//! A SSA-building API that handles incomplete CFGs. //! //! The algorithm is based upon Braun M., Buchwald S., Hack S., Leißa R., Mallon C., //! Zwinkau A. (2013) Simple and Efficient Construction of Static Single Assignment Form. //! In: Jhala R., De Bosschere K. (eds) Compiler Construction. CC 2013. //! Lecture Notes in Computer Science, vol 7791. Springer, Berlin, Heidelberg //! //! use crate::Variable; use alloc::vec::Vec; use core::convert::TryInto; use core::mem; use cranelift_codegen::cursor::{Cursor, FuncCursor}; use cranelift_codegen::entity::SecondaryMap; use cranelift_codegen::ir::immediates::{Ieee32, Ieee64}; use cranelift_codegen::ir::instructions::BranchInfo; use cranelift_codegen::ir::types::{F32, F64}; use cranelift_codegen::ir::{Block, Function, Inst, InstBuilder, InstructionData, Type, Value}; use cranelift_codegen::packed_option::PackedOption; use smallvec::SmallVec; /// Structure containing the data relevant the construction of SSA for a given function. /// /// The parameter struct `Variable` corresponds to the way variables are represented in the /// non-SSA language you're translating from. /// /// The SSA building relies on information about the variables used and defined. /// /// This SSA building module allows you to def and use variables on the fly while you are /// constructing the CFG, no need for a separate SSA pass after the CFG is completed. /// /// A basic block is said _filled_ if all the instruction that it contains have been translated, /// and it is said _sealed_ if all of its predecessors have been declared. Only filled predecessors /// can be declared. pub struct SSABuilder { // TODO: Consider a sparse representation rather than SecondaryMap-of-SecondaryMap. /// Records for every variable and for every relevant block, the last definition of /// the variable in the block. variables: SecondaryMap>>, /// Records the position of the basic blocks and the list of values used but not defined in the /// block. ssa_blocks: SecondaryMap, /// Call stack for use in the `use_var`/`predecessors_lookup` state machine. calls: Vec, /// Result stack for use in the `use_var`/`predecessors_lookup` state machine. results: Vec, /// Side effects accumulated in the `use_var`/`predecessors_lookup` state machine. side_effects: SideEffects, } /// Side effects of a `use_var` or a `seal_block` method call. pub struct SideEffects { /// When we want to append jump arguments to a `br_table` instruction, the critical edge is /// splitted and the newly created `Block`s are signaled here. pub split_blocks_created: Vec, /// When a variable is used but has never been defined before (this happens in the case of /// unreachable code), a placeholder `iconst` or `fconst` value is added to the right `Block`. /// This field signals if it is the case and return the `Block` to which the initialization has /// been added. pub instructions_added_to_blocks: Vec, } impl SideEffects { fn new() -> Self { Self { split_blocks_created: Vec::new(), instructions_added_to_blocks: Vec::new(), } } fn is_empty(&self) -> bool { self.split_blocks_created.is_empty() && self.instructions_added_to_blocks.is_empty() } } #[derive(Clone)] struct PredBlock { block: Block, branch: Inst, } impl PredBlock { fn new(block: Block, branch: Inst) -> Self { Self { block, branch } } } type PredBlockSmallVec = SmallVec<[PredBlock; 4]>; #[derive(Clone, Default)] struct SSABlockData { // The predecessors of the Block with the block and branch instruction. predecessors: PredBlockSmallVec, // A block is sealed if all of its predecessors have been declared. sealed: bool, // List of current Block arguments for which an earlier def has not been found yet. undef_variables: Vec<(Variable, Value)>, } impl SSABlockData { fn add_predecessor(&mut self, pred: Block, inst: Inst) { debug_assert!(!self.sealed, "sealed blocks cannot accept new predecessors"); self.predecessors.push(PredBlock::new(pred, inst)); } fn remove_predecessor(&mut self, inst: Inst) -> Block { let pred = self .predecessors .iter() .position(|&PredBlock { branch, .. }| branch == inst) .expect("the predecessor you are trying to remove is not declared"); self.predecessors.swap_remove(pred).block } } impl SSABuilder { /// Allocate a new blank SSA builder struct. Use the API function to interact with the struct. pub fn new() -> Self { Self { variables: SecondaryMap::with_default(SecondaryMap::new()), ssa_blocks: SecondaryMap::new(), calls: Vec::new(), results: Vec::new(), side_effects: SideEffects::new(), } } /// Clears a `SSABuilder` from all its data, letting it in a pristine state without /// deallocating memory. pub fn clear(&mut self) { self.variables.clear(); self.ssa_blocks.clear(); debug_assert!(self.calls.is_empty()); debug_assert!(self.results.is_empty()); debug_assert!