//===-- AMDGPUPALMetadata.cpp - Accumulate and print AMDGPU PAL metadata -===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// /// This class has methods called by AMDGPUAsmPrinter to accumulate and print /// the PAL metadata. // //===----------------------------------------------------------------------===// // #include "AMDGPUPALMetadata.h" #include "AMDGPU.h" #include "AMDGPUAsmPrinter.h" #include "MCTargetDesc/AMDGPUTargetStreamer.h" #include "SIDefines.h" #include "llvm/BinaryFormat/ELF.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Module.h" #include "llvm/Support/AMDGPUMetadata.h" #include "llvm/Support/EndianStream.h" using namespace llvm; using namespace llvm::AMDGPU; // Read the PAL metadata from IR metadata, where it was put by the frontend. void AMDGPUPALMetadata::readFromIR(Module &M) { auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata.msgpack"); if (NamedMD && NamedMD->getNumOperands()) { // This is the new msgpack format for metadata. It is a NamedMD containing // an MDTuple containing an MDString containing the msgpack data. BlobType = ELF::NT_AMDGPU_METADATA; auto MDN = dyn_cast(NamedMD->getOperand(0)); if (MDN && MDN->getNumOperands()) { if (auto MDS = dyn_cast(MDN->getOperand(0))) setFromMsgPackBlob(MDS->getString()); } return; } BlobType = ELF::NT_AMD_AMDGPU_PAL_METADATA; NamedMD = M.getNamedMetadata("amdgpu.pal.metadata"); if (!NamedMD || !NamedMD->getNumOperands()) return; // This is the old reg=value pair format for metadata. It is a NamedMD // containing an MDTuple containing a number of MDNodes each of which is an // integer value, and each two integer values forms a key=value pair that we // store as Registers[key]=value in the map. auto Tuple = dyn_cast(NamedMD->getOperand(0)); if (!Tuple) return; for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) { auto Key = mdconst::dyn_extract(Tuple->getOperand(I)); auto Val = mdconst::dyn_extract(Tuple->getOperand(I + 1)); if (!Key || !Val) continue; setRegister(Key->getZExtValue(), Val->getZExtValue()); } } // Set PAL metadata from a binary blob from the applicable .note record. // Returns false if bad format. Blob must remain valid for the lifetime of the // Metadata. bool AMDGPUPALMetadata::setFromBlob(unsigned Type, StringRef Blob) { BlobType = Type; if (Type == ELF::NT_AMD_AMDGPU_PAL_METADATA) return setFromLegacyBlob(Blob); return setFromMsgPackBlob(Blob); } // Set PAL metadata from legacy (array of key=value pairs) blob. bool AMDGPUPALMetadata::setFromLegacyBlob(StringRef Blob) { auto Data = reinterpret_cast(Blob.data()); for (unsigned I = 0; I != Blob.size() / sizeof(uint32_t) / 2; ++I) setRegister(Data[I * 2], Data[I * 2 + 1]); return true; } // Set PAL metadata from msgpack blob. bool AMDGPUPALMetadata::setFromMsgPackBlob(StringRef Blob) { msgpack::Reader Reader(Blob); return MsgPackDoc.readFromBlob(Blob, /*Multi=*/false); } // Given the calling convention, calculate the register number for rsrc1. In // principle the register number could change in future hardware, but