/* * Copyright (c) 2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "opt_ah.h" #include "ah.h" #include "ah_internal.h" #include "ah_devid.h" #ifdef AH_DEBUG #include "ah_desc.h" /* NB: for HAL_PHYERR* */ #endif #include "ar9300/ar9300.h" #include "ar9300/ar9300eep.h" #include "ar9300/ar9300template_generic.h" #include "ar9300/ar9300template_xb112.h" #include "ar9300/ar9300template_hb116.h" #include "ar9300/ar9300template_xb113.h" #include "ar9300/ar9300template_hb112.h" #include "ar9300/ar9300template_ap121.h" #include "ar9300/ar9300template_osprey_k31.h" #include "ar9300/ar9300template_wasp_2.h" #include "ar9300/ar9300template_wasp_k31.h" #include "ar9300/ar9300template_aphrodite.h" #include "ar9300/ar9300reg.h" #include "ar9300/ar9300phy.h" #if AH_BYTE_ORDER == AH_BIG_ENDIAN void ar9300_swap_eeprom(ar9300_eeprom_t *eep); void ar9300_eeprom_template_swap(void); #endif static u_int16_t ar9300_eeprom_get_spur_chan(struct ath_hal *ah, int spur_chan, HAL_BOOL is_2ghz); #ifdef UNUSED static inline HAL_BOOL ar9300_fill_eeprom(struct ath_hal *ah); static inline HAL_STATUS ar9300_check_eeprom(struct ath_hal *ah); #endif static ar9300_eeprom_t *default9300[] = { &ar9300_template_generic, &ar9300_template_xb112, &ar9300_template_hb116, &ar9300_template_hb112, &ar9300_template_xb113, &ar9300_template_ap121, &ar9300_template_wasp_2, &ar9300_template_wasp_k31, &ar9300_template_osprey_k31, &ar9300_template_aphrodite, }; /* * Different types of memory where the calibration data might be stored. * All types are searched in ar9300_eeprom_restore() * in the order flash, eeprom, otp. * To disable searching a type, set its parameter to 0. */ /* * This is where we look for the calibration data. * must be set before ath_attach() is called */ static int calibration_data_try = calibration_data_none; static int calibration_data_try_address = 0; /* * Set the type of memory used to store calibration data. * Used by nart to force reading/writing of a specific type. * The driver can normally allow autodetection * by setting source to calibration_data_none=0. */ void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source) { if (ah != 0) { AH9300(ah)->calibration_data_source = source; } else { calibration_data_try = source; } } int32_t ar9300_calibration_data_get(struct ath_hal *ah) { if (ah != 0) { return AH9300(ah)->calibration_data_source; } else { return calibration_data_try; } } /* * Set the address of first byte used to store calibration data. * Used by nart to force reading/writing at a specific address. * The driver can normally allow autodetection by setting size=0. */ void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t size) { if (ah != 0) { AH9300(ah)->calibration_data_source_address = size; } else { calibration_data_try_address = size; } } int32_t ar9300_calibration_data_address_get(struct ath_hal *ah) { if (ah != 0) { return AH9300(ah)->calibration_data_source_address; } else { return calibration_data_try_address; } } /* * This is the template that is loaded if ar9300_eeprom_restore() * can't find valid data in the memory. */ static int Ar9300_eeprom_template_preference = ar9300_eeprom_template_generic; void ar9300_eeprom_template_preference(int32_t value) { Ar9300_eeprom_template_preference = value; } /* * Install the specified default template. * Overwrites any existing calibration and configuration information in memory. */ int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value) { struct ath_hal_9300 *ahp = AH9300(ah); ar9300_eeprom_t *mptr, *dptr; int mdata_size; mptr = &ahp->ah_eeprom; mdata_size = ar9300_eeprom_struct_size(); if (mptr != 0) { #if 0 calibration_data_source = calibration_data_none; calibration_data_source_address = 0; #endif dptr = ar9300_eeprom_struct_default_find_by_id(value); if (dptr != 0) { OS_MEMCPY(mptr, dptr, mdata_size); return 0; } } return -1; } static int ar9300_eeprom_restore_something(struct ath_hal *ah, ar9300_eeprom_t *mptr, int mdata_size) { int it; ar9300_eeprom_t *dptr; int nptr; nptr = -1; /* * if we didn't find any blocks in the memory, * put the prefered template in place */ if (nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_none; AH9300(ah)->calibration_data_source_address = 0; dptr = ar9300_eeprom_struct_default_find_by_id( Ar9300_eeprom_template_preference); if (dptr != 0) { OS_MEMCPY(mptr, dptr, mdata_size); nptr = 0; } } /* * if we didn't find the prefered one, * put the normal default template in place */ if (nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_none; AH9300(ah)->calibration_data_source_address = 0; dptr = ar9300_eeprom_struct_default_find_by_id( ar9300_eeprom_template_default); if (dptr != 0) { OS_MEMCPY(mptr, dptr, mdata_size); nptr = 0; } } /* * if we can't find the best template, put any old template in place * presume that newer ones are better, so search backwards */ if (nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_none; AH9300(ah)->calibration_data_source_address = 0; for (it = ar9300_eeprom_struct_default_many() - 1; it >= 0; it--) { dptr = ar9300_eeprom_struct_default(it); if (dptr != 0) { OS_MEMCPY(mptr, dptr, mdata_size); nptr = 0; break; } } } return nptr; } /* * Read 16 bits of data from offset into *data */ HAL_BOOL ar9300_eeprom_read_word(struct ath_hal *ah, u_int off, u_int16_t *data) { if (AR_SREV_OSPREY(ah) || AR_SREV_POSEIDON(ah)) { (void) OS_REG_READ(ah, AR9300_EEPROM_OFFSET + (off << AR9300_EEPROM_S)); if (!ath_hal_wait(ah, AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA), AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) { return AH_FALSE; } *data = MS(OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA)), AR_EEPROM_STATUS_DATA_VAL); return AH_TRUE; } else { *data = 0; return AH_FALSE; } } HAL_BOOL ar9300_otp_read(struct ath_hal *ah, u_int off, u_int32_t *data, HAL_BOOL is_wifi) { int time_out = 1000; int status = 0; u_int32_t addr; if (AR_SREV_HONEYBEE(ah)){ /* no OTP for Honeybee */ return false; } addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah))? OTP_MEM_START_ADDRESS_WASP : OTP_MEM_START_ADDRESS; if (!is_wifi) { addr = BTOTP_MEM_START_ADDRESS; } addr += off * 4; /* OTP is 32 bit addressable */ (void) OS_REG_READ(ah, addr); addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ? OTP_STATUS0_OTP_SM_BUSY_WASP : OTP_STATUS0_OTP_SM_BUSY; if (!is_wifi) { addr = BTOTP_STATUS0_OTP_SM_BUSY; } while ((time_out > 0) && (!status)) { /* wait for access complete */ /* Read data valid, access not busy, sm not busy */ status = ((OS_REG_READ(ah, addr) & 0x7) == 0x4) ? 1 : 0; time_out--; } if (time_out == 0) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Timed out during OTP Status0 validation\n", __func__); return AH_FALSE; } addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ? OTP_STATUS1_EFUSE_READ_DATA_WASP : OTP_STATUS1_EFUSE_READ_DATA; if (!is_wifi) { addr = BTOTP_STATUS1_EFUSE_READ_DATA; } *data = OS_REG_READ(ah, addr); return AH_TRUE; } static HAL_STATUS ar9300_flash_map(struct ath_hal *ah) { /* XXX disable flash remapping for now (ie, SoC support) */ ath_hal_printf(ah, "%s: unimplemented for now\n", __func__); #if 0 struct ath_hal_9300 *ahp = AH9300(ah); #if defined(AR9100) || defined(__NetBSD__) ahp->ah_cal_mem = OS_REMAP(ah, AR9300_EEPROM_START_ADDR, AR9300_EEPROM_MAX); #else ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st), (AR9300_EEPROM_MAX + AR9300_FLASH_CAL_START_OFFSET)); #endif if (!ahp->ah_cal_mem) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: cannot remap eeprom region \n", __func__); return HAL_EIO; } #endif return HAL_OK; } HAL_BOOL ar9300_flash_read(struct ath_hal *ah, u_int off, u_int16_t *data) { struct ath_hal_9300 *ahp = AH9300(ah); *data = ((u_int16_t *)ahp->ah_cal_mem)[off]; return AH_TRUE; } HAL_BOOL ar9300_flash_write(struct ath_hal *ah, u_int off, u_int16_t data) { struct ath_hal_9300 *ahp = AH9300(ah); ((u_int16_t *)ahp->ah_cal_mem)[off] = data; return AH_TRUE; } HAL_STATUS ar9300_eeprom_attach(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); ahp->try_dram = 1; ahp->try_eeprom = 1; ahp->try_otp = 1; #ifdef ATH_CAL_NAND_FLASH ahp->try_nand = 1; #else ahp->try_flash = 1; #endif ahp->calibration_data_source = calibration_data_none; ahp->calibration_data_source_address = 0; ahp->calibration_data_try = calibration_data_try; ahp->calibration_data_try_address = 0; /* * In case flash will be used for EEPROM. Otherwise ahp->ah_cal_mem * must be set to NULL or the real EEPROM address. */ ar9300_flash_map(ah); /* * ###### This function always return NO SPUR. * This is not true for many board designs. * Does anyone use this? */ AH_PRIVATE(ah)->ah_getSpurChan = ar9300_eeprom_get_spur_chan; #ifdef OLDCODE /* XXX Needs to be moved for dynamic selection */ ahp->ah_eeprom = *(default9300[ar9300_eeprom_template_default]); if (AR_SREV_HORNET(ah)) { /* Set default values for Hornet. */ ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags = AR9300_OPFLAGS_11G; ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11; } else if (AR_SREV_POSEIDON(ah)) { /* Set default values for Poseidon. */ ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags = AR9300_OPFLAGS_11G; ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11; } if (AH_PRIVATE(ah)->ah_config.ath_hal_skip_eeprom_read) { ahp->ah_emu_eeprom = 1; return HAL_OK; } ahp->ah_emu_eeprom = 1; #ifdef UNUSED #endif if (!ar9300_fill_eeprom(ah)) { return HAL_EIO; } return HAL_OK; /* return ar9300_check_eeprom(ah); */ #else ahp->ah_emu_eeprom = 1; #if 0 /*#ifdef MDK_AP*/ /* MDK_AP is defined only in NART AP build */ u_int8_t buffer[10]; int caldata_check = 0; ar9300_calibration_data_read_flash( ah, FLASH_BASE_CALDATA_OFFSET, buffer, 4); printf("flash caldata:: %x\n", buffer[0]); if (buffer[0] != 0xff) { caldata_check = 1; } if (!caldata_check) { ar9300_eeprom_t *mptr; int mdata_size; if (AR_SREV_HORNET(ah)) { /* XXX: For initial testing */ mptr = &ahp->ah_eeprom; mdata_size = ar9300_eeprom_struct_size(); ahp->ah_eeprom = ar9300_template_ap121; ahp->ah_emu_eeprom = 1; /* need it to let art save in to flash ????? */ calibration_data_source = calibration_data_flash; } else if (AR_SREV_WASP(ah)) { /* XXX: For initial testing */ ath_hal_printf(ah, " wasp eep attach\n"); mptr = &ahp->ah_eeprom; mdata_size = ar9300_eeprom_struct_size(); ahp->ah_eeprom = ar9300_template_generic; ahp->ah_eeprom.mac_addr[0] = 0x00; ahp->ah_eeprom.mac_addr[1] = 0x03; ahp->ah_eeprom.mac_addr[2] = 0x7F; ahp->ah_eeprom.mac_addr[3] = 0xBA; ahp->ah_eeprom.mac_addr[4] = 0xD0; ahp->ah_eeprom.mac_addr[5] = 0x00; ahp->ah_emu_eeprom = 1; ahp->ah_eeprom.base_eep_header.txrx_mask = 0x33; ahp->ah_eeprom.base_eep_header.txrxgain = 0x10; /* need it to let art save in to flash ????? */ calibration_data_source = calibration_data_flash; } return HAL_OK; } #endif if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) { ahp->try_eeprom = 0; } if (AR_SREV_HONEYBEE(ah)) { ahp->try_otp = 0; } if (!ar9300_eeprom_restore(ah)) { return HAL_EIO; } return HAL_OK; #endif } u_int32_t ar9300_eeprom_get(struct ath_hal_9300 *ahp, EEPROM_PARAM param) { ar9300_eeprom_t *eep = &ahp->ah_eeprom; OSPREY_BASE_EEP_HEADER *p_base = &eep->base_eep_header; OSPREY_BASE_EXTENSION_1 *base_ext1 = &eep->base_ext1; switch (param) { #ifdef NOTYET case EEP_NFTHRESH_5: return p_modal[0].noise_floor_thresh_ch[0]; case EEP_NFTHRESH_2: return p_modal[1].noise_floor_thresh_ch[0]; #endif case EEP_MAC_LSW: return eep->mac_addr[0] << 8 | eep->mac_addr[1]; case EEP_MAC_MID: return eep->mac_addr[2] << 8 | eep->mac_addr[3]; case EEP_MAC_MSW: return eep->mac_addr[4] << 8 | eep->mac_addr[5]; case EEP_REG_0: return p_base->reg_dmn[0]; case EEP_REG_1: return p_base->reg_dmn[1]; case EEP_OP_CAP: return p_base->device_cap; case EEP_OP_MODE: return p_base->op_cap_flags.op_flags; case EEP_RF_SILENT: return p_base->rf_silent; #ifdef NOTYET case EEP_OB_5: return p_modal[0].ob; case EEP_DB_5: return p_modal[0].db; case EEP_OB_2: return p_modal[1].ob; case EEP_DB_2: return p_modal[1].db; case EEP_MINOR_REV: return p_base->eeprom_version & AR9300_EEP_VER_MINOR_MASK; #endif case EEP_TX_MASK: return (p_base->txrx_mask >> 4) & 0xf; case EEP_RX_MASK: return p_base->txrx_mask & 0xf; #ifdef NOTYET case EEP_FSTCLK_5G: return p_base->fast_clk5g; case EEP_RXGAIN_TYPE: return p_base->rx_gain_type; #endif case EEP_DRIVE_STRENGTH: #define AR9300_EEP_BASE_DRIVE_STRENGTH 0x1 return p_base->misc_configuration & AR9300_EEP_BASE_DRIVE_STRENGTH; case EEP_INTERNAL_REGULATOR: /* Bit 4 is internal regulator flag */ return ((p_base->feature_enable & 0x10) >> 4); case EEP_SWREG: return (p_base->swreg); case EEP_PAPRD_ENABLED: /* Bit 5 is paprd flag */ return ((p_base->feature_enable & 0x20) >> 5); case EEP_ANTDIV_control: return (u_int32_t)(base_ext1->ant_div_control); case EEP_CHAIN_MASK_REDUCE: return ((p_base->misc_configuration >> 3) & 0x1); case EEP_OL_PWRCTRL: return 0; case EEP_DEV_TYPE: return p_base->device_type; default: HALASSERT(0); return 0; } } /******************************************************************************/ /*! ** \brief EEPROM fixup code for INI values ** ** This routine provides a place to insert "fixup" code for specific devices ** that need to modify INI values based on EEPROM values, BEFORE the INI values ** are written. ** Certain registers in the INI file can only be written once without ** undesired side effects, and this provides a place for EEPROM overrides ** in these cases. ** ** This is called at attach time once. It should not affect run time ** performance at all ** ** \param ah Pointer to HAL object (this) ** \param p_eep_data Pointer to (filled in) eeprom data structure ** \param reg register being inspected on this call ** \param value value in INI file ** ** \return Updated value for INI file. */ u_int32_t ar9300_ini_fixup(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data, u_int32_t reg, u_int32_t value) { HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, "ar9300_eeprom_def_ini_fixup: FIXME\n"); #if 0 BASE_EEPDEF_HEADER *p_base = &(p_eep_data->base_eep_header); switch (AH_PRIVATE(ah)->ah_devid) { case AR9300_DEVID_AR9300_PCI: /* ** Need to set the external/internal regulator bit to the proper value. ** Can only write this ONCE. */ if ( reg == 0x7894 ) { /* ** Check for an EEPROM data structure of "0x0b" or better */ HALDEBUG(ah, HAL_DEBUG_EEPROM, "ini VAL: %x EEPROM: %x\n", value, (p_base->version & 0xff)); if ( (p_base->version & 0xff) > 0x0a) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "PWDCLKIND: %d\n", p_base->pwdclkind); value &= ~AR_AN_TOP2_PWDCLKIND; value |= AR_AN_TOP2_PWDCLKIND & (p_base->pwdclkind << AR_AN_TOP2_PWDCLKIND_S); } else { HALDEBUG(ah, HAL_DEBUG_EEPROM, "PWDCLKIND Earlier Rev\n"); } HALDEBUG(ah, HAL_DEBUG_EEPROM, "final ini VAL: %x\n", value); } break; } return (value); #else return 0; #endif } /* * Returns the interpolated y value corresponding to the specified x value * from the np ordered pairs of data (px,py). * The pairs do not have to be in any order. * If the specified x value is less than any of the px, * the returned y value is equal to the py for the lowest px. * If the specified x value is greater than any of the px, * the returned y value is equal to the py for the highest px. */ static int interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np) { int ip = 0; int lx = 0, ly = 0, lhave = 0; int hx = 0, hy = 0, hhave = 0; int dx = 0; int y = 0; int bf, factor, plus; lhave = 0; hhave = 0; /* * identify best lower and higher x calibration measurement */ for (ip = 0; ip < np; ip++) { dx = x - px[ip]; /* this measurement is higher than our desired x */ if (dx <= 0) { if (!hhave || dx > (x - hx)) { /* new best higher x measurement */ hx = px[ip]; hy = py[ip]; hhave = 1; } } /* this measurement is lower than our desired x */ if (dx >= 0) { if (!lhave || dx < (x - lx)) { /* new best lower x measurement */ lx = px[ip]; ly = py[ip]; lhave = 1; } } } /* the low x is good */ if (lhave) { /* so is the high x */ if (hhave) { /* they're the same, so just pick one */ if (hx == lx) { y = ly; } else { /* interpolate with round off */ bf = (2 * (hy - ly) * (x - lx)) / (hx - lx); plus = (bf % 2); factor = bf / 2; y = ly + factor + plus; } } else { /* only low is good, use it */ y = ly; } } else if (hhave) { /* only high is good, use it */ y = hy; } else { /* nothing is good,this should never happen unless np=0, ???? */ y = -(1 << 30); } return y; } u_int8_t ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz) { u_int16_t num_piers, i; int32_t target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS]; int32_t freq_array[OSPREY_NUM_5G_20_TARGET_POWERS]; u_int8_t *p_freq_bin; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; CAL_TARGET_POWER_LEG *p_eeprom_target_pwr; if (is_2ghz) { num_piers = OSPREY_NUM_2G_20_TARGET_POWERS; p_eeprom_target_pwr = eep->cal_target_power_2g; p_freq_bin = eep->cal_target_freqbin_2g; } else { num_piers = OSPREY_NUM_5G_20_TARGET_POWERS; p_eeprom_target_pwr = eep->cal_target_power_5g; p_freq_bin = eep->cal_target_freqbin_5g; } /* * create array of channels and targetpower from * targetpower piers stored on eeprom */ for (i = 0; i < num_piers; i++) { freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz); target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index]; } /* interpolate to get target power for given frequency */ return ((u_int8_t)interpolate( (int32_t)freq, freq_array, target_power_array, num_piers)); } u_int8_t ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz) { u_int16_t num_piers, i; int32_t target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS]; int32_t freq_array[OSPREY_NUM_5G_20_TARGET_POWERS]; u_int8_t *p_freq_bin; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr; if (is_2ghz) { num_piers = OSPREY_NUM_2G_20_TARGET_POWERS; p_eeprom_target_pwr = eep->cal_target_power_2g_ht20; p_freq_bin = eep->cal_target_freqbin_2g_ht20; } else { num_piers = OSPREY_NUM_5G_20_TARGET_POWERS; p_eeprom_target_pwr = eep->cal_target_power_5g_ht20; p_freq_bin = eep->cal_target_freqbin_5g_ht20; } /* * create array of channels and targetpower from * targetpower piers stored on eeprom */ for (i = 0; i < num_piers; i++) { freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz); target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index]; } /* interpolate to get target power for given frequency */ return ((u_int8_t)interpolate( (int32_t)freq, freq_array, target_power_array, num_piers)); } u_int8_t ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq, HAL_BOOL is_2ghz) { u_int16_t num_piers, i; int32_t target_power_array[OSPREY_NUM_5G_40_TARGET_POWERS]; int32_t freq_array[OSPREY_NUM_5G_40_TARGET_POWERS]; u_int8_t *p_freq_bin; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr; if (is_2ghz) { num_piers = OSPREY_NUM_2G_40_TARGET_POWERS; p_eeprom_target_pwr = eep->cal_target_power_2g_ht40; p_freq_bin = eep->cal_target_freqbin_2g_ht40; } else { num_piers = OSPREY_NUM_5G_40_TARGET_POWERS; p_eeprom_target_pwr = eep->cal_target_power_5g_ht40; p_freq_bin = eep->cal_target_freqbin_5g_ht40; } /* * create array of channels and targetpower from * targetpower piers stored on eeprom */ for (i = 0; i < num_piers; i++) { freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz); target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index]; } /* interpolate to get target power for given frequency */ return ((u_int8_t)interpolate( (int32_t)freq, freq_array, target_power_array, num_piers)); } u_int8_t ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index, u_int16_t freq) { u_int16_t num_piers = OSPREY_NUM_2G_CCK_TARGET_POWERS, i; int32_t target_power_array[OSPREY_NUM_2G_CCK_TARGET_POWERS]; int32_t freq_array[OSPREY_NUM_2G_CCK_TARGET_POWERS]; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; u_int8_t *p_freq_bin = eep->cal_target_freqbin_cck; CAL_TARGET_POWER_LEG *p_eeprom_target_pwr = eep->cal_target_power_cck; /* * create array of channels and targetpower from * targetpower piers stored on eeprom */ for (i = 0; i < num_piers; i++) { freq_array[i] = FBIN2FREQ(p_freq_bin[i], 1); target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index]; } /* interpolate to get target power for given frequency */ return ((u_int8_t)interpolate( (int32_t)freq, freq_array, target_power_array, num_piers)); } /* * Set tx power registers to array of values passed in */ int ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array) { #define POW_SM(_r, _s) (((_r) & 0x3f) << (_s)) /* make sure forced gain is not set */ #if 0 field_write("force_dac_gain", 0); OS_REG_WRITE(ah, 0xa3f8, 0); field_write("force_tx_gain", 0); #endif OS_REG_WRITE(ah, 0xa458, 0); /* Write the OFDM power per rate set */ /* 6 (LSB), 9, 12, 18 (MSB) */ OS_REG_WRITE(ah, 0xa3c0, POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0) ); /* 24 (LSB), 36, 48, 54 (MSB) */ OS_REG_WRITE(ah, 0xa3c4, POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36], 8) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 0) ); /* Write the CCK power per rate set */ /* 1L (LSB), reserved, 2L, 2S (MSB) */ OS_REG_WRITE(ah, 0xa3c8, POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16) /* | POW_SM(tx_power_times2, 8)*/ /* this is reserved for Osprey */ | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0) ); /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */ OS_REG_WRITE(ah, 0xa3cc, POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S], 8) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0) ); /* write the power for duplicated frames - HT40 */ /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */ OS_REG_WRITE(ah, 0xa3e0, POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 8) | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 0) ); /* Write the HT20 power per rate set */ /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */ OS_REG_WRITE(ah, 0xa3d0, POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24) | POW_SM(p_pwr_array[ALL_TARGET_HT20_4], 16) | POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19], 8) | POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16], 0) ); /* 6 (LSB), 7, 12, 13 (MSB) */ OS_REG_WRITE(ah, 0xa3d4, POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24) | POW_SM(p_pwr_array[ALL_TARGET_HT20_12], 16) | POW_SM(p_pwr_array[ALL_TARGET_HT20_7], 8) | POW_SM(p_pwr_array[ALL_TARGET_HT20_6], 0) ); /* 14 (LSB), 15, 20, 21 */ OS_REG_WRITE(ah, 0xa3e4, POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24) | POW_SM(p_pwr_array[ALL_TARGET_HT20_20], 16) | POW_SM(p_pwr_array[ALL_TARGET_HT20_15], 8) | POW_SM(p_pwr_array[ALL_TARGET_HT20_14], 0) ); /* Mixed HT20 and HT40 rates */ /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */ OS_REG_WRITE(ah, 0xa3e8, POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24) | POW_SM(p_pwr_array[ALL_TARGET_HT40_22], 16) | POW_SM(p_pwr_array[ALL_TARGET_HT20_23], 8) | POW_SM(p_pwr_array[ALL_TARGET_HT20_22], 0) ); /* Write the HT40 power per rate set */ /* correct PAR difference between HT40 and HT20/LEGACY */ /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */ OS_REG_WRITE(ah, 0xa3d8, POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24) | POW_SM(p_pwr_array[ALL_TARGET_HT40_4], 16) | POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19], 8) | POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16], 0) ); /* 6 (LSB), 7, 12, 13 (MSB) */ OS_REG_WRITE(ah, 0xa3dc, POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24) | POW_SM(p_pwr_array[ALL_TARGET_HT40_12], 16) | POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8) | POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0) ); /* 14 (LSB), 15, 20, 21 */ OS_REG_WRITE(ah, 0xa3ec, POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24) | POW_SM(p_pwr_array[ALL_TARGET_HT40_20], 16) | POW_SM(p_pwr_array[ALL_TARGET_HT40_15], 8) | POW_SM(p_pwr_array[ALL_TARGET_HT40_14], 0) ); return 0; #undef POW_SM } static void ar9300_selfgen_tpc_reg_write(struct ath_hal *ah, const struct ieee80211_channel *chan, u_int8_t *p_pwr_array) { u_int32_t tpc_reg_val; /* Set the target power values for self generated frames (ACK,RTS/CTS) to * be within limits. This is just a safety measure.With per packet TPC mode * enabled the target power value used with self generated frames will be * MIN( TPC reg, BB_powertx_rate register) */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) | SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) | SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT)); } else { tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) | SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) | SM(0x3f, AR_TPC_CHIRP) | SM(0x3f, AR_TPC_RPT)); } OS_REG_WRITE(ah, AR_TPC, tpc_reg_val); } void ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq, u_int8_t *target_power_val_t2) { /* hard code for now, need to get from eeprom struct */ u_int8_t ht40_power_inc_for_pdadc = 0; HAL_BOOL is_2ghz = 0; if (freq < 4000) { is_2ghz = 1; } target_power_val_t2[ALL_TARGET_LEGACY_6_24] = ar9300_eeprom_get_legacy_trgt_pwr( ah, LEGACY_TARGET_RATE_6_24, freq, is_2ghz); target_power_val_t2[ALL_TARGET_LEGACY_36] = ar9300_eeprom_get_legacy_trgt_pwr( ah, LEGACY_TARGET_RATE_36, freq, is_2ghz); target_power_val_t2[ALL_TARGET_LEGACY_48] = ar9300_eeprom_get_legacy_trgt_pwr( ah, LEGACY_TARGET_RATE_48, freq, is_2ghz); target_power_val_t2[ALL_TARGET_LEGACY_54] = ar9300_eeprom_get_legacy_trgt_pwr( ah, LEGACY_TARGET_RATE_54, freq, is_2ghz); target_power_val_t2[ALL_TARGET_LEGACY_1L_5L] = ar9300_eeprom_get_cck_trgt_pwr( ah, LEGACY_TARGET_RATE_1L_5L, freq); target_power_val_t2[ALL_TARGET_LEGACY_5S] = ar9300_eeprom_get_cck_trgt_pwr( ah, LEGACY_TARGET_RATE_5S, freq); target_power_val_t2[ALL_TARGET_LEGACY_11L] = ar9300_eeprom_get_cck_trgt_pwr( ah, LEGACY_TARGET_RATE_11L, freq); target_power_val_t2[ALL_TARGET_LEGACY_11S] = ar9300_eeprom_get_cck_trgt_pwr( ah, LEGACY_TARGET_RATE_11S, freq); target_power_val_t2[ALL_TARGET_HT20_0_8_16] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_1_3_9_11_17_19] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_4] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_4, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_5] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_5, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_6] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_6, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_7] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_7, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_12] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_12, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_13] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_13, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_14] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_14, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_15] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_15, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_20] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_20, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_21] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_21, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_22] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_22, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT20_23] = ar9300_eeprom_get_ht20_trgt_pwr( ah, HT_TARGET_RATE_23, freq, is_2ghz); target_power_val_t2[ALL_TARGET_HT40_0_8_16] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_1_3_9_11_17_19] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_4] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_4, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_5] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_5, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_6] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_6, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_7] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_7, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_12] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_12, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_13] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_13, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_14] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_14, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_15] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_15, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_20] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_20, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_21] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_21, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_22] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_22, freq, is_2ghz) + ht40_power_inc_for_pdadc; target_power_val_t2[ALL_TARGET_HT40_23] = ar9300_eeprom_get_ht40_trgt_pwr( ah, HT_TARGET_RATE_23, freq, is_2ghz) + ht40_power_inc_for_pdadc; #ifdef