(self.side_effects.is_empty()); } /// Tests whether an `SSABuilder` is in a cleared state. pub fn is_empty(&self) -> bool { self.variables.is_empty() && self.ssa_blocks.is_empty() && self.calls.is_empty() && self.results.is_empty() && self.side_effects.is_empty() } } /// Small enum used for clarity in some functions. #[derive(Debug)] enum ZeroOneOrMore { Zero, One(T), More, } /// Cases used internally by `use_var_nonlocal()` for avoiding the borrow checker. #[derive(Debug)] enum UseVarCases { Unsealed(Value), SealedOnePredecessor(Block), SealedMultiplePredecessors(Value, Block), } /// States for the `use_var`/`predecessors_lookup` state machine. enum Call { UseVar(Block), FinishSealedOnePredecessor(Block), FinishPredecessorsLookup(Value, Block), } /// Emit instructions to produce a zero value in the given type. fn emit_zero(ty: Type, mut cur: FuncCursor) -> Value { if ty.is_int() { cur.ins().iconst(ty, 0) } else if ty.is_bool() { cur.ins().bconst(ty, false) } else if ty == F32 { cur.ins().f32const(Ieee32::with_bits(0)) } else if ty == F64 { cur.ins().f64const(Ieee64::with_bits(0)) } else if ty.is_ref() { cur.ins().null(ty) } else if ty.is_vector() { let scalar_ty = ty.lane_type(); if scalar_ty.is_int() || scalar_ty.is_bool() { let zero = cur.func.dfg.constants.insert( core::iter::repeat(0) .take(ty.bytes().try_into().unwrap()) .collect(), ); cur.ins().vconst(ty, zero) } else if scalar_ty == F32 { let scalar = cur.ins().f32const(Ieee32::with_bits(0)); cur.ins().splat(ty, scalar) } else if scalar_ty == F64 { let scalar = cur.ins().f64const(Ieee64::with_bits(0)); cur.ins().splat(ty, scalar) } else { panic!("unimplemented scalar type: {:?}", ty) } } else { panic!("unimplemented type: {:?}", ty) } } /// The following methods are the API of the SSA builder. Here is how it should be used when /// translating to Cranelift IR: /// /// - for each basic block, create a corresponding data for SSA construction with `declare_block`; /// /// - while traversing a basic block and translating instruction, use `def_var` and `use_var` /// to record definitions and uses of variables, these methods will give you the corresponding /// SSA values; /// /// - when all the instructions in a basic block have translated, the block is said _filled_ and /// only then you can add it as a predecessor to other blocks with `declare_block_predecessor`; /// /// - when you have constructed all the predecessor to a basic block, /// call `seal_block` on it with the `Function` that you are building. /// /// This API will give you the correct SSA values to use as arguments of your instructions, /// as well as modify the jump instruction and `Block` parameters to account for the SSA /// Phi functions. /// impl SSABuilder { /// Declares a new definition of a variable in a given basic block. /// The SSA value is passed as an argument because it should be created with /// `ir::DataFlowGraph::append_result`. pub fn def_var(&mut self, var: Variable, val: Value, block: Block) { self.variables[var][block] = PackedOption::from(val); } /// Declares a use of a variable in a given basic block. Returns the SSA value corresponding /// to the current SSA definition of this variable and a list of newly created Blocks that /// are the results of critical edge splitting for `br_table` with arguments. /// /// If the variable has never been defined in this blocks or recursively in its predecessors, /// this method will silently create an initializer with `iconst` or `fconst`. You are /// responsible for making sure that you initialize your variables. pub fn use_var( &mut self, func: &mut Function, var: Variable, ty: Type, block: Block, ) -> (Value, SideEffects) { // First, try Local Value Numbering (Algorithm 1 in the paper). // If the variable already has a known Value in this block, use that. if let Some(var_defs) = self.variables.get(var) { if let Some(val) = var_defs[block].expand() { return (val, SideEffects::new()); } } // Otherwise, use Global Value Numbering (Algorithm 2 in the paper). // This resolves the Value with respect to its predecessors. debug_assert!(self.calls.is_empty()); debug_assert!(self.results.is_empty()); debug_assert!(self.side_effects.is_empty()); // Prepare the 'calls' and 'results' stacks for the state machine. self.use_var_nonlocal(func, var, ty, block); let value = self.run_state_machine(func, var, ty); let side_effects = mem::replace(&mut self.side_effects, SideEffects::new()); (value, side_effects) } /// Resolve the minimal SSA Value of `var` in `block` by traversing predecessors. /// /// This function sets up state for `run_state_machine()` but does not execute it. fn use_var_nonlocal(&mut self, func: &mut Function, var: Variable, ty: Type, block: Block) { // This function is split into two parts to appease the borrow checker. // Part 1: With a mutable borrow of self, update the DataFlowGraph if necessary. let data = &mut self.ssa_blocks[block]; let case = if data.sealed { // The block has multiple predecessors so we append a Block parameter that // will serve as a value. if data.predecessors.len() == 1 { // Optimize the common case of one predecessor: no param needed. UseVarCases::SealedOnePredecessor(data.predecessors[0].block) } else { // Break potential cycles by eagerly adding an operandless param. let val = func.dfg.append_block_param(block, ty); UseVarCases::SealedMultiplePredecessors(val, block) } } else { let val = func.dfg.append_block_param(block, ty); data.undef_variables.push((var, val)); UseVarCases::Unsealed(val) }; // Part 2: Prepare