we know // it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so // we can use fixed values. static unsigned getRsrc1Reg(CallingConv::ID CC) { switch (CC) { default: return PALMD::R_2E12_COMPUTE_PGM_RSRC1; case CallingConv::AMDGPU_LS: return PALMD::R_2D4A_SPI_SHADER_PGM_RSRC1_LS; case CallingConv::AMDGPU_HS: return PALMD::R_2D0A_SPI_SHADER_PGM_RSRC1_HS; case CallingConv::AMDGPU_ES: return PALMD::R_2CCA_SPI_SHADER_PGM_RSRC1_ES; case CallingConv::AMDGPU_GS: return PALMD::R_2C8A_SPI_SHADER_PGM_RSRC1_GS; case CallingConv::AMDGPU_VS: return PALMD::R_2C4A_SPI_SHADER_PGM_RSRC1_VS; case CallingConv::AMDGPU_PS: return PALMD::R_2C0A_SPI_SHADER_PGM_RSRC1_PS; } } // Calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used // with a constant offset to access any non-register shader-specific PAL // metadata key. static unsigned getScratchSizeKey(CallingConv::ID CC) { switch (CC) { case CallingConv::AMDGPU_PS: return PALMD::Key::PS_SCRATCH_SIZE; case CallingConv::AMDGPU_VS: return PALMD::Key::VS_SCRATCH_SIZE; case CallingConv::AMDGPU_GS: return PALMD::Key::GS_SCRATCH_SIZE; case CallingConv::AMDGPU_ES: return PALMD::Key::ES_SCRATCH_SIZE; case CallingConv::AMDGPU_HS: return PALMD::Key::HS_SCRATCH_SIZE; case CallingConv::AMDGPU_LS: return PALMD::Key::LS_SCRATCH_SIZE; default: return PALMD::Key::CS_SCRATCH_SIZE; } } // Set the rsrc1 register in the metadata for a particular shader stage. // In fact this ORs the value into any previous setting of the register. void AMDGPUPALMetadata::setRsrc1(CallingConv::ID CC, unsigned Val) { setRegister(getRsrc1Reg(CC), Val); } // Set the rsrc2 register in the metadata for a particular shader stage. // In fact this ORs the value into any previous setting of the register. void AMDGPUPALMetadata::setRsrc2(CallingConv::ID CC, unsigned Val) { setRegister(getRsrc1Reg(CC) + 1, Val); } // Set the SPI_PS_INPUT_ENA register in the metadata. // In fact this ORs the value into any previous setting of the register. void AMDGPUPALMetadata::setSpiPsInputEna(unsigned Val) { setRegister(PALMD::R_A1B3_SPI_PS_INPUT_ENA, Val); } // Set the SPI_PS_INPUT_ADDR register in the metadata. // In fact this ORs the value into any previous setting of the register. void AMDGPUPALMetadata::setSpiPsInputAddr(unsigned Val) { setRegister(PALMD::R_A1B4_SPI_PS_INPUT_ADDR, Val); } // Get a register from the metadata, or 0 if not currently set. unsigned AMDGPUPALMetadata::getRegister(unsigned Reg) { auto Regs = getRegisters(); auto It = Regs.find(MsgPackDoc.getNode(Reg)); if (It == Regs.end()) return 0; auto N = It->second; if (N.getKind() != msgpack::Type::UInt) return 0; return N.getUInt(); } // Set a register in the metadata. // In fact this ORs the value into any previous setting of the register. void AMDGPUPALMetadata::setRegister(unsigned Reg, unsigned Val) { if (!isLegacy()) { // In the new MsgPack format, ignore register numbered >= 0x10000000. It // is a PAL ABI pseudo-register in the old non-MsgPack format. if (Reg >= 0x10000000) return; } auto &N = getRegisters()[MsgPackDoc.getNode(Reg)]; if (N.getKind() == msgpack::Type::UInt) Val |= N.getUInt(); N = N.getDocument()->getNode(Val); } // Set the entry point name for one shader. void AMDGPUPALMetadata::setEntryPoint(unsigned CC, StringRef Name) { if (isLegacy()) return; // Msgpack format. getHwStage(CC)[".entry_point"] = MsgPackDoc.getNode(Name, /*Copy=*/true); } // Set the number of used vgprs in the metadata. This is an optional // advisory record for logging etc; wave dispatch actually uses the rsrc1 // register for the shader stage to determine the number of vgprs to // allocate. void AMDGPUPALMetadata::setNumUsedVgprs(CallingConv::ID CC, unsigned Val) { if (isLegacy()) { // Old non-msgpack format. unsigned NumUsedVgprsKey = getScratchSizeKey(CC) + PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE; setRegister(NumUsedVgprsKey, Val); return; } // Msgpack format. getHwStage(CC)[".vgpr_count"] = MsgPackDoc.getNode(Val); } // Set the number of used sgprs in the metadata. This is an optional advisory // record for logging etc; wave dispatch actually uses the rsrc1 register for // the shader stage to determine the number of sgprs to allocate. void AMDGPUPALMetadata::setNumUsedSgprs(CallingConv::ID CC, unsigned Val) { if (isLegacy()) { // Old non-msgpack format. unsigned NumUsedSgprsKey = getScratchSizeKey(CC) + PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE; setRegister(NumUsedSgprsKey, Val); return; } // Msgpack format. getHwStage(CC)[".sgpr_count"] = MsgPackDoc.getNode(Val); } // Set the scratch size in the metadata. void AMDGPUPALMetadata::setScratchSize(CallingConv::ID CC, unsigned Val) { if (isLegacy()) { // Old non-msgpack format. setRegister(getScratchSizeKey(CC), Val); return; } // Msgpack format. getHwStage(CC)[".scratch_memory_size"] = MsgPackDoc.getNode(Val); } // Set the hardware register bit in PAL metadata to enable wave32 on the // shader of the given calling convention. void AMDGPUPALMetadata::setWave32(unsigned CC) { switch (CC) { case CallingConv::AMDGPU_HS: setRegister(PALMD::R_A2D5_VGT_SHADER_STAGES_EN, S_028B54_HS_W32_EN(1)); break; case CallingConv::AMDGPU_GS: setRegister(PALMD::R_A2D5_VGT_SHADER_STAGES_EN, S_028B54_GS_W32_EN(1)); break; case CallingConv::AMDGPU_VS: setRegister(PALMD::R_A2D5_VGT_SHADER_STAGES_EN, S_028B54_VS_W32_EN(1)); break; case CallingConv::AMDGPU_PS: setRegister(PALMD::R_A1B6_SPI_PS_IN_CONTROL, S_0286D8_PS_W32_EN(1)); break; case CallingConv::AMDGPU_CS: setRegister(PALMD::R_2E00_COMPUTE_DISPATCH_INITIATOR, S_00B800_CS_W32_EN(1)); break; } } // Convert a register number to name, for display by toString(). // Returns nullptr if none. static const char *getRegisterName(unsigned RegNum) { // Table of registers. static const struct RegInfo { unsigned Num; const char *Name; } RegInfoTable[] = { // Registers that code generation sets/modifies metadata for. {PALMD::R_2C4A_SPI_SHADER_PGM_RSRC1_VS, "SPI_SHADER_PGM_RSRC1_VS"}, {PALMD::R_2C4A_SPI_SHADER_PGM_RSRC1_VS + 