// Internal policy header for unordered_set and unordered_map -*- C++ -*- // Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // . /** @file bits/hashtable_policy.h * This is an internal header file, included by other library headers. * Do not attempt to use it directly. * @headername{unordered_map,unordered_set} */ #ifndef _HASHTABLE_POLICY_H #define _HASHTABLE_POLICY_H 1 namespace std _GLIBCXX_VISIBILITY(default) { namespace __detail { _GLIBCXX_BEGIN_NAMESPACE_VERSION // Helper function: return distance(first, last) for forward // iterators, or 0 for input iterators. template inline typename std::iterator_traits<_Iterator>::difference_type __distance_fw(_Iterator __first, _Iterator __last, std::input_iterator_tag) { return 0; } template inline typename std::iterator_traits<_Iterator>::difference_type __distance_fw(_Iterator __first, _Iterator __last, std::forward_iterator_tag) { return std::distance(__first, __last); } template inline typename std::iterator_traits<_Iterator>::difference_type __distance_fw(_Iterator __first, _Iterator __last) { typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag; return __distance_fw(__first, __last, _Tag()); } // Helper type used to detect whether the hash functor is noexcept. template struct __is_noexcept_hash : std::integral_constant()(declval()))> {}; // Auxiliary types used for all instantiations of _Hashtable: nodes // and iterators. // Nodes, used to wrap elements stored in the hash table. A policy // template parameter of class template _Hashtable controls whether // nodes also store a hash code. In some cases (e.g. strings) this // may be a performance win. struct _Hash_node_base { _Hash_node_base* _M_nxt; _Hash_node_base() : _M_nxt() { } _Hash_node_base(_Hash_node_base* __next) : _M_nxt(__next) { } }; template struct _Hash_node; template struct _Hash_node<_Value, true> : _Hash_node_base { _Value _M_v; std::size_t _M_hash_code; template _Hash_node(_Args&&... __args) : _M_v(std::forward<_Args>(__args)...), _M_hash_code() { } _Hash_node* _M_next() const { return static_cast<_Hash_node*>(_M_nxt); } }; template struct _Hash_node<_Value, false> : _Hash_node_base { _Value _M_v; template _Hash_node(_Args&&... __args) : _M_v(std::forward<_Args>(__args)...) { } _Hash_node* _M_next() const { return static_cast<_Hash_node*>(_M_nxt); } }; // Node iterators, used to iterate through all the hashtable. template struct _Node_iterator_base { _Node_iterator_base(_Hash_node<_Value, __cache>* __p) : _M_cur(__p) { } void _M_incr() { _M_cur = _M_cur->_M_next(); } _Hash_node<_Value, __cache>* _M_cur; }; template inline bool operator==(const _Node_iterator_base<_Value, __cache>& __x, const _Node_iterator_base<_Value, __cache>& __y) { return __x._M_cur == __y._M_cur; } template inline bool operator!=(const _Node_iterator_base<_Value, __cache>& __x, const _Node_iterator_base<_Value, __cache>& __y) { return __x._M_cur != __y._M_cur; } template struct _Node_iterator : public _Node_iterator_base<_Value, __cache> { typedef _Value value_type; typedef typename std::conditional<__constant_iterators, const _Value*, _Value*>::type pointer; typedef typename std::conditional<__constant_iterators, const _Value&, _Value&>::type reference; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; _Node_iterator() : _Node_iterator_base<_Value, __cache>(0) { } explicit _Node_iterator(_Hash_node<_Value, __cache>* __p) : _Node_iterator_base<_Value, __cache>(__p) { } reference operator*() const { return this->_M_cur->_M_v; } pointer operator->() const { return std::__addressof(this->_M_cur->_M_v); } _Node_iterator& operator++() { this->_M_incr(); return *this; } _Node_iterator operator++(int) { _Node_iterator __tmp(*this); this->_M_incr(); return __tmp; } }; template struct _Node_const_iterator : public _Node_iterator_base<_Value, __cache> { typedef _Value value_type; typedef const _Value* pointer; typedef const _Value& reference; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; _Node_const_iterator() : _Node_iterator_base<_Value, __cache>(0) { } explicit _Node_const_iterator(_Hash_node<_Value, __cache>* __p) : _Node_iterator_base<_Value, __cache>(__p) { } _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, __cache>& __x) : _Node_iterator_base<_Value, __cache>(__x._M_cur) { } reference operator*() const { return this->_M_cur->_M_v; } pointer operator->() const { return std::__addressof(this->_M_cur->_M_v); } _Node_const_iterator& operator++() { this->_M_incr(); return *this; } _Node_const_iterator operator++(int) { _Node_const_iterator __tmp(*this); this->_M_incr(); return __tmp; } }; // Many of class template _Hashtable's template parameters are policy // classes. These are defaults for the policies. // Default range hashing function: use division to fold a large number // into the range [0, N). struct _Mod_range_hashing { typedef std::size_t first_argument_type; typedef std::size_t second_argument_type; typedef std::size_t result_type; result_type operator()(first_argument_type __num, second_argument_type __den) const { return __num % __den; } }; // Default ranged hash function H. In principle it should be a // function object composed from objects of type H1 and H2 such that // h(k, N) = h2(h1(k), N), but that would mean making extra copies of // h1 and h2. So instead we'll just use a tag to tell class template // hashtable to do that composition. struct _Default_ranged_hash { }; // Default value for rehash policy. Bucket size is (usually) the // smallest prime that keeps the load factor small enough. struct _Prime_rehash_policy { _Prime_rehash_policy(float __z = 1.0) : _M_max_load_factor(__z), _M_prev_resize(0), _M_next_resize(0) { } float max_load_factor() const noexcept { return _M_max_load_factor; } // Return a bucket size no smaller than n. std::size_t _M_next_bkt(std::size_t __n) const; // Return a bucket count appropriate for n elements std::size_t _M_bkt_for_elements(std::size_t __n) const; // __n_bkt is current bucket count, __n_elt is current element count, // and __n_ins is number of elements to be inserted. Do we need to // increase bucket count? If so, return make_pair(true, n), where n // is the new bucket count. If not, return make_pair(false, 0). std::pair _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, std::size_t __n_ins) const; typedef std::pair _State; _State _M_state() const { return std::make_pair(_M_prev_resize, _M_next_resize); } void _M_reset(const _State& __state) { _M_prev_resize = __state.first; _M_next_resize = __state.second; } enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 }; static const std::size_t _S_growth_factor = 2; float _M_max_load_factor; mutable std::size_t _M_prev_resize; mutable std::size_t _M_next_resize; }; extern const unsigned long __prime_list[]; // XXX This is a hack. There's no good reason for any of // _Prime_rehash_policy's member functions to be inline. // Return a prime no smaller than n. inline std::size_t _Prime_rehash_policy:: _M_next_bkt(std::size_t __n) const { // Optimize lookups involving the first elements of __prime_list. // (useful to speed-up, eg, constructors) static const unsigned char __fast_bkt[12] = { 2, 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11 }; const std::size_t __grown_n = __n * _S_growth_factor; if (__grown_n <= 11) { _M_prev_resize = 0; _M_next_resize = __builtin_ceil(__fast_bkt[__grown_n] * (long double)_M_max_load_factor); return __fast_bkt[__grown_n]; } const unsigned long* __next_bkt = std::lower_bound(__prime_list + 5, __prime_list + _S_n_primes, __grown_n); const unsigned long* __prev_bkt = std::lower_bound(__prime_list + 1, __next_bkt, __n / _S_growth_factor); _M_prev_resize = __builtin_floor(*(__prev_bkt - 1) * (long double)_M_max_load_factor); _M_next_resize = __builtin_ceil(*__next_bkt * (long double)_M_max_load_factor); return *__next_bkt; } // Return the smallest prime p such that alpha p >= n, where alpha // is the load factor. inline std::size_t _Prime_rehash_policy:: _M_bkt_for_elements(std::size_t __n) const { return _M_next_bkt(__builtin_ceil(__n / (long double)_M_max_load_factor)); } // Finds the smallest prime p such that alpha p > __n_elt + __n_ins. // If p > __n_bkt, return make_pair(true, p); otherwise return // make_pair(false, 0). In