AH_DEBUG { int i = 0; HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: APPLYING TARGET POWERS\n", __func__); while (i < ar9300_rate_size) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ", __func__, i, target_power_val_t2[i]); i++; if (i == ar9300_rate_size) { break; } HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ", __func__, i, target_power_val_t2[i]); i++; if (i == ar9300_rate_size) { break; } HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ", __func__, i, target_power_val_t2[i]); i++; if (i == ar9300_rate_size) { break; } HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x \n", __func__, i, target_power_val_t2[i]); i++; } } #endif } u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; return eep->base_eep_header.reg_dmn; } int32_t ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; return eep->base_eep_header.eeprom_write_enable_gpio; } int32_t ar9300_wlan_disable_gpio_get(struct ath_hal *ah) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; return eep->base_eep_header.wlan_disable_gpio; } int32_t ar9300_wlan_led_gpio_get(struct ath_hal *ah) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; return eep->base_eep_header.wlan_led_gpio; } int32_t ar9300_rx_band_select_gpio_get(struct ath_hal *ah) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; return eep->base_eep_header.rx_band_select_gpio; } /* * since valid noise floor values are negative, returns 1 on error */ int32_t ar9300_noise_floor_cal_or_power_get(struct ath_hal *ah, int32_t frequency, int32_t ichain, HAL_BOOL use_cal) { int nf_use = 1; /* start with an error return value */ int32_t fx[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS]; int32_t nf[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS]; int nnf; int is_2ghz; int ipier, npier; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; u_int8_t *p_cal_pier; OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct; /* * check chain value */ if (ichain < 0 || ichain >= OSPREY_MAX_CHAINS) { return 1; } /* figure out which band we're using */ is_2ghz = (frequency < 4000); if (is_2ghz) { npier = OSPREY_NUM_2G_CAL_PIERS; p_cal_pier = eep->cal_freq_pier_2g; p_cal_pier_struct = eep->cal_pier_data_2g[ichain]; } else { npier = OSPREY_NUM_5G_CAL_PIERS; p_cal_pier = eep->cal_freq_pier_5g; p_cal_pier_struct = eep->cal_pier_data_5g[ichain]; } /* look for valid noise floor values */ nnf = 0; for (ipier = 0; ipier < npier; ipier++) { fx[nnf] = FBIN2FREQ(p_cal_pier[ipier], is_2ghz); nf[nnf] = use_cal ? p_cal_pier_struct[ipier].rx_noisefloor_cal : p_cal_pier_struct[ipier].rx_noisefloor_power; if (nf[nnf] < 0) { nnf++; } } /* * If we have some valid values, interpolate to find the value * at the desired frequency. */ if (nnf > 0) { nf_use = interpolate(frequency, fx, nf, nnf); } return nf_use; } /* * Return the Rx NF offset for specific channel. * The values saved in EEPROM/OTP/Flash is converted through the following way: * ((_p) - NOISE_PWR_DATA_OFFSET) << 2 * So we need to convert back to the original values. */ int ar9300_get_rx_nf_offset(struct ath_hal *ah, struct ieee80211_channel *chan, int8_t *nf_pwr, int8_t *nf_cal) { HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); int8_t rx_nf_pwr, rx_nf_cal; int i; //HALASSERT(ichan); /* Fill 0 if valid internal channel is not found */ if (ichan == AH_NULL) { OS_MEMZERO(nf_pwr, sizeof(nf_pwr[0])*OSPREY_MAX_CHAINS); OS_MEMZERO(nf_cal, sizeof(nf_cal[0])*OSPREY_MAX_CHAINS); return -1; } for (i = 0; i < OSPREY_MAX_CHAINS; i++) { if ((rx_nf_pwr = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 0)) == 1) { nf_pwr[i] = 0; } else { //printk("%s: raw nf_pwr[%d] = %d\n", __func__, i, rx_nf_pwr); nf_pwr[i] = NOISE_PWR_DBM_2_INT(rx_nf_pwr); } if ((rx_nf_cal = ar9300_noise_floor_cal_or_power_get(ah, ichan->channel, i, 1)) == 1) { nf_cal[i] = 0; } else { //printk("%s: raw nf_cal[%d] = %d\n", __func__, i, rx_nf_cal); nf_cal[i] = NOISE_PWR_DBM_2_INT(rx_nf_cal); } } return 0; } int32_t ar9300_rx_gain_index_get(struct ath_hal *ah) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; return (eep->base_eep_header.txrxgain) & 0xf; /* bits 3:0 */ } int32_t ar9300_tx_gain_index_get(struct ath_hal *ah) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; return (eep->base_eep_header.txrxgain >> 4) & 0xf; /* bits 7:4 */ } HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); int internal_regulator = ar9300_eeprom_get(ahp, EEP_INTERNAL_REGULATOR); int reg_pmu1, reg_pmu2, reg_pmu1_set, reg_pmu2_set; u_int32_t reg_PMU1, reg_PMU2; unsigned long eep_addr; u_int32_t reg_val, reg_usb = 0, reg_pmu = 0; int usb_valid = 0, pmu_valid = 0; unsigned char pmu_refv; if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) { reg_PMU1 = AR_PHY_PMU1_JUPITER; reg_PMU2 = AR_PHY_PMU2_JUPITER; } else { reg_PMU1 = AR_PHY_PMU1; reg_PMU2 = AR_PHY_PMU2; } if (internal_regulator) { if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) { if (AR_SREV_HORNET(ah)) { /* Read OTP first */ for (eep_addr = 0x14; ; eep_addr -= 0x10) { ar9300_otp_read(ah, eep_addr / 4, ®_val, 1); if ((reg_val & 0x80) == 0x80){ usb_valid = 1; reg_usb = reg_val & 0x000000ff; } if ((reg_val & 0x80000000) == 0x80000000){ pmu_valid = 1; reg_pmu = (reg_val & 0xff000000) >> 24; } if (eep_addr == 0x4) { break; } } if (pmu_valid) { pmu_refv = reg_pmu & 0xf; } else { pmu_refv = 0x8; } /* * If (valid) { * Usb_phy_ctrl2_tx_cal_en -> 0 * Usb_phy_ctrl2_tx_cal_sel -> 0 * Usb_phy_ctrl2_tx_man_cal -> 0, 1, 3, 7 or 15 from OTP * } */ if (usb_valid) { OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_EN, 0x0); OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_SEL, 0x0); OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_MAN_CAL, (reg_usb & 0xf)); } } else { pmu_refv = 0x8; } /*#ifndef USE_HIF*/ /* Follow the MDK settings for Hornet PMU. * my $pwd = 0x0; * my $Nfdiv = 0x3; # xtal_freq = 25MHz * my $Nfdiv = 0x4; # xtal_freq = 40MHz * my $Refv = 0x7; # 0x5:1.22V; 0x8:1.29V * my $Gm1 = 0x3; #Poseidon $Gm1=1 * my $classb = 0x0; * my $Cc = 0x1; #Poseidon $Cc=7 * my $Rc = 0x6; * my $ramp_slope = 0x1; * my $Segm = 0x3; * my $use_local_osc = 0x0; * my $force_xosc_stable = 0x0; * my $Selfb = 0x0; #Poseidon $Selfb=1 * my $Filterfb = 0x3; #Poseidon $Filterfb=0 * my $Filtervc = 0x0; * my $disc = 0x0; * my $discdel = 0x4; * my $spare = 0x0; * $reg_PMU1 = * $pwd | ($Nfdiv<<1) | ($Refv<<4) | ($Gm1<<8) | * ($classb<<11) | ($Cc<<14) | ($Rc<<17) | ($ramp_slope<<20) | * ($Segm<<24) | ($use_local_osc<<26) | * ($force_xosc_stable<<27) | ($Selfb<<28) | ($Filterfb<<29); * $reg_PMU2 = $handle->reg_rd("ch0_PMU2"); * $reg_PMU2 = ($reg_PMU2 & 0xfe3fffff) | ($Filtervc<<22); * $reg_PMU2 = ($reg_PMU2 & 0xe3ffffff) | ($discdel<<26); * $reg_PMU2 = ($reg_PMU2 & 0x1fffffff) | ($spare<<29); */ if (ahp->clk_25mhz) { reg_pmu1_set = 0 | (3 << 1) | (pmu_refv << 4) | (3 << 8) | (0 << 11) | (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) | (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29); } else { if (AR_SREV_POSEIDON(ah)) { reg_pmu1_set = 0 | (5 << 1) | (7 << 4) | (2 << 8) | (0 << 11) | (2 << 14) | (6 << 17) | (1 << 20) | (3 << 24) | (0 << 26) | (0 << 27) | (1 << 28) | (0 << 29) ; } else { reg_pmu1_set = 0 | (4 << 1) | (7 << 4) | (3 << 8) | (0 << 11) | (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) | (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29) ; } } OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0); OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set); /* 0x638c8376 */ reg_pmu1 = OS_REG_READ(ah, reg_PMU1); while (reg_pmu1 != reg_pmu1_set) { OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set); /* 0x638c8376 */ OS_DELAY(10); reg_pmu1 = OS_REG_READ(ah, reg_PMU1); } reg_pmu2_set = (OS_REG_READ(ah, reg_PMU2) & (~0xFFC00000)) | (4 << 26); OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set); reg_pmu2 = OS_REG_READ(ah, reg_PMU2); while (reg_pmu2 != reg_pmu2_set) { OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set); OS_DELAY(10); reg_pmu2 = OS_REG_READ(ah, reg_PMU2); } reg_pmu2_set = (OS_REG_READ(ah, reg_PMU2) & (~0x00200000)) | (1 << 21); OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set); reg_pmu2 = OS_REG_READ(ah, reg_PMU2); while (reg_pmu2 != reg_pmu2_set) { OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set); OS_DELAY(10); reg_pmu2 = OS_REG_READ(ah, reg_PMU2); } /*#endif*/ } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) { /* Internal regulator is ON. Write swreg register. */ int swreg = ar9300_eeprom_get(ahp, EEP_SWREG); OS_REG_WRITE(ah, reg_PMU1, swreg); } else { /* Internal regulator is ON. Write swreg register. */ int swreg = ar9300_eeprom_get(ahp, EEP_SWREG); OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1, OS_REG_READ(ah, AR_RTC_REG_CONTROL1) & (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM)); OS_REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg); /* Set REG_CONTROL1.SWREG_PROGRAM */ OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1, OS_REG_READ(ah, AR_RTC_REG_CONTROL1) | AR_RTC_REG_CONTROL1_SWREG_PROGRAM); } } else { if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) { OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0); reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM); while (reg_pmu2) { OS_DELAY(10); reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM); } OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1); reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD); while (!reg_pmu1) { OS_DELAY(10); reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD); } OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x1); reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM); while (!reg_pmu2) { OS_DELAY(10); reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM); } } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) { OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1); } else { OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, (OS_REG_READ(ah, AR_RTC_SLEEP_CLK) | AR_RTC_FORCE_SWREG_PRD | AR_RTC_PCIE_RST_PWDN_EN)); } } return 0; } HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); int drive_strength; unsigned long reg; drive_strength = ar9300_eeprom_get(ahp, EEP_DRIVE_STRENGTH); if (drive_strength) { reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS1); reg &= ~0x00ffffc0; reg |= 0x5 << 21; reg |= 0x5 << 18; reg |= 0x5 << 15; reg |= 0x5 << 12; reg |= 0x5 << 9; reg |= 0x5 << 6; OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg); reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS2); reg &= ~0xffffffe0; reg |= 0x5 << 29; reg |= 0x5 << 26; reg |= 0x5 << 23; reg |= 0x5 << 20; reg |= 0x5 << 17; reg |= 0x5 << 14; reg |= 0x5 << 11; reg |= 0x5 << 8; reg |= 0x5 << 5; OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg); reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS4); reg &= ~0xff800000; reg |= 0x5 << 29; reg |= 0x5 << 26; reg |= 0x5 << 23; OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg); } return 0; } int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (is_2ghz) { return eep->modal_header_2g.xpa_bias_lvl; } else { return eep->modal_header_5g.xpa_bias_lvl; } } HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz) { /* * In ar9330 emu, we can't access radio registers, * merlin is used for radio part. */ int bias; bias = ar9300_xpa_bias_level_get(ah, is_2ghz); if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) { OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_TOP2, AR_HORNET_CH0_TOP2_XPABIASLVL, bias); } else if (AR_SREV_SCORPION(ah)) { OS_REG_RMW_FIELD(ah, AR_SCORPION_CH0_TOP, AR_SCORPION_CH0_TOP_XPABIASLVL, bias); } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TOP_JUPITER, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias); } else { OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TOP, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias); OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB, bias >> 2); OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPASHORT2GND, 1); } return 0; } u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (is_2ghz) { return eep->modal_header_2g.ant_ctrl_common; } else { return eep->modal_header_5g.ant_ctrl_common; } } static u_int16_t ar9300_switch_com_spdt_get(struct ath_hal *ah, HAL_BOOL is_2ghz) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (is_2ghz) { return eep->modal_header_2g.switchcomspdt; } else { return eep->modal_header_5g.switchcomspdt; } } u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (is_2ghz) { return eep->modal_header_2g.ant_ctrl_common2; } else { return eep->modal_header_5g.ant_ctrl_common2; } } u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain, HAL_BOOL is_2ghz) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (chain >= 0 && chain < OSPREY_MAX_CHAINS) { if (is_2ghz) { return eep->modal_header_2g.ant_ctrl_chain[chain]; } else { return eep->modal_header_5g.ant_ctrl_chain[chain]; } } return 0; } /* * Select the usage of antenna via the RF switch. * Default values are loaded from eeprom. */ HAL_BOOL ar9300_ant_swcom_sel(struct ath_hal *ah, u_int8_t ops, u_int32_t *common_tbl1, u_int32_t *common_tbl2) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; struct ath_hal_private *ap = AH_PRIVATE(ah); const struct ieee80211_channel *curchan = ap->ah_curchan; enum { ANT_SELECT_OPS_GET, ANT_SELECT_OPS_SET, }; if (AR_SREV_JUPITER(ah) || AR_SREV_SCORPION(ah)) return AH_FALSE; if (!curchan) return AH_FALSE; #define AR_SWITCH_TABLE_COM_ALL (0xffff) #define AR_SWITCH_TABLE_COM_ALL_S (0) #define AR_SWITCH_TABLE_COM2_ALL (0xffffff) #define AR_SWITCH_TABLE_COM2_ALL_S (0) switch (ops) { case ANT_SELECT_OPS_GET: *common_tbl1 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL); *common_tbl2 = OS_REG_READ_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL); break; case ANT_SELECT_OPS_SET: OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, *common_tbl1); OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, *common_tbl2); /* write back to eeprom */ if (IEEE80211_IS_CHAN_2GHZ(curchan)) { eep->modal_header_2g.ant_ctrl_common = *common_tbl1; eep->modal_header_2g.ant_ctrl_common2 = *common_tbl2; } else { eep->modal_header_5g.ant_ctrl_common = *common_tbl1; eep->modal_header_5g.ant_ctrl_common2 = *common_tbl2; } break; default: break; } return AH_TRUE; } HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz) { u_int32_t value; struct ath_hal_9300 *ahp = AH9300(ah); u_int32_t regval; struct ath_hal_private *ahpriv = AH_PRIVATE(ah); #if ATH_ANT_DIV_COMB HAL_CAPABILITIES *pcap = &ahpriv->ah_caps; #endif /* ATH_ANT_DIV_COMB */ u_int32_t xlan_gpio_cfg; u_int8_t i; if (AR_SREV_POSEIDON(ah)) { xlan_gpio_cfg = ah->ah_config.ath_hal_ext_lna_ctl_gpio; if (xlan_gpio_cfg) { for (i = 0; i < 32; i++) { if (xlan_gpio_cfg & (1 << i)) { ath_hal_gpioCfgOutput(ah, i, HAL_GPIO_OUTPUT_MUX_PCIE_ATTENTION_LED); } } } } #define AR_SWITCH_TABLE_COM_ALL (0xffff) #define AR_SWITCH_TABLE_COM_ALL_S (0) #define AR_SWITCH_TABLE_COM_JUPITER_ALL (0xffffff) #define AR_SWITCH_TABLE_COM_JUPITER_ALL_S (0) #define AR_SWITCH_TABLE_COM_SCORPION_ALL (0xffffff) #define AR_SWITCH_TABLE_COM_SCORPION_ALL_S (0) #define AR_SWITCH_TABLE_COM_HONEYBEE_ALL (0xffffff) #define AR_SWITCH_TABLE_COM_HONEYBEE_ALL_S (0) #define AR_SWITCH_TABLE_COM_SPDT (0x00f00000) value = ar9300_ant_ctrl_common_get(ah, is_2ghz); if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) { if (AR_SREV_JUPITER_10(ah)) { /* Force SPDT setting for Jupiter 1.0 chips. */ value &= ~AR_SWITCH_TABLE_COM_SPDT; value |= 0x00100000; } OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_JUPITER_ALL, value); } else if (AR_SREV_SCORPION(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_SCORPION_ALL, value); } else if (AR_SREV_HONEYBEE(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_HONEYBEE_ALL, value); } else { OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM, AR_SWITCH_TABLE_COM_ALL, value); } /* * Jupiter2.0 defines new switch table for BT/WLAN, * here's new field name in WB222.ref for both 2G and 5G. * Register: [GLB_CONTROL] GLB_CONTROL (@0x20044) * 15:12 R/W SWITCH_TABLE_COM_SPDT_WLAN_RX SWITCH_TABLE_COM_SPDT_WLAN_RX * 11:8 R/W SWITCH_TABLE_COM_SPDT_WLAN_TX SWITCH_TABLE_COM_SPDT_WLAN_TX * 7:4 R/W SWITCH_TABLE_COM_SPDT_WLAN_IDLE SWITCH_TABLE_COM_SPDT_WLAN_IDLE */ #define AR_SWITCH_TABLE_COM_SPDT_ALL (0x0000fff0) #define AR_SWITCH_TABLE_COM_SPDT_ALL_S (4) if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) { value = ar9300_switch_com_spdt_get(ah, is_2ghz); OS_REG_RMW_FIELD(ah, AR_GLB_CONTROL, AR_SWITCH_TABLE_COM_SPDT_ALL, value); OS_REG_SET_BIT(ah, AR_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE); //OS_REG_SET_BIT(ah, AR_GLB_CONTROL, // AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL); } #define AR_SWITCH_TABLE_COM2_ALL (0xffffff) #define AR_SWITCH_TABLE_COM2_ALL_S (0) value = ar9300_ant_ctrl_common2_get(ah, is_2ghz); #if ATH_ANT_DIV_COMB if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) { value &= ~AR_SWITCH_TABLE_COM2_ALL; value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable; HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, value); } #endif /* ATH_ANT_DIV_COMB */ OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value); #define AR_SWITCH_TABLE_ALL (0xfff) #define AR_SWITCH_TABLE_ALL_S (0) value = ar9300_ant_ctrl_chain_get(ah, 0, is_2ghz); OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value); if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) { value = ar9300_ant_ctrl_chain_get(ah, 1, is_2ghz); OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value); if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)) { value = ar9300_ant_ctrl_chain_get(ah, 2, is_2ghz); OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value); } } if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) { value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control); /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */ regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL); regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */ regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S; /* enable_lnadiv */ regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK); regval |= ((value >> 6) & 0x1) << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT; #if ATH_ANT_DIV_COMB if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) { regval |= ANT_DIV_ENABLE; } #endif /* ATH_ANT_DIV_COMB */ OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); /* enable fast_div */ regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT); regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK); regval |= ((value >> 7) & 0x1) << BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT; #if ATH_ANT_DIV_COMB if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) { regval |= FAST_DIV_ENABLE; } #endif /* ATH_ANT_DIV_COMB */ OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); } #if ATH_ANT_DIV_COMB if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON_11_OR_LATER(ah)) { if (pcap->halAntDivCombSupport) { /* If support DivComb, set MAIN to LNA1, ALT to LNA2 at beginning */ regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL); /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */ regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK | MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK | MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK | MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK)); regval |= (HAL_ANT_DIV_COMB_LNA1 << MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); regval |= (HAL_ANT_DIV_COMB_LNA2 << MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); } } #endif /* ATH_ANT_DIV_COMB */ if (AR_SREV_POSEIDON(ah) && ( ahp->ah_diversity_control == HAL_ANT_FIXED_A || ahp->ah_diversity_control == HAL_ANT_FIXED_B)) { u_int32_t reg_val = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL); reg_val &= ~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK | MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK | MULTICHAIN_GAIN_CTRL__ANT_FAST_DIV_BIAS__MASK | MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK | MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK ); switch (ahp->ah_diversity_control) { case HAL_ANT_FIXED_A: /* Enable first antenna only */ reg_val |= (HAL_ANT_DIV_COMB_LNA1 << MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); reg_val |= (HAL_ANT_DIV_COMB_LNA2 << MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); /* main/alt gain table and Fast Div Bias all set to 0 */ OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val); regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT); regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK); OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); break; case HAL_ANT_FIXED_B: /* Enable second antenna only, after checking capability */ reg_val |= (HAL_ANT_DIV_COMB_LNA2 << MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); reg_val |= (HAL_ANT_DIV_COMB_LNA1 << MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); /* main/alt gain table and Fast Div all set to 0 */ OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val); regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT); regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK); OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); /* For WB225, need to swith ANT2 from BT to Wifi * This will not affect HB125 LNA diversity feature. */ HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable); OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable); break; default: break; } } return 0; } static u_int16_t ar9300_attenuation_chain_get(struct ath_hal *ah, int chain, u_int16_t channel) { int32_t f[3], t[3]; u_int16_t value; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (chain >= 0 && chain < OSPREY_MAX_CHAINS) { if (channel < 4000) { return eep->modal_header_2g.xatten1_db[chain]; } else { if (eep->base_ext2.xatten1_db_low[chain] != 0) { t[0] = eep->base_ext2.xatten1_db_low[chain]; f[0] = 5180; t[1] = eep->modal_header_5g.xatten1_db[chain]; f[1] = 5500; t[2] = eep->base_ext2.xatten1_db_high[chain]; f[2] = 5785; value = interpolate(channel, f, t, 3); return value; } else { return eep->modal_header_5g.xatten1_db[chain]; } } } return 0; } static u_int16_t ar9300_attenuation_margin_chain_get(struct ath_hal *ah, int chain, u_int16_t channel) { int32_t f[3], t[3]; u_int16_t value; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (chain >= 0 && chain < OSPREY_MAX_CHAINS) { if (channel < 4000) { return eep->modal_header_2g.xatten1_margin[chain]; } else { if (eep->base_ext2.xatten1_margin_low[chain] != 0) { t[0] = eep->base_ext2.xatten1_margin_low[chain]; f[0] = 5180; t[1] = eep->modal_header_5g.xatten1_margin[chain]; f[1] = 5500; t[2] = eep->base_ext2.xatten1_margin_high[chain]; f[2] = 5785; value = interpolate(channel, f, t, 3); return value; } else { return eep->modal_header_5g.xatten1_margin[chain]; } } } return 0; } #if 0 HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel) { u_int32_t value; // struct ath_hal_private *ahpriv = AH_PRIVATE(ah); /* Test value. if 0 then attenuation is unused. Don't load anything. */ value = ar9300_attenuation_chain_get(ah, 0, channel); OS_REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value); value = ar9300_attenuation_margin_chain_get(ah, 0, channel); if (ar9300_rx_gain_index_get(ah) == 0 && ah->ah_config.ath_hal_ext_atten_margin_cfg) { value = 5; } OS_REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value); if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) { value = ar9300_attenuation_chain_get(ah, 1, channel); OS_REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value); value = ar9300_attenuation_margin_chain_get(ah, 1, channel); OS_REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value); if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)&& !AR_SREV_HONEYBEE(ah) ) { value = ar9300_attenuation_chain_get(ah, 2, channel); OS_REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value); value = ar9300_attenuation_margin_chain_get(ah, 2, channel); OS_REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value); } } return 0; } #endif HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel) { int i; uint32_t value; uint32_t ext_atten_reg[3] = { AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_2 }; /* * If it's an AR9462 and we're receiving on the second * chain only, set the chain 0 details from chain 1 * calibration. * * This is from ath9k. */ if (AR_SREV_JUPITER(ah) && (AH9300(ah)->ah_rx_chainmask == 0x2)) { value = ar9300_attenuation_chain_get(ah, 1, channel); OS_REG_RMW_FIELD(ah, ext_atten_reg[0], AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value); value = ar9300_attenuation_margin_chain_get(ah, 1, channel); OS_REG_RMW_FIELD(ah, ext_atten_reg[0], AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value); } /* * Now, loop over the configured transmit chains and * load in the attenuation/margin settings as appropriate. */ for (i = 0; i < 3; i++) { if ((AH9300(ah)->ah_tx_chainmask & (1 << i)) == 0) continue; value = ar9300_attenuation_chain_get(ah, i, channel); OS_REG_RMW_FIELD(ah, ext_atten_reg[i], AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value); if (AR_SREV_POSEIDON(ah) && (ar9300_rx_gain_index_get(ah) == 0) && ah->ah_config.ath_hal_ext_atten_margin_cfg) { value = 5; } else { value = ar9300_attenuation_margin_chain_get(ah, 0, channel); } /* * I'm not sure why it's loading in this setting into * the chain 0 margin regardless of the current chain. */ if (ah->ah_config.ath_hal_min_gainidx) OS_REG_RMW_FIELD(ah, AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value); OS_REG_RMW_FIELD(ah, ext_atten_reg[i], AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value); } return (0); } static u_int16_t ar9300_quick_drop_get(struct ath_hal *ah, int chain, u_int16_t channel) { int32_t f[3], t[3]; u_int16_t value; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (channel < 4000) { return eep->modal_header_2g.quick_drop; } else { t[0] = eep->base_ext1.quick_drop_low; f[0] = 5180; t[1] = eep->modal_header_5g.quick_drop; f[1] = 5500; t[2] = eep->base_ext1.quick_drop_high; f[2] = 5785; value = interpolate(channel, f, t, 3); return value; } } static HAL_BOOL ar9300_quick_drop_apply(struct ath_hal *ah, u_int16_t channel) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; u_int32_t value; // // Test value. if 0 then quickDrop is unused. Don't load anything. // if (eep->base_eep_header.misc_configuration & 0x10) { if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah)) { value = ar9300_quick_drop_get(ah, 0, channel); OS_REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, value); } } return 0; } static u_int16_t ar9300_tx_end_to_xpa_off_get(struct ath_hal *ah, u_int16_t channel) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (channel < 4000) { return eep->modal_header_2g.tx_end_to_xpa_off; } else { return eep->modal_header_5g.tx_end_to_xpa_off; } } static HAL_BOOL ar9300_tx_end_to_xpab_off_apply(struct ath_hal *ah, u_int16_t channel) { u_int32_t value; value = ar9300_tx_end_to_xpa_off_get(ah, channel); /* Apply to both xpaa and xpab */ if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value); OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value); } return 0; } static int ar9300_eeprom_cal_pier_get(struct ath_hal *ah, int mode, int ipier, int ichain, int *pfrequency, int *pcorrection, int *ptemperature, int *pvoltage) { u_int8_t *p_cal_pier; OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct; int is_2ghz; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (ichain >= OSPREY_MAX_CHAINS) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Invalid chain index, must be less than %d\n", __func__, OSPREY_MAX_CHAINS); return -1; } if (mode) {/* 5GHz */ if (ipier >= OSPREY_NUM_5G_CAL_PIERS){ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Invalid 5GHz cal pier index, must be less than %d\n", __func__, OSPREY_NUM_5G_CAL_PIERS); return -1; } p_cal_pier = &(eep->cal_freq_pier_5g[ipier]); p_cal_pier_struct = &(eep->cal_pier_data_5g[ichain][ipier]); is_2ghz = 0; } else { if (ipier >= OSPREY_NUM_2G_CAL_PIERS){ HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Invalid 2GHz cal pier index, must be less than %d\n", __func__, OSPREY_NUM_2G_CAL_PIERS); return -1; } p_cal_pier = &(eep->cal_freq_pier_2g[ipier]); p_cal_pier_struct = &(eep->cal_pier_data_2g[ichain][ipier]); is_2ghz = 1; } *pfrequency = FBIN2FREQ(*p_cal_pier, is_2ghz); *pcorrection = p_cal_pier_struct->ref_power; *ptemperature = p_cal_pier_struct->temp_meas; *pvoltage = p_cal_pier_struct->volt_meas; return 0; } /* * Apply the recorded correction values. */ static int ar9300_calibration_apply(struct ath_hal *ah, int frequency) { struct ath_hal_9300 *ahp = AH9300(ah); int ichain, ipier, npier; int mode; int fdiff; int pfrequency, pcorrection, ptemperature, pvoltage; int bf, factor, plus; int lfrequency[AR9300_MAX_CHAINS]; int hfrequency[AR9300_MAX_CHAINS]; int lcorrection[AR9300_MAX_CHAINS]; int hcorrection[AR9300_MAX_CHAINS]; int correction[AR9300_MAX_CHAINS]; int ltemperature[AR9300_MAX_CHAINS]; int htemperature[AR9300_MAX_CHAINS]; int temperature[AR9300_MAX_CHAINS]; int lvoltage[AR9300_MAX_CHAINS]; int hvoltage[AR9300_MAX_CHAINS]; int voltage[AR9300_MAX_CHAINS]; mode = (frequency >= 4000); npier = (mode) ? OSPREY_NUM_5G_CAL_PIERS : OSPREY_NUM_2G_CAL_PIERS; for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { lfrequency[ichain] = 0; hfrequency[ichain] = 100000; } /* * identify best lower and higher frequency calibration measurement */ for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { for (ipier = 0; ipier < npier; ipier++) { if (ar9300_eeprom_cal_pier_get( ah, mode, ipier, ichain, &pfrequency, &pcorrection, &ptemperature, &pvoltage) == 0) { fdiff = frequency - pfrequency; /* * this measurement is higher than our desired frequency */ if (fdiff <= 0) { if (hfrequency[ichain] <= 0 || hfrequency[ichain] >= 100000 || fdiff > (frequency - hfrequency[ichain])) { /* * new best higher frequency measurement */ hfrequency[ichain] = pfrequency; hcorrection[ichain] = pcorrection; htemperature[ichain] = ptemperature; hvoltage[ichain] = pvoltage; } } if (fdiff >= 0) { if (lfrequency[ichain] <= 0 || fdiff < (frequency - lfrequency[ichain])) { /* * new best lower frequency measurement */ lfrequency[ichain] = pfrequency; lcorrection[ichain] = pcorrection; ltemperature[ichain] = ptemperature; lvoltage[ichain] = pvoltage; } } } } } /* interpolate */ for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: ch=%d f=%d low=%d %d h=%d %d\n", __func__, ichain, frequency, lfrequency[ichain], lcorrection[ichain], hfrequency[ichain], hcorrection[ichain]); /* * they're the same, so just pick one */ if (hfrequency[ichain] == lfrequency[ichain]) { correction[ichain] = lcorrection[ichain]; voltage[ichain] = lvoltage[ichain]; temperature[ichain] = ltemperature[ichain]; } else if (frequency - lfrequency[ichain] < 1000) { /* the low frequency is good */ if (hfrequency[ichain] - frequency < 1000) { /* * The high frequency is good too - * interpolate with round off. */ int mult, div, diff; mult = frequency - lfrequency[ichain]; div = hfrequency[ichain] - lfrequency[ichain]; diff = hcorrection[ichain] - lcorrection[ichain]; bf = 2 * diff * mult / div; plus = (bf % 2); factor = bf / 2; correction[ichain] = lcorrection[ichain] + factor + plus; diff = htemperature[ichain] - ltemperature[ichain]; bf = 2 * diff * mult / div; plus = (bf % 2); factor = bf / 2; temperature[ichain] = ltemperature[ichain] + factor + plus; diff = hvoltage[ichain] - lvoltage[ichain]; bf = 2 * diff * mult / div; plus = (bf % 2); factor = bf / 2; voltage[ichain] = lvoltage[ichain] + factor + plus; } else { /* only low is good, use it */ correction[ichain] = lcorrection[ichain]; temperature[ichain] = ltemperature[ichain]; voltage[ichain] = lvoltage[ichain]; } } else if (hfrequency[ichain] - frequency < 1000) { /* only high is good, use it */ correction[ichain] = hcorrection[ichain]; temperature[ichain] = htemperature[ichain]; voltage[ichain] = hvoltage[ichain]; } else { /* nothing is good, presume 0???? */ correction[ichain] = 0; temperature[ichain] = 0; voltage[ichain] = 0; } } /* GreenTx isn't currently supported */ /* GreenTx */ if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable) { if (AR_SREV_POSEIDON(ah)) { /* Get calibrated OLPC gain delta value for GreenTx */ ahp->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET] = (u_int32_t) correction[0]; } } ar9300_power_control_override( ah, frequency, correction, voltage, temperature); HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: for frequency=%d, calibration correction = %d %d %d\n", __func__, frequency, correction[0], correction[1], correction[2]); return 0; } int ar9300_power_control_override(struct ath_hal *ah, int frequency, int *correction, int *voltage, int *temperature) { int temp_slope = 0; int temp_slope_1 = 0; int temp_slope_2 = 0; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; int32_t f[8], t[8],t1[3], t2[3]; int i; OS_REG_RMW(ah, AR_PHY_TPC_11_B0, (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), AR_PHY_TPC_OLPC_GAIN_DELTA); if (!AR_SREV_POSEIDON(ah)) { OS_REG_RMW(ah, AR_PHY_TPC_11_B1, (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), AR_PHY_TPC_OLPC_GAIN_DELTA); if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) { OS_REG_RMW(ah, AR_PHY_TPC_11_B2, (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S), AR_PHY_TPC_OLPC_GAIN_DELTA); } } /* * enable open loop power control on chip */ OS_REG_RMW(ah, AR_PHY_TPC_6_B0, (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE); if (!AR_SREV_POSEIDON(ah)) { OS_REG_RMW(ah, AR_PHY_TPC_6_B1, (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE); if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah) ) { OS_REG_RMW(ah, AR_PHY_TPC_6_B2, (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE); } } /* * Enable temperature compensation * Need to use register names */ if (frequency < 4000) { temp_slope = eep->modal_header_2g.temp_slope; } else { if ((eep->base_eep_header.misc_configuration & 0x20) != 0) { for(i=0;i<8;i++) { t[i]=eep->base_ext1.tempslopextension[i]; f[i]=FBIN2FREQ(eep->cal_freq_pier_5g[i], 0); } temp_slope=interpolate(frequency,f,t,8); } else { if(!AR_SREV_SCORPION(ah)) { if (eep->base_ext2.temp_slope_low != 0) { t[0] = eep->base_ext2.temp_slope_low; f[0] = 5180; t[1] = eep->modal_header_5g.temp_slope; f[1] = 5500; t[2] = eep->base_ext2.temp_slope_high; f[2] = 5785; temp_slope = interpolate(frequency, f, t, 3); } else { temp_slope = eep->modal_header_5g.temp_slope; } } else { /* * Scorpion has individual chain tempslope values */ t[0] = eep->base_ext1.tempslopextension[2]; t1[0]= eep->base_ext1.tempslopextension[3]; t2[0]= eep->base_ext1.tempslopextension[4]; f[0] = 5180; t[1] = eep->modal_header_5g.temp_slope; t1[1]= eep->base_ext1.tempslopextension[0]; t2[1]= eep->base_ext1.tempslopextension[1]; f[1] = 5500; t[2] = eep->base_ext1.tempslopextension[5]; t1[2]= eep->base_ext1.tempslopextension[6]; t2[2]= eep->base_ext1.tempslopextension[7]; f[2] = 5785; temp_slope = interpolate(frequency, f, t, 3); temp_slope_1=interpolate(frequency, f, t1,3); temp_slope_2=interpolate(frequency, f, t2,3); } } } if (!AR_SREV_SCORPION(ah) && !AR_SREV_HONEYBEE(ah)) { OS_REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, temp_slope); } else { /*Scorpion and Honeybee has tempSlope register for each chain*/ /*Check whether temp_compensation feature is enabled or not*/ if (eep->base_eep_header.feature_enable & 0x1){ if(frequency < 