1, "SPI_SHADER_PGM_RSRC2_VS"}, {PALMD::R_2D4A_SPI_SHADER_PGM_RSRC1_LS, "SPI_SHADER_PGM_RSRC1_LS"}, {PALMD::R_2D4A_SPI_SHADER_PGM_RSRC1_LS + 1, "SPI_SHADER_PGM_RSRC2_LS"}, {PALMD::R_2D0A_SPI_SHADER_PGM_RSRC1_HS, "SPI_SHADER_PGM_RSRC1_HS"}, {PALMD::R_2D0A_SPI_SHADER_PGM_RSRC1_HS + 1, "SPI_SHADER_PGM_RSRC2_HS"}, {PALMD::R_2CCA_SPI_SHADER_PGM_RSRC1_ES, "SPI_SHADER_PGM_RSRC1_ES"}, {PALMD::R_2CCA_SPI_SHADER_PGM_RSRC1_ES + 1, "SPI_SHADER_PGM_RSRC2_ES"}, {PALMD::R_2C8A_SPI_SHADER_PGM_RSRC1_GS, "SPI_SHADER_PGM_RSRC1_GS"}, {PALMD::R_2C8A_SPI_SHADER_PGM_RSRC1_GS + 1, "SPI_SHADER_PGM_RSRC2_GS"}, {PALMD::R_2E00_COMPUTE_DISPATCH_INITIATOR, "COMPUTE_DISPATCH_INITIATOR"}, {PALMD::R_2E12_COMPUTE_PGM_RSRC1, "COMPUTE_PGM_RSRC1"}, {PALMD::R_2E12_COMPUTE_PGM_RSRC1 + 1, "COMPUTE_PGM_RSRC2"}, {PALMD::R_2C0A_SPI_SHADER_PGM_RSRC1_PS, "SPI_SHADER_PGM_RSRC1_PS"}, {PALMD::R_2C0A_SPI_SHADER_PGM_RSRC1_PS + 1, "SPI_SHADER_PGM_RSRC2_PS"}, {PALMD::R_A1B3_SPI_PS_INPUT_ENA, "SPI_PS_INPUT_ENA"}, {PALMD::R_A1B4_SPI_PS_INPUT_ADDR, "SPI_PS_INPUT_ADDR"}, {PALMD::R_A1B6_SPI_PS_IN_CONTROL, "SPI_PS_IN_CONTROL"}, {PALMD::R_A2D5_VGT_SHADER_STAGES_EN, "VGT_SHADER_STAGES_EN"}, // Registers not known to code generation. {0x2c07, "SPI_SHADER_PGM_RSRC3_PS"}, {0x2c46, "SPI_SHADER_PGM_RSRC3_VS"}, {0x2c87, "SPI_SHADER_PGM_RSRC3_GS"}, {0x2cc7, "SPI_SHADER_PGM_RSRC3_ES"}, {0x2d07, "SPI_SHADER_PGM_RSRC3_HS"}, {0x2d47, "SPI_SHADER_PGM_RSRC3_LS"}, {0xa1c3, "SPI_SHADER_POS_FORMAT"}, {0xa1b1, "SPI_VS_OUT_CONFIG"}, {0xa207, "PA_CL_VS_OUT_CNTL"}, {0xa204, "PA_CL_CLIP_CNTL"}, {0xa206, "PA_CL_VTE_CNTL"}, {0xa2f9, "PA_SU_VTX_CNTL"}, {0xa293, "PA_SC_MODE_CNTL_1"}, {0xa2a1, "VGT_PRIMITIVEID_EN"}, {0x2c81, "SPI_SHADER_PGM_RSRC4_GS"}, {0x2e18, "COMPUTE_TMPRING_SIZE"}, {0xa1b5, "SPI_INTERP_CONTROL_0"}, {0xa1ba, "SPI_TMPRING_SIZE"}, {0xa1c4, "SPI_SHADER_Z_FORMAT"}, {0xa1c5, "SPI_SHADER_COL_FORMAT"}, {0xa203, "DB_SHADER_CONTROL"}, {0xa08f, "CB_SHADER_MASK"}, {0xa191, "SPI_PS_INPUT_CNTL_0"}, {0xa192, "SPI_PS_INPUT_CNTL_1"}, {0xa193, "SPI_PS_INPUT_CNTL_2"}, {0xa194, "SPI_PS_INPUT_CNTL_3"}, {0xa195, "SPI_PS_INPUT_CNTL_4"}, {0xa196, "SPI_PS_INPUT_CNTL_5"}, {0xa197, "SPI_PS_INPUT_CNTL_6"}, {0xa198, "SPI_PS_INPUT_CNTL_7"}, {0xa199, "SPI_PS_INPUT_CNTL_8"}, {0xa19a, "SPI_PS_INPUT_CNTL_9"}, {0xa19b, "SPI_PS_INPUT_CNTL_10"}, {0xa19c, "SPI_PS_INPUT_CNTL_11"}, {0xa19d, "SPI_PS_INPUT_CNTL_12"}, {0xa19e, "SPI_PS_INPUT_CNTL_13"}, {0xa19f, "SPI_PS_INPUT_CNTL_14"}, {0xa1a0, "SPI_PS_INPUT_CNTL_15"}, {0xa1a1, "SPI_PS_INPUT_CNTL_16"}, {0xa1a2, "SPI_PS_INPUT_CNTL_17"}, {0xa1a3, "SPI_PS_INPUT_CNTL_18"}, {0xa1a4, "SPI_PS_INPUT_CNTL_19"}, {0xa1a5, "SPI_PS_INPUT_CNTL_20"}, {0xa1a6, "SPI_PS_INPUT_CNTL_21"}, {0xa1a7, "SPI_PS_INPUT_CNTL_22"}, {0xa1a8, "SPI_PS_INPUT_CNTL_23"}, {0xa1a9, "SPI_PS_INPUT_CNTL_24"}, {0xa1aa, "SPI_PS_INPUT_CNTL_25"}, {0xa1ab, "SPI_PS_INPUT_CNTL_26"}, {0xa1ac, "SPI_PS_INPUT_CNTL_27"}, {0xa1ad, "SPI_PS_INPUT_CNTL_28"}, {0xa1ae, "SPI_PS_INPUT_CNTL_29"}, {0xa1af, "SPI_PS_INPUT_CNTL_30"}, {0xa1b0, "SPI_PS_INPUT_CNTL_31"}, {0xa2ce, "VGT_GS_MAX_VERT_OUT"}, {0xa2ab, "VGT_ESGS_RING_ITEMSIZE"}, {0xa290, "VGT_GS_MODE"