SSABuilder state for run_state_machine(). match case { UseVarCases::SealedOnePredecessor(pred) => { // Get the Value directly from the single predecessor. self.calls.push(Call::FinishSealedOnePredecessor(block)); self.calls.push(Call::UseVar(pred)); } UseVarCases::Unsealed(val) => { // Define the operandless param added above to prevent lookup cycles. self.def_var(var, val, block); // Nothing more can be known at this point. self.results.push(val); } UseVarCases::SealedMultiplePredecessors(val, block) => { // Define the operandless param added above to prevent lookup cycles. self.def_var(var, val, block); // Look up a use_var for each precessor. self.begin_predecessors_lookup(val, block); } } } /// For blocks with a single predecessor, once we've determined the value, /// record a local def for it for future queries to find. fn finish_sealed_one_predecessor(&mut self, var: Variable, block: Block) { let val = *self.results.last().unwrap(); self.def_var(var, val, block); } /// Declares a new basic block to construct corresponding data for SSA construction. /// No predecessors are declared here and the block is not sealed. /// Predecessors have to be added with `declare_block_predecessor`. pub fn declare_block(&mut self, block: Block) { self.ssa_blocks[block] = SSABlockData { predecessors: PredBlockSmallVec::new(), sealed: false, undef_variables: Vec::new(), }; } /// Declares a new predecessor for a `Block` and record the branch instruction /// of the predecessor that leads to it. /// /// The precedent `Block` must be filled before added as predecessor. /// Note that you must provide no jump arguments to the branch /// instruction when you create it since `SSABuilder` will fill them for you. /// /// Callers are expected to avoid adding the same predecessor more than once in the case /// of a jump table. pub fn declare_block_predecessor(&mut self, block: Block, pred: Block, inst: Inst) { debug_assert!(!self.is_sealed(block)); self.ssa_blocks[block].add_predecessor(pred, inst) } /// Remove a previously declared Block predecessor by giving a reference to the jump /// instruction. Returns the basic block containing the instruction. /// /// Note: use only when you know what you are doing, this might break the SSA building problem pub fn remove_block_predecessor(&mut self, block: Block, inst: Inst) -> Block { debug_assert!(!self.is_sealed(block)); self.ssa_blocks[block].remove_predecessor(inst) } /// Completes the global value numbering for a `Block`, all of its predecessors having been /// already sealed. /// /// This method modifies the function's `Layout` by adding arguments to the `Block`s to /// take into account the Phi function placed by the SSA algorithm. /// /// Returns the list of newly created blocks for critical edge splitting. pub fn seal_block(&mut self, block: Block, func: &mut Function) -> SideEffects { self.seal_one_block(block, func); mem::replace(&mut self.side_effects, SideEffects::new()) } /// Completes the global value numbering for all unsealed `Block`s in `func`. /// /// It's more efficient to seal `Block`s as soon as possible, during /// translation, but for frontends where this is impractical to do, this /// function can be used at the end of translating all blocks to ensure /// that everything is sealed. pub fn seal_all_blocks(&mut self, func: &mut Function) -> SideEffects { // Seal all `Block`s currently in the function. This can entail splitting // and creation of new blocks, however such new blocks are sealed on // the fly, so we don't need to account for them here. for block in self.ssa_blocks.keys() { if !self.is_sealed(block) { self.seal_one_block(block, func); } } mem::replace(&mut self.side_effects, SideEffects::new()) } /// Helper function for `seal_block` and /// `seal_all_blocks`. fn seal_one_block(&mut self, block: Block, func: &mut Function) { let block_data = &mut self.ssa_blocks[block]; debug_assert!( !block_data.sealed, "Attempting to seal {} which is already sealed.", block ); // Extract the undef_variables data from the block so that we // can iterate over it without borrowing the whole builder. let undef_vars = mem::replace(&mut block_data.undef_variables, Vec::new()); // For each undef var we look up values in the predecessors and create a block parameter // only if necessary. for (var, val) in undef_vars { let ty = func.dfg.value_type(val); self.predecessors_lookup(func, val, var, ty, block); } self.mark_block_sealed(block); } /// Set the `sealed` flag for `block`. fn mark_block_sealed(&mut self, block: Block) { // Then we mark the block as sealed. let block_data = &mut self.ssa_blocks[block]; debug_assert!(!block_data.sealed); debug_assert!