised_max_incoming_bidirectional_streams() - 1, Perspective::IS_CLIENT, /*bidirectional=*/true); QuicStreamFrame bidirectional_stream_frame(bidirectional_stream_id, false, 0, "Random String"); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStreamFrame(bidirectional_stream_frame); QuicStreamId unidirectional_stream_id = StreamCountToId( QuicSessionPeer::ietf_streamid_manager(&session_) ->advertised_max_incoming_unidirectional_streams() - 1, Perspective::IS_CLIENT, /*bidirectional=*/false); QuicStreamFrame unidirectional_stream_frame(unidirectional_stream_id, false, 0, "Random String"); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStreamFrame(unidirectional_stream_frame); } // Accept a stream with an ID that equals the limit. TEST_P(QuicSessionTestServer, NewStreamIdAtLimit) { if (!VersionHasIetfQuicFrames(transport_version())) { // Applicable only to IETF QUIC return; } QuicStreamId bidirectional_stream_id = StreamCountToId(QuicSessionPeer::ietf_streamid_manager(&session_) ->advertised_max_incoming_bidirectional_streams(), Perspective::IS_CLIENT, /*bidirectional=*/true); QuicStreamFrame bidirectional_stream_frame(bidirectional_stream_id, false, 0, "Random String"); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStreamFrame(bidirectional_stream_frame); QuicStreamId unidirectional_stream_id = StreamCountToId(QuicSessionPeer::ietf_streamid_manager(&session_) ->advertised_max_incoming_unidirectional_streams(), Perspective::IS_CLIENT, /*bidirectional=*/false); QuicStreamFrame unidirectional_stream_frame(unidirectional_stream_id, false, 0, "Random String"); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStreamFrame(unidirectional_stream_frame); } // Close the connection if the id exceeds the limit. TEST_P(QuicSessionTestServer, NewStreamIdAboveLimit) { if (!VersionHasIetfQuicFrames(transport_version())) { // Applicable only to IETF QUIC return; } QuicStreamId bidirectional_stream_id = StreamCountToId( QuicSessionPeer::ietf_streamid_manager(&session_) ->advertised_max_incoming_bidirectional_streams() + 1, Perspective::IS_CLIENT, /*bidirectional=*/true); QuicStreamFrame bidirectional_stream_frame(bidirectional_stream_id, false, 0, "Random String"); EXPECT_CALL( *connection_, CloseConnection(QUIC_INVALID_STREAM_ID, "Stream id 400 would exceed stream count limit 100", _)); session_.OnStreamFrame(bidirectional_stream_frame); QuicStreamId unidirectional_stream_id = StreamCountToId( QuicSessionPeer::ietf_streamid_manager(&session_) ->advertised_max_incoming_unidirectional_streams() + 1, Perspective::IS_CLIENT, /*bidirectional=*/false); QuicStreamFrame unidirectional_stream_frame(unidirectional_stream_id, false, 0, "Random String"); EXPECT_CALL( *connection_, CloseConnection(QUIC_INVALID_STREAM_ID, "Stream id 402 would exceed stream count limit 100", _)); session_.OnStreamFrame(unidirectional_stream_frame); } // Checks that invalid stream ids are handled. TEST_P(QuicSessionTestServer, OnStopSendingInvalidStreamId) { if (!VersionHasIetfQuicFrames(transport_version())) { return; } // Check that "invalid" stream ids are rejected. QuicStopSendingFrame frame(1, -1, QUIC_STREAM_CANCELLED); EXPECT_CALL( *connection_, CloseConnection(QUIC_INVALID_STREAM_ID, "Received STOP_SENDING for an invalid stream", _)); session_.OnStopSendingFrame(frame); } TEST_P(QuicSessionTestServer, OnStopSendingReadUnidirectional) { if (!VersionHasIetfQuicFrames(transport_version())) { return; } // It's illegal to send STOP_SENDING with a stream ID that is read-only. QuicStopSendingFrame frame(1, GetNthClientInitiatedUnidirectionalId(1), QUIC_STREAM_CANCELLED); EXPECT_CALL( *connection_, CloseConnection(QUIC_INVALID_STREAM_ID, "Received STOP_SENDING for a read-only stream", _)); session_.OnStopSendingFrame(frame); } // Static streams ignore STOP_SENDING. TEST_P(QuicSessionTestServer, OnStopSendingStaticStreams) { if (!VersionHasIetfQuicFrames(transport_version())) { return; } QuicStreamId stream_id = 0; std::unique_ptr fake_static_stream = std::make_unique( stream_id, &session_, /*is_static*/ true, BIDIRECTIONAL); QuicSessionPeer::ActivateStream(&session_, std::move(fake_static_stream)); // Check