principle this isn't very different from // _M_bkt_for_elements. // The only tricky part is that we're caching the element count at // which we need to rehash, so we don't have to do a floating-point // multiply for every insertion. inline std::pair _Prime_rehash_policy:: _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, std::size_t __n_ins) const { if (__n_elt + __n_ins >= _M_next_resize) { long double __min_bkts = (__n_elt + __n_ins) / (long double)_M_max_load_factor; if (__min_bkts >= __n_bkt) return std::make_pair(true, _M_next_bkt(__builtin_floor(__min_bkts) + 1)); else { _M_next_resize = __builtin_floor(__n_bkt * (long double)_M_max_load_factor); return std::make_pair(false, 0); } } else if (__n_elt + __n_ins < _M_prev_resize) { long double __min_bkts = (__n_elt + __n_ins) / (long double)_M_max_load_factor; return std::make_pair(true, _M_next_bkt(__builtin_floor(__min_bkts) + 1)); } else return std::make_pair(false, 0); } // Base classes for std::_Hashtable. We define these base classes // because in some cases we want to do different things depending // on the value of a policy class. In some cases the policy class // affects which member functions and nested typedefs are defined; // we handle that by specializing base class templates. Several of // the base class templates need to access other members of class // template _Hashtable, so we use the "curiously recurring template // pattern" for them. // class template _Map_base. If the hashtable has a value type of // the form pair and a key extraction policy that returns the // first part of the pair, the hashtable gets a mapped_type typedef. // If it satisfies those criteria and also has unique keys, then it // also gets an operator[]. template struct _Map_base { }; template struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, false, _Hashtable> { typedef typename _Pair::second_type mapped_type; }; template struct _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable> { typedef typename _Pair::second_type mapped_type; mapped_type& operator[](const _Key& __k); mapped_type& operator[](_Key&& __k); // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 761. unordered_map needs an at() member function. mapped_type& at(const _Key& __k); const mapped_type& at(const _Key& __k) const; }; template typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::mapped_type& _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>:: operator[](const _Key& __k) { _Hashtable* __h = static_cast<_Hashtable*>(this); typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k); std::size_t __n = __h->_M_bucket_index(__k, __code); typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code); if (!__p) return __h->_M_insert_bucket(std::make_pair(__k, mapped_type()), __n, __code)->second; return (__p->_M_v).second; } template typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::mapped_type& _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>:: operator[](_Key&& __k) { _Hashtable* __h = static_cast<_Hashtable*>(this); typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k); std::size_t __n = __h->_M_bucket_index(__k, __code); typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code); if (!__p) return __h->_M_insert_bucket(std::make_pair(std::move(__k), mapped_type()), __n, __code)->second; return (__p->_M_v).second; } template typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::mapped_type& _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>:: at(const _Key& __k) { _Hashtable* __h = static_cast<_Hashtable*>(this); typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k); std::size_t __n = __h->_M_bucket_index(__k, __code); typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code); if (!__p) __throw_out_of_range(__N("_Map_base::at")); return (__p->_M_v).second; } template const typename _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>::mapped_type& _Map_base<_Key, _Pair, std::_Select1st<_Pair>, true, _Hashtable>:: at(const _Key& __k) const { const _Hashtable* __h = static_cast(this); typename _Hashtable::_Hash_code_type __code = __h->_M_hash_code(__k); std::size_t __n = __h->_M_bucket_index(__k, __code); typename _Hashtable::_Node* __p = __h->_M_find_node(__n, __k, __code); if (!