(block_data.undef_variables.is_empty()); block_data.sealed = true; // We could call data.predecessors.shrink_to_fit() here, if // important, because no further predecessors will be added // to this block. } /// Given the local SSA Value of a Variable in a Block, perform a recursive lookup on /// predecessors to determine if it is redundant with another Value earlier in the CFG. /// /// If such a Value exists and is redundant, the local Value is replaced by the /// corresponding non-local Value. If the original Value was a Block parameter, /// the parameter may be removed if redundant. Parameters are placed eagerly by callers /// to avoid infinite loops when looking up a Value for a Block that is in a CFG loop. /// /// Doing this lookup for each Value in each Block preserves SSA form during construction. /// /// Returns the chosen Value. /// /// ## Arguments /// /// `sentinel` is a dummy Block parameter inserted by `use_var_nonlocal()`. /// Its purpose is to allow detection of CFG cycles while traversing predecessors. /// /// The `sentinel: Value` and the `ty: Type` are describing the `var: Variable` /// that is being looked up. fn predecessors_lookup( &mut self, func: &mut Function, sentinel: Value, var: Variable, ty: Type, block: Block, ) -> Value { debug_assert!(self.calls.is_empty()); debug_assert!(self.results.is_empty()); // self.side_effects may be non-empty here so that callers can // accumulate side effects over multiple calls. self.begin_predecessors_lookup(sentinel, block); self.run_state_machine(func, var, ty) } /// Set up state for `run_state_machine()` to initiate non-local use lookups /// in all predecessors of `dest_block`, and arrange for a call to /// `finish_predecessors_lookup` once they complete. fn begin_predecessors_lookup(&mut self, sentinel: Value, dest_block: Block) { self.calls .push(Call::FinishPredecessorsLookup(sentinel, dest_block)); // Iterate over the predecessors. let mut calls = mem::replace(&mut self.calls, Vec::new()); calls.extend( self.predecessors(dest_block) .iter() .rev() .map(|&PredBlock { block: pred, .. }| Call::UseVar(pred)), ); self.calls = calls; } /// Examine the values from the predecessors and compute a result value, creating /// block parameters as needed. fn finish_predecessors_lookup( &mut self, func: &mut Function, sentinel: Value, var: Variable, dest_block: Block, ) { let mut pred_values: ZeroOneOrMore = ZeroOneOrMore::Zero; // Determine how many predecessors are yielding unique, non-temporary Values. let num_predecessors = self.predecessors(dest_block).len(); for &pred_val in self.results.iter().rev().take(num_predecessors) { match pred_values { ZeroOneOrMore::Zero => { if pred_val != sentinel { pred_values = ZeroOneOrMore::One(pred_val); } } ZeroOneOrMore::One(old_val) => { if pred_val != sentinel && pred_val != old_val { pred_values = ZeroOneOrMore::More; break; } } ZeroOneOrMore::More => { break; } } } // Those predecessors' Values have been examined: pop all their results. self.results.truncate(self.results.len() - num_predecessors); let result_val = match pred_values { ZeroOneOrMore::Zero => { // The variable is used but never defined before. This is an irregularity in the // code, but rather than throwing an error we silently initialize the variable to // 0. This will have no effect since this situation happens in unreachable code. if !func.layout.is_block_inserted(dest_block) { func.layout.append_block(dest_block); } self.side_effects .instructions_added_to_blocks .push(dest_block); let zero = emit_zero( func.dfg.value_type(sentinel), FuncCursor::new(func).at_first_insertion_point(dest_block), ); func.dfg.remove_block_param(sentinel); func.dfg.change_to_alias(sentinel, zero); zero } ZeroOneOrMore::One(pred_val) => { // Here all the predecessors use a single value to represent our variable // so we don't need to have it as a block argument. // We need to replace all the occurrences of val with pred_val but since // we can't afford a re-writing pass right now we just declare an alias. // Resolve aliases eagerly so that we can check for cyclic aliasing, // which can occur in unreachable code. let mut resolved = func.dfg.resolve_aliases(pred_val); if sentinel == resolved { // Cycle detected. Break it by creating a zero value. resolved = emit_zero( func.dfg.value_type(sentinel), FuncCursor::new(func).at_first_insertion_point(dest_block), ); } func.dfg.remove_block_param(sentinel); func.dfg.change_to_alias(sentinel, resolved); resolved } ZeroOneOrMore::More => { // There is disagreement in the predecessors on which value to use so we have // to keep the block argument. To avoid borrowing `self` for the whole loop, // temporarily detach the predecessors list and replace it with an empty list. let mut preds = mem::replace(self.predecessors_mut(dest_block), PredBlockSmallVec::new()); for &mut PredBlock { block: ref mut pred_block, branch: ref mut last_inst, } in &mut preds { // We already did a full `use_var` above, so we can do just the fast path. let ssa_block_map = self.variables.get(var).unwrap(); let pred_val = ssa_block_map.get(*pred_block).unwrap().unwrap(); let jump_arg = self.append_jump_argument( func, *last_inst, *pred_block, dest_block, pred_val, var, ); if let Some((middle_block, middle_jump_inst)) = jump_arg { *pred_block = middle_block; *last_inst = middle_jump_inst; self.side_effects.split_blocks_created.push(middle_block); } } // Now that we're done, move the predecessors list back. debug_assert!