that a stream id in the static stream map is ignored. QuicStopSendingFrame frame(1, stream_id, QUIC_STREAM_CANCELLED); EXPECT_CALL(*connection_, CloseConnection(QUIC_INVALID_STREAM_ID, "Received STOP_SENDING for a static stream", _)); session_.OnStopSendingFrame(frame); } // If stream is write closed, do not send a RESET_STREAM frame. TEST_P(QuicSessionTestServer, OnStopSendingForWriteClosedStream) { if (!VersionHasIetfQuicFrames(transport_version())) { return; } TestStream* stream = session_.CreateOutgoingBidirectionalStream(); QuicStreamId stream_id = stream->id(); QuicStreamPeer::SetFinSent(stream); stream->CloseWriteSide(); EXPECT_TRUE(stream->write_side_closed()); QuicStopSendingFrame frame(1, stream_id, QUIC_STREAM_CANCELLED); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStopSendingFrame(frame); } // If stream is closed, return true and do not close the connection. TEST_P(QuicSessionTestServer, OnStopSendingClosedStream) { if (!VersionHasIetfQuicFrames(transport_version())) { return; } CompleteHandshake(); TestStream* stream = session_.CreateOutgoingBidirectionalStream(); QuicStreamId stream_id = stream->id(); CloseStream(stream_id); QuicStopSendingFrame frame(1, stream_id, QUIC_STREAM_CANCELLED); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStopSendingFrame(frame); } // If stream id is a nonexistent local stream, return false and close the // connection. TEST_P(QuicSessionTestServer, OnStopSendingInputNonExistentLocalStream) { if (!VersionHasIetfQuicFrames(transport_version())) { return; } QuicStopSendingFrame frame(1, GetNthServerInitiatedBidirectionalId(123456), QUIC_STREAM_CANCELLED); EXPECT_CALL(*connection_, CloseConnection(QUIC_HTTP_STREAM_WRONG_DIRECTION, "Data for nonexistent stream", _)) .Times(1); session_.OnStopSendingFrame(frame); } // If a STOP_SENDING is received for a peer initiated stream, the new stream // will be created. TEST_P(QuicSessionTestServer, OnStopSendingNewStream) { CompleteHandshake(); if (!VersionHasIetfQuicFrames(transport_version())) { return; } QuicStopSendingFrame frame(1, GetNthClientInitiatedBidirectionalId(1), QUIC_STREAM_CANCELLED); // A Rst will be sent as a response for STOP_SENDING. EXPECT_CALL(*connection_, SendControlFrame(_)).Times(1); EXPECT_CALL(*connection_, OnStreamReset(_, _)).Times(1); session_.OnStopSendingFrame(frame); QuicStream* stream = session_.GetOrCreateStream(GetNthClientInitiatedBidirectionalId(1)); EXPECT_TRUE(stream); EXPECT_TRUE(stream->write_side_closed()); } // For a valid stream, ensure that all works TEST_P(QuicSessionTestServer, OnStopSendingInputValidStream) { CompleteHandshake(); if (!VersionHasIetfQuicFrames(transport_version())) { // Applicable only to IETF QUIC return; } TestStream* stream = session_.CreateOutgoingBidirectionalStream(); // Ensure that the stream starts out open in both directions. EXPECT_FALSE(stream->write_side_closed()); EXPECT_FALSE(QuicStreamPeer::read_side_closed(stream)); QuicStreamId stream_id = stream->id(); QuicStopSendingFrame frame(1, stream_id, QUIC_STREAM_CANCELLED); // Expect a reset to come back out. EXPECT_CALL(*connection_, SendControlFrame(_)); EXPECT_CALL(*connection_, OnStreamReset(stream_id, QUIC_STREAM_CANCELLED)); EXPECT_CALL(*connection_, CloseConnection(_, _, _)).Times(0); session_.OnStopSendingFrame(frame); EXPECT_FALSE(QuicStreamPeer::read_side_closed(stream)); EXPECT_TRUE(stream->write_side_closed()); } TEST_P(QuicSessionTestServer, WriteBufferedCryptoFrames) { if (!QuicVersionUsesCryptoFrames(connection_->transport_version())) { return; } std::string data(1350, 'a'); TestCryptoStream* crypto_stream = session_.GetMutableCryptoStream(); // Only consumed 1000 bytes. EXPECT_CALL(*connection_, SendCryptoData(ENCRYPTION_INITIAL, 1350, 0)) .WillOnce(Return(1000)); crypto_stream->WriteCryptoData(ENCRYPTION_INITIAL, data); EXPECT_TRUE(session_.HasPendingHandshake()); EXPECT_TRUE(session_.WillingAndAbleToWrite()); EXPECT_CALL(*connection_, SendCryptoData(_, _, _)).Times(0); connection_->SetEncrypter( ENCRYPTION_ZERO_RTT, std::make_unique(connection_->perspective())); crypto_stream->WriteCryptoData(ENCRYPTION_ZERO_RTT, data); EXPECT_CALL(*connection_, SendCryptoData(ENCRYPTION_INITIAL, 