}, {0xa291, "VGT_GS_ONCHIP_CNTL"}, {0xa2d7, "VGT_GS_VERT_ITEMSIZE"}, {0xa2d8, "VGT_GS_VERT_ITEMSIZE_1"}, {0xa2d9, "VGT_GS_VERT_ITEMSIZE_2"}, {0xa2da, "VGT_GS_VERT_ITEMSIZE_3"}, {0xa298, "VGT_GSVS_RING_OFFSET_1"}, {0xa299, "VGT_GSVS_RING_OFFSET_2"}, {0xa29a, "VGT_GSVS_RING_OFFSET_3"}, {0xa2e4, "VGT_GS_INSTANCE_CNT"}, {0xa297, "VGT_GS_PER_VS"}, {0xa29b, "VGT_GS_OUT_PRIM_TYPE"}, {0xa2ac, "VGT_GSVS_RING_ITEMSIZE"}, {0xa2ad, "VGT_REUSE_OFF"}, {0xa1b8, "SPI_BARYC_CNTL"}, {0x2c4c, "SPI_SHADER_USER_DATA_VS_0"}, {0x2c4d, "SPI_SHADER_USER_DATA_VS_1"}, {0x2c4e, "SPI_SHADER_USER_DATA_VS_2"}, {0x2c4f, "SPI_SHADER_USER_DATA_VS_3"}, {0x2c50, "SPI_SHADER_USER_DATA_VS_4"}, {0x2c51, "SPI_SHADER_USER_DATA_VS_5"}, {0x2c52, "SPI_SHADER_USER_DATA_VS_6"}, {0x2c53, "SPI_SHADER_USER_DATA_VS_7"}, {0x2c54, "SPI_SHADER_USER_DATA_VS_8"}, {0x2c55, "SPI_SHADER_USER_DATA_VS_9"}, {0x2c56, "SPI_SHADER_USER_DATA_VS_10"}, {0x2c57, "SPI_SHADER_USER_DATA_VS_11"}, {0x2c58, "SPI_SHADER_USER_DATA_VS_12"}, {0x2c59, "SPI_SHADER_USER_DATA_VS_13"}, {0x2c5a, "SPI_SHADER_USER_DATA_VS_14"}, {0x2c5b, "SPI_SHADER_USER_DATA_VS_15"}, {0x2c5c, "SPI_SHADER_USER_DATA_VS_16"}, {0x2c5d, "SPI_SHADER_USER_DATA_VS_17"}, {0x2c5e, "SPI_SHADER_USER_DATA_VS_18"}, {0x2c5f, "SPI_SHADER_USER_DATA_VS_19"}, {0x2c60, "SPI_SHADER_USER_DATA_VS_20"}, {0x2c61, "SPI_SHADER_USER_DATA_VS_21"}, {0x2c62, "SPI_SHADER_USER_DATA_VS_22"}, {0x2c63, "SPI_SHADER_USER_DATA_VS_23"}, {0x2c64, "SPI_SHADER_USER_DATA_VS_24"}, {0x2c65, "SPI_SHADER_USER_DATA_VS_25"}, {0x2c66, "SPI_SHADER_USER_DATA_VS_26"}, {0x2c67, "SPI_SHADER_USER_DATA_VS_27"}, {0x2c68, "SPI_SHADER_USER_DATA_VS_28"}, {0x2c69, "SPI_SHADER_USER_DATA_VS_29"}, {0x2c6a, "SPI_SHADER_USER_DATA_VS_30"}, {0x2c6b, "SPI_SHADER_USER_DATA_VS_31"}, {0x2ccc, "SPI_SHADER_USER_DATA_ES_0"}, {0x2ccd, "SPI_SHADER_USER_DATA_ES_1"}, {0x2cce, "SPI_SHADER_USER_DATA_ES_2"}, {0x2ccf, "SPI_SHADER_USER_DATA_ES_3"}, {0x2cd0, "SPI_SHADER_USER_DATA_ES_4"}, {0x2cd1, "SPI_SHADER_USER_DATA_ES_5"}, {0x2cd2, "SPI_SHADER_USER_DATA_ES_6"}, {0x2cd3, "SPI_SHADER_USER_DATA_ES_7"}, {0x2cd4, "SPI_SHADER_USER_DATA_ES_8"}, {0x2cd5, "SPI_SHADER_USER_DATA_ES_9"}, {0x2cd6, "SPI_SHADER_USER_DATA_ES_10"}, {0x2cd7, "SPI_SHADER_USER_DATA_ES_11"}, {0x2cd8, "SPI_SHADER_USER_DATA_ES_12"}, {0x2cd9, "SPI_SHADER_USER_DATA_ES_13"}, {0x2cda, "SPI_SHADER_USER_DATA_ES_14"}, {0x2cdb, "SPI_SHADER_USER_DATA_ES_15"}, {0x2cdc, "SPI_SHADER_USER_DATA_ES_16"}, {0x2cdd, "SPI_SHADER_USER_DATA_ES_17"}, {0x2cde, "SPI_SHADER_USER_DATA_ES_18"}, {0x2cdf, "SPI_SHADER_USER_DATA_ES_19"}, {0x2ce0, "SPI_SHADER_USER_DATA_ES_20"}, {0x2ce1, "SPI_SHADER_USER_DATA_ES_21"}, {0x2ce2, "SPI_SHADER_USER_DATA_ES_22"}, {0x2ce3, "SPI_SHADER_USER_DATA_ES_23"}, {0x2ce4, "SPI_SHADER_USER_DATA_ES_24"}, {0x2ce5, "SPI_SHADER_USER_DATA_ES_25"}, {0x2ce6, "SPI_SHADER_USER_DATA_ES_26"}, {0x2ce7, "SPI_SHADER_USER_DATA_ES_27"}, {0x2ce8, "SPI_SHADER_USER_DATA_ES_28"}, {0x2ce9, "SPI_SHADER_USER_DATA_ES_29"}, {0x2cea, "SPI_SHADER_USER_DATA_ES_30"}, {0x2ceb, "SPI_SHADER_USER_DATA_ES_31"}, {0x2c0c, "SPI_SHADER_USER_DATA_PS_0"}, {0x2c0d, "SPI_SHADER_USER_DATA_PS_1"}, {0x2c0e, "SPI_SHADER_USER_DATA_PS_2"}, {0x2c0f, "SPI_SHADER_USER_DATA_PS_3"}, {0x2c10, "SPI_SHADER_USER_DATA_PS_4"}, {0x2c11, "SPI_SHADER_USER_DATA_PS_5"}, {0x2c12, "SPI_SHADER_USER_DATA_PS_6"}, {0x2c13, "SPI_SHADER_USER_DATA_PS_7"}, {0x2c14, "SPI_SHADER_USER_DATA_PS_8"}, {0x2c15, "SPI_SHADER_USER_DATA_PS_9"}, {0x2c16, "SPI_SHADER_USER_DATA_PS_10"}, {0x2c17, "SPI_SHADER_USER_DATA_PS_11"}, {0x2c18, "SPI_SHADER_USER_DATA_PS_12"}, {0x2c19, "SPI_SHADER_USER_DATA_PS_13"}, {0x2c1a, "SPI_SHADER_USER_DATA_PS_14"}, {0x2c1b, "SPI_SHADER_USER_DATA_PS_15"}, {0x2c1c, "SPI_SHADER_USER_DATA_PS_16"}, {0x2c1d, "SPI_SHADER_USER_DATA_PS_17"}, {0x2c1e, "SPI_SHADER_USER_DATA_PS_18"}, {0x2c1f, "SPI_SHADER_USER_DATA_PS_19"}, {0x2c20, "SPI_SHADER_USER_DATA_PS_20"}, {0x2c21, "SPI_SHADER_USER_DATA_PS_21"}, {0x2c22, "SPI_SHADER_USER_DATA_PS_22"}, {0x2c23, "SPI_SHADER_USER_DATA_PS_23"}, {0x2c24, "SPI_SHADER_USER_DATA_PS_24"}, {0x2c25, "SPI_SHADER_USER_DATA_PS_25"}, {0x2c26, "SPI_SHADER_USER_DATA_PS_26"}, {0x2c27, "SPI_SHADER_USER_DATA_PS_27"}, {0x2c28, "SPI_SHADER_USER_DATA_PS_28"}, {0x2c29, "SPI_SHADER_USER_DATA_PS_29"}, {0x2c2a, "SPI_SHADER_USER_DATA_PS_30"}, {0x2c2b, "SPI_SHADER_USER_DATA_PS_31"}, {0x2e40, "COMPUTE_USER_DATA_0"}, {0x2e41, "COMPUTE_USER_DATA_1"}, {0x2e42, "COMPUTE_USER_DATA_2"}, {0x2e43, "COMPUTE_USER_DATA_3"}, {0x2e44, "COMPUTE_USER_DATA_4"}, {0x2e45, "COMPUTE_USER_DATA_5"}, {0x2e46, "COMPUTE_USER_DATA_6"}, {0x2e47, "COMPUTE_USER_DATA_7"}, {0x2e48, "COMPUTE_USER_DATA_8"}, {0x2e49, "COMPUTE_USER_DATA_9"}, {0x2e4a, "COMPUTE_USER_DATA_10"}, {0x2e4b, "COMPUTE_USER_DATA_11"}, {0x2e4c, "COMPUTE_USER_DATA_12"}, {0x2e4d, "COMPUTE_USER_DATA_13"}, {0x2e4e, "COMPUTE_USER_DATA_14"}, {0x2e4f, "COMPUTE_USER_DATA_15"}, {0x2e07, "COMPUTE_NUM_THREAD_X"}, {0x2e08, "COMPUTE_NUM_THREAD_Y"}, {0x2e09, "COMPUTE_NUM_THREAD_Z"}, {0xa2db, "VGT_TF_PARAM"}, {0xa2d6, "VGT_LS_HS_CONFIG"}, {0xa287, "VGT_HOS_MIN_TESS_LEVEL"}, {0xa286, "VGT_HOS_MAX_TESS_LEVEL"}, {0xa2f8, "PA_SC_AA_CONFIG"}, {0xa310, "PA_SC_SHADER_CONTROL"}, {0xa313, "PA_SC_CONSERVATIVE_RASTERIZATION_CNTL"}, {0x2d0c, "SPI_SHADER_USER_DATA_LS_0"}, {0x2d0d, "SPI_SHADER_USER_DATA_LS_1"}, {0x2d0e, "SPI_SHADER_USER_DATA_LS_2"}, {0x2d0f, "SPI_SHADER_USER_DATA_LS_3"}, {0x2d10, "SPI_SHADER_USER_DATA_LS_4"}, {0x2d11, "SPI_SHADER_USER_DATA_LS_5"}, {0x2d12, "SPI_SHADER_USER_DATA_LS_6"}, {0x2d13, "SPI_SHADER_USER_DATA_LS_7"}, {0x2d14, "SPI_SHADER_USER_DATA_LS_8"}, {0x2d15, "SPI_SHADER_USER_DATA_LS_9"}, {0x2d16, "SPI_SHADER_USER_DATA_LS_10"}, {0x2d17, "SPI_SHADER_USER_DATA_LS_11"}, {0x2d18, "SPI_SHADER_USER_DATA_LS_12"}, {0x2d19, "SPI_SHADER_USER_DATA_LS_13"}, {0x2d1a, "SPI_SHADER_USER_DATA_LS_14"}, {0x2d1b, "SPI_SHADER_USER_DATA_LS_15"}, {0x2d1c, "SPI_SHADER_USER_DATA_LS_16"}, {0x2d1d, "SPI_SHADER_USER_DATA_LS_17"}, {0x2d1e, "SPI_SHADER_USER_DATA_LS_18"}, {0x2d1f, "SPI_SHADER_USER_DATA_LS_19"}, {0x2d20, "SPI_SHADER_USER_DATA_LS_20"}, {0x2d21, "SPI_SHADER_USER_DATA_LS_21"}, {0x2d22, "SPI_SHADER_USER_DATA_LS_22"}, {0x2d23, "SPI_SHADER_USER_DATA_LS_23"}, {0x2d24, "SPI_SHADER_USER_DATA_LS_24"}, {0x2d25, "SPI_SHADER_USER_DATA_LS_25"}, {0x2d26, "SPI_SHADER_USER_DATA_LS_26"}, {0x2d27, "SPI_SHADER_USER_DATA_LS_27"}, {0x2d28, "SPI_SHADER_USER_DATA_LS_28"}, {0x2d29, "SPI_SHADER_USER_DATA_LS_29"}, {0x2d2a, "SPI_SHADER_USER_DATA_LS_30"}, {0x2d2b, "SPI_SHADER_USER_DATA_LS_31"}, {0xa2aa, "IA_MULTI_VGT_PARAM"}, {0xa2a5, "VGT_GS_MAX_PRIMS_PER_SUBGROUP"}, {0xa2e6, "VGT_STRMOUT_BUFFER_CONFIG"}, {0xa2e5, "VGT_STRMOUT_CONFIG"}, {0xa2b5, "VGT_STRMOUT_VTX_STRIDE_0"}, {0xa2b9, "VGT_STRMOUT_VTX_STRIDE_1"}, {0xa2bd, "VGT_STRMOUT_VTX_STRIDE_2"}, {0xa2c1, "VGT_STRMOUT_VTX_STRIDE_3"}, {0xa316, "VGT_VERTEX_REUSE_BLOCK_CNTL"}, {0, nullptr}}; auto Entry = RegInfoTable; for (; Entry->Num && Entry->Num != RegNum; ++Entry) ; return Entry->Name; } // Convert the accumulated PAL metadata into an asm directive. void AMDGPUPALMetadata::toString(std::string &String) { String.clear(); if (!BlobType) return; raw_string_ostream Stream(String); if (isLegacy()) { if (MsgPackDoc.getRoot().getKind() == msgpack::Type::Nil) return; // Old linear reg=val format. Stream << '\t' << AMDGPU::PALMD::AssemblerDirective << ' '; auto Regs = getRegisters(); for (auto I = Regs.begin(), E = Regs.end(); I != E; ++I) { if (I != Regs.begin()) Stream << ','; unsigned Reg = I->first.getUInt(); unsigned Val = I->second.getUInt(); Stream << "0x" << Twine::utohexstr(Reg) << ",0x" << Twine::utohexstr(Val); } Stream << '\n'; return; } // New msgpack-based format -- output as YAML (with unsigned numbers in hex), // but first change the registers map to use names. MsgPackDoc.setHexMode(); auto &RegsObj = refRegisters(); auto OrigRegs = RegsObj.getMap(); RegsObj = MsgPackDoc.getMapNode(); for (auto I : OrigRegs) { auto Key = I.first; if (const char *RegName = getRegisterName(Key.getUInt())) { std::string KeyName = Key.toString(); KeyName += " ("; KeyName += RegName; KeyName += ')'; Key = MsgPackDoc.getNode(KeyName, /*Copy=*/true); } RegsObj.getMap()[Key] = I.second; } // Output as YAML. Stream << '\t' << AMDGPU::PALMD::AssemblerDirectiveBegin << '\n'; MsgPackDoc.toYAML(Stream); Stream << '\t' << AMDGPU::PALMD::AssemblerDirectiveEnd << '\n'; // Restore original registers map. RegsObj = OrigRegs; } // Convert the accumulated PAL metadata into a binary blob for writing as // a .note record of the specified AMD type. Returns an empty blob if // there is no PAL metadata, void AMDGPUPALMetadata::toBlob(unsigned Type, std::string &Blob) { if (Type == ELF::NT_AMD_AMDGPU_PAL_METADATA) toLegacyBlob(Blob); else if (Type) toMsgPackBlob(Blob); } void AMDGPUPALMetadata::toLegacyBlob(std::string &Blob) { Blob.clear(); auto Registers = getRegisters(); if (Registers.getMap().empty()) return; raw_string_ostream OS(Blob); support::endian::Writer EW(OS, support::endianness::little); for (auto I : Registers.getMap()) { EW.write(uint32_t(I.first.getUInt())); EW.write(uint32_t(I.second.getUInt())); } } void AMDGPUPALMetadata::toMsgPackBlob(std::string &Blob) { Blob.clear(); MsgPackDoc.writeToBlob(Blob); } // Set PAL metadata from YAML text. Returns false if failed. bool AMDGPUPALMetadata::setFromString(StringRef S) { BlobType = ELF::NT_AMDGPU_METADATA; if (!MsgPackDoc.fromYAML(S)) return false; // In the registers map, some keys may be of the form "0xa191 // (SPI_PS_INPUT_CNTL_0)", in which case the YAML input code made it a // string. We need to turn it into a number. auto &RegsObj = refRegisters(); auto OrigRegs = RegsObj; RegsObj = MsgPackDoc.getMapNode(); Registers = RegsObj.getMap(); bool Ok = true; for (auto I : OrigRegs.getMap()) { auto Key = I.first; if (Key.getKind() == msgpack::Type::String) { StringRef S = Key.getString(); uint64_t Val; if (S.consumeInteger(0, Val)) { Ok = false; errs() << "Unrecognized PAL metadata register key '" << S << "'\n"; continue; } Key = MsgPackDoc.getNode(uint64_t(Val)); } Registers.getMap()[Key] = I.second; } return Ok; } // Reference (create if necessary) the node for the registers map. msgpack::DocNode &AMDGPUPALMetadata::refRegisters() { auto &N = MsgPackDoc.getRoot() .getMap(/*Convert=*/true)[MsgPackDoc.getNode("amdpal.pipelines")] .getArray(/*Convert=*/true)[0] .getMap(/*Convert=*/true)[MsgPackDoc.getNode(".registers")]; N.getMap(/*Convert=*/true); return N; } // Get (create if necessary) the registers map. msgpack::MapDocNode AMDGPUPALMetadata::getRegisters() { if (Registers.isEmpty()) Registers = refRegisters(); return Registers.getMap(); } // Return the PAL metadata hardware shader stage name. static const char *getStageName(CallingConv::ID CC) { switch (CC) { case CallingConv::AMDGPU_PS: return ".ps"; case CallingConv::AMDGPU_VS: return ".vs"; case CallingConv::AMDGPU_GS: return ".gs"; case CallingConv::AMDGPU_ES: return ".es"; case CallingConv::AMDGPU_HS: return ".hs"; case CallingConv::AMDGPU_LS: return ".ls"; default: return ".cs"; } } // Get (create if necessary) the .hardware_stages entry for the given calling // convention. msgpack::MapDocNode AMDGPUPALMetadata::getHwStage(unsigned CC) { if (HwStages.isEmpty()) HwStages = MsgPackDoc.getRoot() .getMap(/*Convert=*/true)["amdpal.pipelines"] .getArray(/*Convert=*/true)[0] .getMap(/*Convert=*/true)[".hardware_stages"] .getMap(/*Convert=*/true); return HwStages.getMap()[getStageName(CC)].getMap(/*Convert=*/true); } // Get .note record vendor name of metadata blob to be emitted. const char *AMDGPUPALMetadata::getVendor() const { return isLegacy() ? ElfNote::NoteNameV2 : ElfNote::NoteNameV3; } // Get .note record type of metadata blob to be emitted: // ELF::NT_AMD_AMDGPU_PAL_METADATA (legacy key=val format), or // ELF::NT_AMDGPU_METADATA (MsgPack format), or // 0 (no PAL metadata). unsigned AMDGPUPALMetadata::getType() const { return BlobType; } // Return whether the blob type is legacy PAL metadata. bool AMDGPUPALMetadata::isLegacy() const { return BlobType == ELF::NT_AMD_AMDGPU_PAL_METADATA; } // Set legacy PAL metadata format. void AMDGPUPALMetadata::setLegacy() { BlobType = ELF::NT_AMD_AMDGPU_PAL_METADATA; }