(self.predecessors(dest_block).is_empty()); *self.predecessors_mut(dest_block) = preds; sentinel } }; self.results.push(result_val); } /// Appends a jump argument to a jump instruction, returns block created in case of /// critical edge splitting. fn append_jump_argument( &mut self, func: &mut Function, jump_inst: Inst, jump_inst_block: Block, dest_block: Block, val: Value, var: Variable, ) -> Option<(Block, Inst)> { match func.dfg.analyze_branch(jump_inst) { BranchInfo::NotABranch => { panic!("you have declared a non-branch instruction as a predecessor to a block"); } // For a single destination appending a jump argument to the instruction // is sufficient. BranchInfo::SingleDest(_, _) => { func.dfg.append_inst_arg(jump_inst, val); None } BranchInfo::Table(jt, default_block) => { // In the case of a jump table, the situation is tricky because br_table doesn't // support arguments. // We have to split the critical edge let middle_block = func.dfg.make_block(); func.layout.append_block(middle_block); self.declare_block(middle_block); self.ssa_blocks[middle_block].add_predecessor(jump_inst_block, jump_inst); self.mark_block_sealed(middle_block); if let Some(default_block) = default_block { if dest_block == default_block { match func.dfg[jump_inst] { InstructionData::BranchTable { destination: ref mut dest, .. } => { *dest = middle_block; } _ => panic!("should not happen"), } } } for old_dest in func.jump_tables[jt].as_mut_slice() { if *old_dest == dest_block { *old_dest = middle_block; } } let mut cur = FuncCursor::new(func).at_bottom(middle_block); let middle_jump_inst = cur.ins().jump(dest_block, &[val]); self.def_var(var, val, middle_block); Some((middle_block, middle_jump_inst)) } } } /// Returns the list of `Block`s that have been declared as predecessors of the argument. fn predecessors(&self, block: Block) -> &[PredBlock] { &self.ssa_blocks[block].predecessors } /// Returns whether the given Block has any predecessor or not. pub fn has_any_predecessors(&self, block: Block) -> bool { !self.predecessors(block).is_empty() } /// Same as predecessors, but for &mut. fn predecessors_mut(&mut self, block: Block) -> &mut PredBlockSmallVec { &mut self.ssa_blocks[block].predecessors } /// Returns `true` if and only if `seal_block` has been called on the argument. pub fn is_sealed(&self, block: Block) -> bool { self.ssa_blocks[block].sealed } /// The main algorithm is naturally recursive: when there's a `use_var` in a /// block with no corresponding local defs, it recurses and performs a /// `use_var` in each predecessor. To avoid risking running out of callstack /// space, we keep an explicit stack and use a small state machine rather /// than literal recursion. fn run_state_machine(&mut self, func: &mut Function, var: Variable, ty: Type) -> Value { // Process the calls scheduled in `self.calls` until it is empty. while let Some(call) = self.calls.pop() { match call { Call::UseVar(ssa_block) => { // First we lookup for the current definition of the variable in this block if let Some(var_defs) = self.variables.get(var) { if let Some(val) = var_defs[ssa_block].expand() { self.results.push(val); continue; } } self.use_var_nonlocal(func, var, ty, ssa_block); } Call::FinishSealedOnePredecessor(ssa_block) => { self.finish_sealed_one_predecessor(var, ssa_block); } Call::FinishPredecessorsLookup(sentinel, dest_block) => { self.finish_predecessors_lookup(func, sentinel, var, dest_block); } } } debug_assert_eq!(self.results.len(), 1); self.results.pop().unwrap() } } #[cfg(test)] mod tests { use crate::ssa::SSABuilder; use crate::Variable; use cranelift_codegen::cursor::{Cursor, FuncCursor}; use cranelift_codegen::entity::EntityRef; use cranelift_codegen::ir::instructions::BranchInfo; use cranelift_codegen::ir::types::*; use cranelift_codegen::ir::{Function, Inst, InstBuilder, JumpTableData, Opcode}; use cranelift_codegen::settings; use cranelift_codegen::verify_function; #[test] fn simple_block() { let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); // Here is the pseudo-program we want to translate: // block0: // x = 1; // y = 2; // z = x + y; // z = x + z; ssa.declare_block(block0); let x_var = Variable::new(0); let x_ssa = { let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); cur.ins().iconst(I32, 1) }; ssa.def_var(x_var, x_ssa, block0); let y_var = Variable::new(1); let y_ssa = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 2) }; ssa.def_var(y_var, y_ssa, block0); assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa); assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa); let z_var = Variable::new(2); let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0; let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0; let z1_ssa = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iadd(x_use1, y_use1) }; ssa.def_var(z_var, z1_ssa, block0); assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa); let x_use2 = ssa.use_var(&mut func, x_var, I32, block0).0; let z_use1 = ssa.use_var(&mut func, z_var, I32, block0).0; let z2_ssa = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iadd(x_use2, z_use1) }; ssa.def_var(z_var, z2_ssa, block0); assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z2_ssa); } #[test] fn sequence_of_blocks() { let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); let block1 = func.dfg.make_block(); let block2 = func.dfg.make_block(); // Here is the pseudo-program we want to translate: // block0: // x = 1; // y = 2; // z = x + y; // brnz y, block1; // jump block1; // block1: // z = x + z; // jump block2; // block2: // y = x + y; { let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); cur.insert_block(block1); cur.insert_block(block2); } // block0 ssa.declare_block(block0); ssa.seal_block(block0, &mut func); let x_var = Variable::new(0); let x_ssa = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 1) }; ssa.def_var(x_var, x_ssa, block0); let y_var = Variable::new(1); let y_ssa = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 2) }; ssa.def_var(y_var, y_ssa, block0); let z_var = Variable::new(2); let x_use1 = ssa.use_var(&mut func, x_var, I32, block0).0; let y_use1 = ssa.use_var(&mut func, y_var, I32, block0).0; let z1_ssa = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iadd(x_use1, y_use1) }; ssa.def_var(z_var, z1_ssa, block0); let y_use2 = ssa.use_var(&mut func, y_var, I32, block0).0; let brnz_block0_block2: Inst = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().brnz(y_use2, block2, &[]) }; let jump_block0_block1: Inst = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().jump(block1, &[]) }; assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x_ssa); assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y_ssa); assert_eq!(ssa.use_var(&mut func, z_var, I32, block0).0, z1_ssa); // block1 ssa.declare_block(block1); ssa.declare_block_predecessor(block1, block0, jump_block0_block1); ssa.seal_block(block1, &mut func); let x_use2 = ssa.use_var(&mut func, x_var, I32, block1).0; let z_use1 = ssa.use_var(&mut func, z_var, I32, block1).0; let z2_ssa = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().iadd(x_use2, z_use1) }; ssa.def_var(z_var, z2_ssa, block1); let jump_block1_block2: Inst = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().jump(block2, &[]) }; assert_eq!(x_use2, x_ssa); assert_eq!(z_use1, z1_ssa); assert_eq!(ssa.use_var(&mut func, z_var, I32, block1).0, z2_ssa); // block2 ssa.declare_block(block2); ssa.declare_block_predecessor(block2, block0, brnz_block0_block2); ssa.declare_block_predecessor(block2, block1, jump_block1_block2); ssa.seal_block(block2, &mut func); let x_use3 = ssa.use_var(&mut func, x_var, I32, block2).0; let y_use3 = ssa.use_var(&mut func, y_var, I32, block2).0; let y2_ssa = { let mut cur = FuncCursor::new(&mut func).at_bottom(block2); cur.ins().iadd(x_use3, y_use3) }; ssa.def_var(y_var, y2_ssa, block2); assert_eq!(x_ssa, x_use3); assert_eq!(y_ssa, y_use3); match func.dfg.analyze_branch(brnz_block0_block2) { BranchInfo::SingleDest(dest, jump_args) => { assert_eq!(dest, block2); assert_eq!(jump_args.len(), 0); } _ => assert!(false), }; match func.dfg.analyze_branch(jump_block0_block1) { BranchInfo::SingleDest(dest, jump_args) => { assert_eq!(dest, block1); assert_eq!(jump_args.len(), 0); } _ => assert!(false), }; match func.dfg.analyze_branch(jump_block1_block2) { BranchInfo::SingleDest(dest, jump_args) => { assert_eq!(dest, block2); assert_eq!(jump_args.len(), 0); } _ => assert!(false), }; } #[test] fn program_with_loop() { let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); let block1 = func.dfg.make_block(); let block2 = func.dfg.make_block(); let block3 = func.dfg.make_block(); { let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); cur.insert_block(block1); cur.insert_block(block2); cur.insert_block(block3); } // Here is the pseudo-program we want to translate: // block0: // x = 1; // y = 2; // z = x + y; // jump block1 // block1: // z = z + y; // brnz y, block3; // jump block2; // block2: // z = z - x; // return y // block3: // y = y - x // jump block1 // block0 ssa.declare_block(block0); ssa.seal_block(block0, &mut func); let x_var = Variable::new(0); let x1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 1) }; ssa.def_var(x_var, x1, block0); let y_var = Variable::new(1); let y1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 2) }; ssa.def_var(y_var, y1, block0); let z_var = Variable::new(2); let x2 = ssa.use_var(&mut func, x_var, I32, block0).0; let y2 = ssa.use_var(&mut func, y_var, I32, block0).0; let z1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iadd(x2, y2) }; ssa.def_var(z_var, z1, block0); let jump_block0_block1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().jump(block1, &[]) }; assert_eq!(ssa.use_var(&mut func, x_var, I32, block0).0, x1); assert_eq!(ssa.use_var(&mut func, y_var, I32, block0).0, y1); assert_eq!(x2, x1); assert_eq!(y2, y1); // block1 ssa.declare_block(block1); ssa.declare_block_predecessor(block1, block0, jump_block0_block1); let z2 = ssa.use_var(&mut func, z_var, I32, block1).0; let y3 = ssa.use_var(&mut func, y_var, I32, block1).0; let z3 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().iadd(z2, y3) }; ssa.def_var(z_var, z3, block1); let y4 = ssa.use_var(&mut func, y_var, I32, block1).0; assert_eq!