__p) __throw_out_of_range(__N("_Map_base::at")); return (__p->_M_v).second; } // class template _Rehash_base. Give hashtable the max_load_factor // functions and reserve iff the rehash policy is _Prime_rehash_policy. template struct _Rehash_base { }; template struct _Rehash_base<_Prime_rehash_policy, _Hashtable> { float max_load_factor() const noexcept { const _Hashtable* __this = static_cast(this); return __this->__rehash_policy().max_load_factor(); } void max_load_factor(float __z) { _Hashtable* __this = static_cast<_Hashtable*>(this); __this->__rehash_policy(_Prime_rehash_policy(__z)); } void reserve(std::size_t __n) { _Hashtable* __this = static_cast<_Hashtable*>(this); __this->rehash(__builtin_ceil(__n / max_load_factor())); } }; // Helper class using EBO when it is not forbidden, type is not final, // and when it worth it, type is empty. template struct _Hashtable_ebo_helper; // Specialization using EBO. template struct _Hashtable_ebo_helper<_Nm, _Tp, true> // See PR53067. : public _Tp { _Hashtable_ebo_helper() = default; _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp) { } static const _Tp& _S_cget(const _Hashtable_ebo_helper& __eboh) { return static_cast(__eboh); } static _Tp& _S_get(_Hashtable_ebo_helper& __eboh) { return static_cast<_Tp&>(__eboh); } }; // Specialization not using EBO. template struct _Hashtable_ebo_helper<_Nm, _Tp, false> { _Hashtable_ebo_helper() = default; _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp) { } static const _Tp& _S_cget(const _Hashtable_ebo_helper& __eboh) { return __eboh._M_tp; } static _Tp& _S_get(_Hashtable_ebo_helper& __eboh) { return __eboh._M_tp; } private: _Tp _M_tp; }; // Class template _Hash_code_base. Encapsulates two policy issues that // aren't quite orthogonal. // (1) the difference between using a ranged hash function and using // the combination of a hash function and a range-hashing function. // In the former case we don't have such things as hash codes, so // we have a dummy type as placeholder. // (2) Whether or not we cache hash codes. Caching hash codes is // meaningless if we have a ranged hash function. // We also put the key extraction objects here, for convenience. // // Each specialization derives from one or more of the template parameters to // benefit from Ebo. This is important as this type is inherited in some cases // by the _Local_iterator_base type used to implement local_iterator and // const_local_iterator. As with any iterator type we prefer to make it as // small as possible. // Primary template: unused except as a hook for specializations. template struct _Hash_code_base; // Specialization: ranged hash function, no caching hash codes. H1 // and H2 are provided but ignored. We define a dummy hash code type. template struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> // See PR53067. : public _Hashtable_ebo_helper<0, _ExtractKey>, public _Hashtable_ebo_helper<1, _Hash> { private: typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; typedef _Hashtable_ebo_helper<1, _Hash> _EboHash; protected: // We need the default constructor for the local iterators. _Hash_code_base() = default; _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&, const _Hash& __h) : _EboExtractKey(__ex), _EboHash(__h) { } typedef void* _Hash_code_type; _Hash_code_type _M_hash_code(const _Key& __key) const { return 0; } std::size_t _M_bucket_index(const _Key& __k, _Hash_code_type, std::size_t __n) const { return _M_ranged_hash()(__k, __n); } std::size_t _M_bucket_index(const _Hash_node<_Value, false>* __p, std::size_t __n) const { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); } void _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const { } void _M_copy_code(_Hash_node<_Value, false>*, const _Hash_node<_Value, false>*) const { } void _M_swap(_Hash_code_base& __x) { std::swap(_M_extract(), __x._M_extract()); std::swap(_M_ranged_hash(), __x._M_ranged_hash()); } protected: const _ExtractKey& _M_extract() const { return _EboExtractKey::_S_cget(*this); } _ExtractKey& _M_extract() { return _EboExtractKey::_S_get(*this); } const _Hash& _M_ranged_hash() const { return _EboHash::_S_cget(*this); } _Hash& _M_ranged_hash() { return _EboHash::_S_get(*this); } }; // No specialization for ranged hash function while caching hash codes. // That combination is meaningless, and trying to do it is an error. // Specialization: ranged hash function, cache hash codes. This // combination is meaningless, so we provide only a declaration // and no definition. template struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>; // Specialization: hash function and range-hashing function, no // caching of hash codes. // Provides typedef and accessor required by TR1. template struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Default_ranged_hash, false> // See PR53067. : public _Hashtable_ebo_helper<0, _ExtractKey>, public _Hashtable_ebo_helper<1, _H1>, public _Hashtable_ebo_helper<2, _H2> { private: typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; typedef _Hashtable_ebo_helper<1, _H1> _EboH1; typedef _Hashtable_ebo_helper<2, _H2> _EboH2; public: typedef _H1 hasher; hasher hash_function() const { return _M_h1(); } protected: // We need the default constructor for the local iterators. _Hash_code_base() = default; _Hash_code_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, const _Default_ranged_hash&) : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { } typedef std::size_t _Hash_code_type; _Hash_code_type _M_hash_code(const _Key& __k) const { return _M_h1()(__k); } std::size_t _M_bucket_index(const _Key&, _Hash_code_type __c, std::size_t __n) const { return _M_h2()(__c, __n); } std::size_t _M_bucket_index(const _Hash_node<_Value, false>* __p, std::size_t __n) const { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); } void _M_store_code(_Hash_node<_Value, false>*, _Hash_code_type) const { } void _M_copy_code(_Hash_node<_Value, false>*, const _Hash_node<_Value, false>*) const { } void _M_swap(_Hash_code_base& __x) { std::swap(_M_extract(), __x._M_extract()); std::swap(_M_h1(), __x._M_h1()); std::swap(_M_h2(), __x._M_h2()); } protected: const _ExtractKey& _M_extract() const { return _EboExtractKey::_S_cget(*this); } _ExtractKey& _M_extract() { return _EboExtractKey::_S_get(*this); } const _H1& _M_h1() const { return _EboH1::_S_cget(*this); } _H1& _M_h1() { return _EboH1::_S_get(*this); } const _H2& _M_h2() const { return _EboH2::_S_cget(*this); } _H2& _M_h2() { return _EboH2::_S_get(*this); } }; // Specialization: hash function and range-hashing function, // caching hash codes. H is provided but ignored. Provides // typedef and accessor required by TR1. template struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Default_ranged_hash, true> // See PR53067. : public _Hashtable_ebo_helper<0, _ExtractKey>, public _Hashtable_ebo_helper<1, _H1>, public _Hashtable_ebo_helper<2, _H2> { private: typedef _Hashtable_ebo_helper<0, _ExtractKey> _EboExtractKey; typedef _Hashtable_ebo_helper<1, _H1> _EboH1; typedef _Hashtable_ebo_helper<2, _H2> _EboH2; public: typedef _H1 hasher; hasher hash_function() const { return _M_h1(); } protected: _Hash_code_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, const _Default_ranged_hash&) : _EboExtractKey(__ex), _EboH1(__h1), _EboH2(__h2) { } typedef std::size_t _Hash_code_type; _Hash_code_type _M_hash_code(const _Key& __k) const { return _M_h1()(__k); } std::size_t _M_bucket_index(const _Key&, _Hash_code_type __c, std::size_t __n) const { return _M_h2()(__c, __n); } std::size_t _M_bucket_index(const _Hash_node<_Value, true>* __p, std::size_t __n) const { return _M_h2()(__p->_M_hash_code, __n); } void _M_store_code(_Hash_node<_Value, true>* __n, _Hash_code_type __c) const { __n->_M_hash_code = __c; } void _M_copy_code(_Hash_node<_Value, true>* __to, const _Hash_node<_Value, true>* __from) const { __to->_M_hash_code = __from->_M_hash_code; } void _M_swap(_Hash_code_base& __x) { std::swap(_M_extract(), __x._M_extract()); std::swap(_M_h1(), __x._M_h1()); std::swap(_M_h2(), __x._M_h2()); } protected: const _ExtractKey& _M_extract() const { return _EboExtractKey::_S_cget(*this); } _ExtractKey& _M_extract() { return _EboExtractKey::_S_get(*this); } const _H1& _M_h1() const { return _EboH1::_S_cget(*this); } _H1& _M_h1() { return _EboH1::_S_get(*this); } const _H2& _M_h2() const { return _EboH2::_S_cget(*this); } _H2& _M_h2() { return _EboH2::_S_get(*this); } }; template struct _Equal_helper; template struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true> { static bool _S_equals(const _Equal& __eq, const _ExtractKey& __extract, const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n) { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v)); } }; template struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false> { static bool _S_equals(const _Equal& __eq, const _ExtractKey& __extract, const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n) { return __eq(__k, __extract(__n->_M_v)); } }; // Helper class adding management of _Equal functor to _Hash_code_base // type. template struct _Hashtable_base // See PR53067. : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache_hash_code>, public _Hashtable_ebo_helper<0, _Equal> { private: typedef _Hashtable_ebo_helper<0, _Equal> _EboEqual; protected: typedef _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache_hash_code> _HCBase; typedef typename _HCBase::_Hash_code_type _Hash_code_type; _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, const _Hash& __hash, const _Equal& __eq) : _HCBase(__ex, __h1, __h2, __hash), _EboEqual(__eq) { } bool _M_equals(const _Key& __k, _Hash_code_type __c, _Hash_node<_Value, __cache_hash_code>* __n) const { typedef _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _Hash_code_type, __cache_hash_code> _EqualHelper; return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(), __k, __c, __n); } void _M_swap(_Hashtable_base& __x) { _HCBase::_M_swap(__x); std::swap(_M_eq(), __x._M_eq()); } protected: const _Equal& _M_eq() const { return _EboEqual::_S_cget(*this); } _Equal& _M_eq() { return _EboEqual::_S_get(*this); } }; // Local iterators, used to iterate within a bucket but not between // buckets. template struct _Local_iterator_base; template struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true> // See PR53067. : public _H2 { _Local_iterator_base() = default; _Local_iterator_base(_Hash_node<_Value, true>* __p, std::size_t __bkt, std::size_t __bkt_count) : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } void _M_incr() { _M_cur = _M_cur->_M_next(); if (_M_cur) { std::size_t __bkt = _M_h2()(_M_cur->_M_hash_code, _M_bucket_count); if (__bkt != _M_bucket) _M_cur = nullptr; } } const _H2& _M_h2() const { return *this; } _Hash_node<_Value, true>* _M_cur; std::size_t _M_bucket; std::size_t _M_bucket_count; }; template struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> // See PR53067. : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> { _Local_iterator_base() = default; _Local_iterator_base(_Hash_node<_Value, false>* __p, std::size_t __bkt, std::size_t __bkt_count) : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } void _M_incr() { _M_cur = _M_cur->_M_next(); if (_M_cur) { std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count); if (__bkt != _M_bucket) _M_cur = nullptr; } } _Hash_node<_Value, false>* _M_cur; std::size_t _M_bucket; std::size_t _M_bucket_count; }; template inline bool operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>& __x, const _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>& __y) { return __x._M_cur == __y._M_cur; } template inline bool operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>& __x, const _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>& __y) { return __x._M_cur != __y._M_cur; } template struct _Local_iterator : public _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache> { typedef _Value value_type; typedef typename std::conditional<__constant_iterators, const _Value*, _Value*>::type pointer; typedef typename std::conditional<__constant_iterators, const _Value&, _Value&>::type reference; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; _Local_iterator() = default; explicit _Local_iterator(_Hash_node<_Value, __cache>* __p, std::size_t __bkt, std::size_t __bkt_count) : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>(__p, __bkt, __bkt_count) { } reference operator*() const { return this->_M_cur->_M_v; } pointer operator->() const { return std::__addressof(this->_M_cur->_M_v); } _Local_iterator& operator++() { this->_M_incr(); return *this; } _Local_iterator operator++(int) { _Local_iterator __tmp(*this); this->_M_incr(); return __tmp; } }; template struct _Local_const_iterator : public _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache> { typedef _Value value_type; typedef const _Value* pointer; typedef const _Value& reference; typedef std::ptrdiff_t difference_type; typedef std::forward_iterator_tag iterator_category; _Local_const_iterator() = default; explicit _Local_const_iterator(_Hash_node<_Value, __cache>* __p, std::size_t __bkt, std::size_t __bkt_count) : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>(__p, __bkt, __bkt_count) { } _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __constant_iterators, __cache>& __x) : _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, __cache>(__x._M_cur, __x._M_bucket, __x._M_bucket_count) { } reference operator*() const { return this->_M_cur->_M_v; } pointer operator->() const { return std::__addressof(this->_M_cur->_M_v); } _Local_const_iterator& operator++() { this->_M_incr(); return *this; } _Local_const_iterator operator++(int) { _Local_const_iterator __tmp(*this); this->_M_incr(); return __tmp; } }; // Class template _Equality_base. This is for implementing equality // comparison for unordered containers, per N3068, by John Lakos and // Pablo Halpern. Algorithmically, we follow closely the reference // implementations therein. template struct _Equality_base; template struct _Equality_base<_ExtractKey, true, _Hashtable> { bool _M_equal(const _Hashtable&) const; }; template bool _Equality_base<_ExtractKey, true, _Hashtable>:: _M_equal(const _Hashtable& __other) const { const _Hashtable* __this = static_cast(this); if (__this->size() != __other.size()) return false; for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) { const auto __ity = __other.find(_ExtractKey()(*__itx)); if (__ity == __other.end() || !bool(*__ity == *__itx)) return false; } return true; } template struct _Equality_base<_ExtractKey, false, _Hashtable> { bool _M_equal(const _Hashtable&) const; private: template static bool _S_is_permutation(_Uiterator, _Uiterator, _Uiterator); }; // See std::is_permutation in N3068. template template bool _Equality_base<_ExtractKey, false, _Hashtable>:: _S_is_permutation(_Uiterator __first1, _Uiterator __last1, _Uiterator __first2) { for (; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) break; if (__first1 == __last1) return true; _Uiterator __last2 = __first2; std::advance(__last2, std::distance(__first1, __last1)); for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1) { _Uiterator __tmp = __first1; while (__tmp != __it1 && !bool(*__tmp == *__it1)) ++__tmp; // We've seen this one before. if (__tmp != __it1) continue; std::ptrdiff_t __n2 = 0; for (__tmp = __first2; __tmp != __last2; ++__tmp) if (*__tmp == *__it1) ++__n2; if (!__n2) return false; std::ptrdiff_t __n1 = 0; for (__tmp = __it1; __tmp != __last1; ++__tmp) if (*__tmp == *__it1) ++__n1; if (__n1 != __n2) return false; } return true; } template bool _Equality_base<_ExtractKey, false, _Hashtable>:: _M_equal(const _Hashtable& __other) const { const _Hashtable* __this = static_cast(this); if (__this->size() != __other.size()) return false; for (auto __itx = __this->begin(); __itx != __this->end();) { const auto __xrange = __this->equal_range(_ExtractKey()(*__itx)); const auto __yrange = __other.equal_range(_ExtractKey()(*__itx)); if (std::distance(__xrange.first, __xrange.second) != std::distance(__yrange.first, __yrange.second)) return false; if (!_S_is_permutation(__xrange.first, __xrange.second, __yrange.first)) return false; __itx = __xrange.second; } return true; } _GLIBCXX_END_NAMESPACE_VERSION } // namespace __detail } // namespace std #endif // _HASHTABLE_POLICY_H