350, 1000)) .WillOnce(Return(350)); EXPECT_CALL(*connection_, SendCryptoData(ENCRYPTION_ZERO_RTT, 1350, 0)) .WillOnce(Return(1350)); session_.OnCanWrite(); EXPECT_FALSE(session_.HasPendingHandshake()); EXPECT_FALSE(session_.WillingAndAbleToWrite()); } // Regression test for // https://bugs.chromium.org/p/chromium/issues/detail?id=1002119 TEST_P(QuicSessionTestServer, StreamFrameReceivedAfterFin) { TestStream* stream = session_.CreateOutgoingBidirectionalStream(); QuicStreamFrame frame(stream->id(), true, 0, ","); session_.OnStreamFrame(frame); QuicStreamFrame frame1(stream->id(), false, 1, ","); EXPECT_CALL(*connection_, CloseConnection(QUIC_STREAM_DATA_BEYOND_CLOSE_OFFSET, _, _)); session_.OnStreamFrame(frame1); } TEST_P(QuicSessionTestServer, ResetForIETFStreamTypes) { CompleteHandshake(); if (!VersionHasIetfQuicFrames(transport_version())) { return; } QuicStreamId read_only = GetNthClientInitiatedUnidirectionalId(0); EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(1) .WillOnce(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(read_only, _)); session_.ResetStream(read_only, QUIC_STREAM_CANCELLED); QuicStreamId write_only = GetNthServerInitiatedUnidirectionalId(0); EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(1) .WillOnce(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(write_only, _)); session_.ResetStream(write_only, QUIC_STREAM_CANCELLED); QuicStreamId bidirectional = GetNthClientInitiatedBidirectionalId(0); EXPECT_CALL(*connection_, SendControlFrame(_)) .Times(2) .WillRepeatedly(Invoke(&ClearControlFrame)); EXPECT_CALL(*connection_, OnStreamReset(bidirectional, _)); session_.ResetStream(bidirectional, QUIC_STREAM_CANCELLED); } TEST_P(QuicSessionTestServer, DecryptionKeyAvailableBeforeEncryptionKey) { if (connection_->version().handshake_protocol != PROTOCOL_TLS1_3) { return; } ASSERT_FALSE(connection_->framer().HasEncrypterOfEncryptionLevel( ENCRYPTION_HANDSHAKE)); EXPECT_FALSE(session_.OnNewDecryptionKeyAvailable( ENCRYPTION_HANDSHAKE, /*decrypter=*/nullptr, /*set_alternative_decrypter=*/false, /*latch_once_used=*/false)); } TEST_P(QuicSessionTestServer, IncomingStreamWithServerInitiatedStreamId) { const QuicErrorCode expected_error = VersionHasIetfQuicFrames(transport_version()) ? QUIC_HTTP_STREAM_WRONG_DIRECTION : QUIC_INVALID_STREAM_ID; EXPECT_CALL( *connection_, CloseConnection(expected_error, "Data for nonexistent stream", ConnectionCloseBehavior::SEND_CONNECTION_CLOSE_PACKET)); QuicStreamFrame frame(GetNthServerInitiatedBidirectionalId(1), /* fin = */ false, /* offset = */ 0, absl::string_view("foo")); session_.OnStreamFrame(frame); } // A client test class that can be used when the automatic configuration is not // desired. class QuicSessionTestClientUnconfigured : public QuicSessionTestBase { protected: QuicSessionTestClientUnconfigured() : QuicSessionTestBase(Perspective::IS_CLIENT, /*configure_session=*/false) {} }; INSTANTIATE_TEST_SUITE_P(Tests, QuicSessionTestClientUnconfigured, ::testing::ValuesIn(AllSupportedVersions()), ::testing::PrintToStringParamName()); TEST_P(QuicSessionTestClientUnconfigured, StreamInitiallyBlockedThenUnblocked) { if (!connection_->version().AllowsLowFlowControlLimits()) { return; } // Create a stream before negotiating the config and verify it starts off // blocked. QuicSessionPeer::SetMaxOpenOutgoingBidirectionalStreams(&session_, 10); TestStream* stream2 = session_.CreateOutgoingBidirectionalStream(); EXPECT_TRUE(stream2->IsFlowControlBlocked()); EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); // Negotiate the config with higher received limits. QuicConfigPeer::SetReceivedInitialMaxStreamDataBytesOutgoingBidirectional( session_.config(), kMinimumFlowControlSendWindow); QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow( session_.config(), kMinimumFlowControlSendWindow); session_.OnConfigNegotiated(); // Stream is now unblocked. EXPECT_FALSE(stream2->IsFlowControlBlocked()); EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); } } // namespace } // namespace test } // namespace quic