(y4, y3); let brnz_block1_block3 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().brnz(y4, block3, &[]) }; let jump_block1_block2 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().jump(block2, &[]) }; // block2 ssa.declare_block(block2); ssa.declare_block_predecessor(block2, block1, jump_block1_block2); ssa.seal_block(block2, &mut func); let z4 = ssa.use_var(&mut func, z_var, I32, block2).0; assert_eq!(z4, z3); let x3 = ssa.use_var(&mut func, x_var, I32, block2).0; let z5 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block2); cur.ins().isub(z4, x3) }; ssa.def_var(z_var, z5, block2); let y5 = ssa.use_var(&mut func, y_var, I32, block2).0; assert_eq!(y5, y3); { let mut cur = FuncCursor::new(&mut func).at_bottom(block2); cur.ins().return_(&[y5]) }; // block3 ssa.declare_block(block3); ssa.declare_block_predecessor(block3, block1, brnz_block1_block3); ssa.seal_block(block3, &mut func); let y6 = ssa.use_var(&mut func, y_var, I32, block3).0; assert_eq!(y6, y3); let x4 = ssa.use_var(&mut func, x_var, I32, block3).0; assert_eq!(x4, x3); let y7 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block3); cur.ins().isub(y6, x4) }; ssa.def_var(y_var, y7, block3); let jump_block3_block1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block3); cur.ins().jump(block1, &[]) }; // block1 after all predecessors have been visited. ssa.declare_block_predecessor(block1, block3, jump_block3_block1); ssa.seal_block(block1, &mut func); assert_eq!(func.dfg.block_params(block1)[0], z2); assert_eq!(func.dfg.block_params(block1)[1], y3); assert_eq!(func.dfg.resolve_aliases(x3), x1); } #[test] fn br_table_with_args() { // This tests the on-demand splitting of critical edges for br_table with jump arguments // // Here is the pseudo-program we want to translate: // // function %f { // jt = jump_table [block2, block1] // block0: // x = 1; // br_table x, block2, jt // block1: // x = 2 // jump block2 // block2: // x = x + 1 // return // } let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); let block1 = func.dfg.make_block(); let block2 = func.dfg.make_block(); let mut jump_table = JumpTableData::new(); jump_table.push_entry(block2); jump_table.push_entry(block1); { let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); cur.insert_block(block1); cur.insert_block(block2); } // block0 let x1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 1) }; ssa.declare_block(block0); ssa.seal_block(block0, &mut func); let x_var = Variable::new(0); ssa.def_var(x_var, x1, block0); ssa.use_var(&mut func, x_var, I32, block0).0; let br_table = { let jt = func.create_jump_table(jump_table); let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().br_table(x1, block2, jt) }; // block1 ssa.declare_block(block1); ssa.declare_block_predecessor(block1, block0, br_table); ssa.seal_block(block1, &mut func); let x2 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().iconst(I32, 2) }; ssa.def_var(x_var, x2, block1); let jump_block1_block2 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().jump(block2, &[]) }; // block2 ssa.declare_block(block2); ssa.declare_block_predecessor(block2, block1, jump_block1_block2); ssa.declare_block_predecessor(block2, block0, br_table); ssa.seal_block(block2, &mut func); let x3 = ssa.use_var(&mut func, x_var, I32, block2).0; let x4 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block2); cur.ins().iadd_imm(x3, 1) }; ssa.def_var(x_var, x4, block2); { let mut cur = FuncCursor::new(&mut func).at_bottom(block2); cur.ins().return_(&[]) }; let flags = settings::Flags::new(settings::builder()); match verify_function(&func, &flags) { Ok(()) => {} Err(_errors) => { #[cfg(feature = "std")] panic!("{}", _errors); #[cfg(not(feature = "std"))] panic!("function failed to verify"); } } } #[test] fn undef_values_reordering() { // Here is the pseudo-program we want to translate: // block0: // x = 0; // y = 1; // z = 2; // jump block1; // block1: // x = z + x; // y = y - x; // jump block1; // let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); let block1 = func.dfg.make_block(); { let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); cur.insert_block(block1); } // block0 ssa.declare_block(block0); let x_var = Variable::new(0); ssa.seal_block(block0, &mut func); let x1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 0) }; ssa.def_var(x_var, x1, block0); let y_var = Variable::new(1); let y1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 1) }; ssa.def_var(y_var, y1, block0); let z_var = Variable::new(2); let z1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().iconst(I32, 2) }; ssa.def_var(z_var, z1, block0); let jump_block0_block1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().jump(block1, &[]) }; // block1 ssa.declare_block(block1); ssa.declare_block_predecessor(block1, block0, jump_block0_block1); let z2 = ssa.use_var(&mut func, z_var, I32, block1).0; assert_eq!(func.dfg.block_params(block1)[0], z2); let x2 = ssa.use_var(&mut func, x_var, I32, block1).0; assert_eq!(func.dfg.block_params(block1)[1], x2); let x3 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().iadd(x2, z2) }; ssa.def_var(x_var, x3, block1); let x4 = ssa.use_var(&mut func, x_var, I32, block1).0; let y3 = ssa.use_var(&mut func, y_var, I32, block1).0; assert_eq!