//! A simple GVN pass. use crate::cursor::{Cursor, FuncCursor}; use crate::dominator_tree::DominatorTree; use crate::ir::{Function, Inst, InstructionData, Opcode, Type}; use crate::scoped_hash_map::ScopedHashMap; use crate::timing; use core::cell::{Ref, RefCell}; use core::hash::{Hash, Hasher}; use std::vec::Vec; /// Test whether the given opcode is unsafe to even consider for GVN. fn trivially_unsafe_for_gvn(opcode: Opcode) -> bool { opcode.is_call() || opcode.is_branch() || opcode.is_terminator() || opcode.is_return() || opcode.can_trap() || opcode.other_side_effects() || opcode.can_store() || opcode.writes_cpu_flags() } /// Test that, if the specified instruction is a load, it doesn't have the `readonly` memflag. fn is_load_and_not_readonly(inst_data: &InstructionData) -> bool { match *inst_data { InstructionData::Load { flags, .. } | InstructionData::LoadComplex { flags, .. } => { !flags.readonly() } _ => inst_data.opcode().can_load(), } } /// Wrapper around `InstructionData` which implements `Eq` and `Hash` #[derive(Clone)] struct HashKey<'a, 'f: 'a> { inst: InstructionData, ty: Type, pos: &'a RefCell>, } impl<'a, 'f: 'a> Hash for HashKey<'a, 'f> { fn hash(&self, state: &mut H) { let pool = &self.pos.borrow().func.dfg.value_lists; self.inst.hash(state, pool); self.ty.hash(state); } } impl<'a, 'f: 'a> PartialEq for HashKey<'a, 'f> { fn eq(&self, other: &Self) -> bool { let pool = &self.pos.borrow().func.dfg.value_lists; self.inst.eq(&other.inst, pool) && self.ty == other.ty } } impl<'a, 'f: 'a> Eq for HashKey<'a, 'f> {} /// Perform simple GVN on `func`. /// pub fn do_simple_gvn(func: &mut Function, domtree: &mut DominatorTree) { let _tt = timing::gvn(); debug_assert!(domtree.is_valid()); // Visit EBBs in a reverse post-order. // // The RefCell here is a bit ugly since the HashKeys in the ScopedHashMap // need a reference to the function. let pos = RefCell::new(FuncCursor::new(func)); let mut visible_values: ScopedHashMap = ScopedHashMap::new(); let mut scope_stack: Vec = Vec::new(); for &ebb in domtree.cfg_postorder().iter().rev() { { // Pop any scopes that we just exited. let layout = &pos.borrow().func.layout; loop { if let Some(current) = scope_stack.last() { if domtree.dominates(*current, ebb, layout) { break; } } else { break; } scope_stack.pop(); visible_values.decrement_depth(); } // Push a scope for the current block. scope_stack.push(layout.first_inst(ebb).unwrap()); visible_values.increment_depth(); } pos.borrow_mut().goto_top(ebb); while let Some(inst) = { let mut pos = pos.borrow_mut(); pos.next_inst() } { // Resolve aliases, particularly aliases we created earlier. pos.borrow_mut().func.dfg.resolve_aliases_in_arguments(inst); let func = Ref::map(pos.borrow(), |pos| &pos.func); let opcode = func.dfg[inst].opcode(); if opcode.is_branch() && !opcode.is_terminator() { scope_stack.push(func.layout.next_inst(inst).unwrap()); visible_values.increment_depth(); } if trivially_unsafe_for_gvn(opcode) { continue; } // These are split up to separate concerns. if is_load_and_not_readonly(&func.dfg[inst]) { continue; } let ctrl_typevar = func.dfg.ctrl_typevar(inst); let key = HashKey { inst: func.dfg[inst].clone(), ty: ctrl_typevar, pos: &pos, }; use crate::scoped_hash_map::Entry::*; match visible_values.entry(key) { Occupied(entry) => { debug_assert!(domtree.dominates(*entry.get(), inst, &func.layout)); // If the redundant instruction is representing the current // scope, pick a new representative. let old = scope_stack.last_mut().unwrap(); if *old == inst { *old = func.layout.next_inst(inst).unwrap(); } // Replace the redundant instruction and remove it. drop(func); let mut pos = pos.borrow_mut(); pos.func.dfg.replace_with_aliases(inst, *entry.get()); pos.remove_inst_and_step_back(); } Vacant(entry) => { entry.insert(inst); } } } } }