(func.dfg.block_params(block1)[2], y3); let y4 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().isub(y3, x4) }; ssa.def_var(y_var, y4, block1); let jump_block1_block1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); cur.ins().jump(block1, &[]) }; ssa.declare_block_predecessor(block1, block1, jump_block1_block1); ssa.seal_block(block1, &mut func); // At sealing the "z" argument disappear but the remaining "x" and "y" args have to be // in the right order. assert_eq!(func.dfg.block_params(block1)[1], y3); assert_eq!(func.dfg.block_params(block1)[0], x2); } #[test] fn undef() { // Use vars of various types which have not been defined. let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); ssa.declare_block(block0); ssa.seal_block(block0, &mut func); let i32_var = Variable::new(0); let f32_var = Variable::new(1); let f64_var = Variable::new(2); let b1_var = Variable::new(3); let f32x4_var = Variable::new(4); ssa.use_var(&mut func, i32_var, I32, block0); ssa.use_var(&mut func, f32_var, F32, block0); ssa.use_var(&mut func, f64_var, F64, block0); ssa.use_var(&mut func, b1_var, B1, block0); ssa.use_var(&mut func, f32x4_var, F32X4, block0); assert_eq!(func.dfg.num_block_params(block0), 0); } #[test] fn undef_in_entry() { // Use a var which has not been defined. The search should hit the // top of the entry block, and then fall back to inserting an iconst. let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); ssa.declare_block(block0); ssa.seal_block(block0, &mut func); let x_var = Variable::new(0); assert_eq!(func.dfg.num_block_params(block0), 0); ssa.use_var(&mut func, x_var, I32, block0); assert_eq!(func.dfg.num_block_params(block0), 0); assert_eq!( func.dfg[func.layout.first_inst(block0).unwrap()].opcode(), Opcode::Iconst ); } #[test] fn undef_in_entry_sealed_after() { // Use a var which has not been defined, but the block is not sealed // until afterward. Before sealing, the SSA builder should insert an // block param; after sealing, it should be removed. let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); ssa.declare_block(block0); let x_var = Variable::new(0); assert_eq!(func.dfg.num_block_params(block0), 0); ssa.use_var(&mut func, x_var, I32, block0); assert_eq!(func.dfg.num_block_params(block0), 1); ssa.seal_block(block0, &mut func); assert_eq!(func.dfg.num_block_params(block0), 0); assert_eq!( func.dfg[func.layout.first_inst(block0).unwrap()].opcode(), Opcode::Iconst ); } #[test] fn unreachable_use() { // Here is the pseudo-program we want to translate: // block0: // return; // block1: // brz x, block1; // jump block1; let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); let block1 = func.dfg.make_block(); { let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); cur.insert_block(block1); } // block0 ssa.declare_block(block0); ssa.seal_block(block0, &mut func); { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().return_(&[]); } // block1 ssa.declare_block(block1); { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); let x_var = Variable::new(0); let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0; let brz = cur.ins().brz(x_val, block1, &[]); let jump_block1_block1 = cur.ins().jump(block1, &[]); ssa.declare_block_predecessor(block1, block1, brz); ssa.declare_block_predecessor(block1, block1, jump_block1_block1); } ssa.seal_block(block1, &mut func); let flags = settings::Flags::new(settings::builder()); match verify_function(&func, &flags) { Ok(()) => {} Err(_errors) => { #[cfg(feature = "std")] panic!("{}", _errors); #[cfg(not(feature = "std"))] panic!("function failed to verify"); } } } #[test] fn unreachable_use_with_multiple_preds() { // Here is the pseudo-program we want to translate: // block0: // return; // block1: // brz x, block2; // jump block1; // block2: // jump block1; let mut func = Function::new(); let mut ssa = SSABuilder::new(); let block0 = func.dfg.make_block(); let block1 = func.dfg.make_block(); let block2 = func.dfg.make_block(); { let mut cur = FuncCursor::new(&mut func); cur.insert_block(block0); cur.insert_block(block1); cur.insert_block(block2); } // block0 ssa.declare_block(block0); ssa.seal_block(block0, &mut func); { let mut cur = FuncCursor::new(&mut func).at_bottom(block0); cur.ins().return_(&[]); } // block1 ssa.declare_block(block1); let brz = { let mut cur = FuncCursor::new(&mut func).at_bottom(block1); let x_var = Variable::new(0); let x_val = ssa.use_var(&mut cur.func, x_var, I32, block1).0; let brz = cur.ins().brz(x_val, block2, &[]); let jump_block1_block1 = cur.ins().jump(block1, &[]); ssa.declare_block_predecessor(block1, block1, jump_block1_block1); brz }; // block2 ssa.declare_block(block2); ssa.declare_block_predecessor(block2, block1, brz); ssa.seal_block(block2, &mut func); let jump_block2_block1 = { let mut cur = FuncCursor::new(&mut func).at_bottom(block2); cur.ins().jump(block1, &[]) }; // seal block1 ssa.declare_block_predecessor(block1, block2, jump_block2_block1); ssa.seal_block(block1, &mut func); let flags = settings::Flags::new(settings::builder()); match verify_function(&func, &flags) { Ok(()) => {} Err(_errors) => { #[cfg(feature = "std")] panic!("{}", _errors); #[cfg(not(feature = "std"))] panic!("function failed to verify"); } } } }