4000) { if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) { OS_REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, eep->base_ext2.temp_slope_low); } if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) { OS_REG_RMW_FIELD(ah, AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, temp_slope); } if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) { OS_REG_RMW_FIELD(ah, AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, eep->base_ext2.temp_slope_high); } } else { if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) { OS_REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, temp_slope); } if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) { OS_REG_RMW_FIELD(ah, AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, temp_slope_1); } if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) { OS_REG_RMW_FIELD(ah, AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, temp_slope_2); } } }else { /* If temp compensation is not enabled, set all registers to 0*/ if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x1) { OS_REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 0); } if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x2) { OS_REG_RMW_FIELD(ah, AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 0); } if (((eep->base_eep_header.txrx_mask & 0xf0) >> 4) & 0x4) { OS_REG_RMW_FIELD(ah, AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 0); } } } OS_REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, temperature[0]); return 0; } /************************************************************** * ar9300_eep_def_get_max_edge_power * * Find the maximum conformance test limit for the given channel and CTL info */ static inline u_int16_t ar9300_eep_def_get_max_edge_power(ar9300_eeprom_t *p_eep_data, u_int16_t freq, int idx, HAL_BOOL is_2ghz) { u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER; u_int8_t *ctl_freqbin = is_2ghz ? &p_eep_data->ctl_freqbin_2G[idx][0] : &p_eep_data->ctl_freqbin_5G[idx][0]; u_int16_t num_edges = is_2ghz ? OSPREY_NUM_BAND_EDGES_2G : OSPREY_NUM_BAND_EDGES_5G; int i; /* Get the edge power */ for (i = 0; (i < num_edges) && (ctl_freqbin[i] != AR9300_BCHAN_UNUSED); i++) { /* * If there's an exact channel match or an inband flag set * on the lower channel use the given rd_edge_power */ if (freq == fbin2freq(ctl_freqbin[i], is_2ghz)) { if (is_2ghz) { twice_max_edge_power = p_eep_data->ctl_power_data_2g[idx].ctl_edges[i].t_power; } else { twice_max_edge_power = p_eep_data->ctl_power_data_5g[idx].ctl_edges[i].t_power; } break; } else if ((i > 0) && (freq < fbin2freq(ctl_freqbin[i], is_2ghz))) { if (is_2ghz) { if (fbin2freq(ctl_freqbin[i - 1], 1) < freq && p_eep_data->ctl_power_data_2g[idx].ctl_edges[i - 1].flag) { twice_max_edge_power = p_eep_data->ctl_power_data_2g[idx]. ctl_edges[i - 1].t_power; } } else { if (fbin2freq(ctl_freqbin[i - 1], 0) < freq && p_eep_data->ctl_power_data_5g[idx].ctl_edges[i - 1].flag) { twice_max_edge_power = p_eep_data->ctl_power_data_5g[idx]. ctl_edges[i - 1].t_power; } } /* * Leave loop - no more affecting edges possible * in this monotonic increasing list */ break; } } /* * EV89475: EEPROM might contain 0 txpower in CTL table for certain * 2.4GHz channels. We workaround it by overwriting 60 (30 dBm) here. */ if (is_2ghz && (twice_max_edge_power == 0)) { twice_max_edge_power = 60; } HALASSERT(twice_max_edge_power > 0); return twice_max_edge_power; } HAL_BOOL ar9300_eeprom_set_power_per_rate_table( struct ath_hal *ah, ar9300_eeprom_t *p_eep_data, const struct ieee80211_channel *chan, u_int8_t *p_pwr_array, u_int16_t cfg_ctl, u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power, u_int16_t power_limit, u_int8_t chainmask) { /* Local defines to distinguish between extension and control CTL's */ #define EXT_ADDITIVE (0x8000) #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE) #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE) #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE) #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */ #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */ #define PWRINCR_3_TO_1_CHAIN 9 /* 10*log(3)*2 */ #define PWRINCR_3_TO_2_CHAIN 3 /* floor(10*log(3/2)*2) */ #define PWRINCR_2_TO_1_CHAIN 6 /* 10*log(2)*2 */ static const u_int16_t tp_scale_reduction_table[5] = { 0, 3, 6, 9, AR9300_MAX_RATE_POWER }; int i; int16_t twice_largest_antenna; u_int16_t twice_antenna_reduction = 2*antenna_reduction ; int16_t scaled_power = 0, min_ctl_power, max_reg_allowed_power; #define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */ #define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */ u_int16_t ctl_modes_for11a[] = {CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40}; u_int16_t ctl_modes_for11g[] = {CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40}; u_int16_t num_ctl_modes, *p_ctl_mode, ctl_mode, freq; CHAN_CENTERS centers; int tx_chainmask; struct ath_hal_9300 *ahp = AH9300(ah); u_int8_t *ctl_index; u_int8_t ctl_num; u_int16_t twice_min_edge_power; u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER; #ifdef AH_DEBUG HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); #endif if (chainmask) tx_chainmask = chainmask; else tx_chainmask = ahp->ah_tx_chainmaskopt ? ahp->ah_tx_chainmaskopt :ahp->ah_tx_chainmask; ar9300_get_channel_centers(ah, chan, ¢ers); #if 1 if (IEEE80211_IS_CHAN_2GHZ(chan)) { ahp->twice_antenna_gain = p_eep_data->modal_header_2g.antenna_gain; } else { ahp->twice_antenna_gain = p_eep_data->modal_header_5g.antenna_gain; } #else if (IEEE80211_IS_CHAN_2GHZ(chan)) { ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_2g.antenna_gain, AH_PRIVATE(ah)->ah_antenna_gain_2g); } else { ahp->twice_antenna_gain = AH_MAX(p_eep_data->modal_header_5g.antenna_gain, AH_PRIVATE(ah)->ah_antenna_gain_5g); } #endif /* Save max allowed antenna gain to ease future lookups */ ahp->twice_antenna_reduction = twice_antenna_reduction; /* Deduct antenna gain from EIRP to get the upper limit */ twice_largest_antenna = (int16_t)AH_MIN((twice_antenna_reduction - ahp->twice_antenna_gain), 0); max_reg_allowed_power = twice_max_regulatory_power + twice_largest_antenna; /* Use ah_tp_scale - see bug 30070. */ if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) { max_reg_allowed_power -= (tp_scale_reduction_table[(AH_PRIVATE(ah)->ah_tpScale)] * 2); } scaled_power = AH_MIN(power_limit, max_reg_allowed_power); /* * Reduce scaled Power by number of chains active to get to * per chain tx power level */ /* TODO: better value than these? */ switch (ar9300_get_ntxchains(tx_chainmask)) { case 1: ahp->upper_limit[0] = AH_MAX(0, scaled_power); break; case 2: scaled_power -= REDUCE_SCALED_POWER_BY_TWO_CHAIN; ahp->upper_limit[1] = AH_MAX(0, scaled_power); break; case 3: scaled_power -= REDUCE_SCALED_POWER_BY_THREE_CHAIN; ahp->upper_limit[2] = AH_MAX(0, scaled_power); break; default: HALASSERT(0); /* Unsupported number of chains */ } scaled_power = AH_MAX(0, scaled_power); /* Get target powers from EEPROM - our baseline for TX Power */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { /* Setup for CTL modes */ /* CTL_11B, CTL_11G, CTL_2GHT20 */ num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11g) - SUB_NUM_CTL_MODES_AT_2G_40; p_ctl_mode = ctl_modes_for11g; if (IEEE80211_IS_CHAN_HT40(chan)) { num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11g); /* All 2G CTL's */ } } else { /* Setup for CTL modes */ /* CTL_11A, CTL_5GHT20 */ num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11a) - SUB_NUM_CTL_MODES_AT_5G_40; p_ctl_mode = ctl_modes_for11a; if (IEEE80211_IS_CHAN_HT40(chan)) { num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11a); /* All 5G CTL's */ } } /* * For MIMO, need to apply regulatory caps individually across dynamically * running modes: CCK, OFDM, HT20, HT40 * * The outer loop walks through each possible applicable runtime mode. * The inner loop walks through each ctl_index entry in EEPROM. * The ctl value is encoded as [7:4] == test group, [3:0] == test mode. * */ for (ctl_mode = 0; ctl_mode < num_ctl_modes; ctl_mode++) { HAL_BOOL is_ht40_ctl_mode = (p_ctl_mode[ctl_mode] == CTL_5GHT40) || (p_ctl_mode[ctl_mode] == CTL_2GHT40); if (is_ht40_ctl_mode) { freq = centers.synth_center; } else if (p_ctl_mode[ctl_mode] & EXT_ADDITIVE) { freq = centers.ext_center; } else { freq = centers.ctl_center; } HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, "LOOP-Mode ctl_mode %d < %d, " "is_ht40_ctl_mode %d, EXT_ADDITIVE %d\n", ctl_mode, num_ctl_modes, is_ht40_ctl_mode, (p_ctl_mode[ctl_mode] & EXT_ADDITIVE)); /* walk through each CTL index stored in EEPROM */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { ctl_index = p_eep_data->ctl_index_2g; ctl_num = OSPREY_NUM_CTLS_2G; } else { ctl_index = p_eep_data->ctl_index_5g; ctl_num = OSPREY_NUM_CTLS_5G; } for (i = 0; (i < ctl_num) && ctl_index[i]; i++) { HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, " LOOP-Ctlidx %d: cfg_ctl 0x%2.2x p_ctl_mode 0x%2.2x " "ctl_index 0x%2.2x chan %d chanctl 0x%x\n", i, cfg_ctl, p_ctl_mode[ctl_mode], ctl_index[i], ichan->channel, ath_hal_getctl(ah, chan)); /* * compare test group from regulatory channel list * with test mode from p_ctl_mode list */ if ((((cfg_ctl & ~CTL_MODE_M) | (p_ctl_mode[ctl_mode] & CTL_MODE_M)) == ctl_index[i]) || (((cfg_ctl & ~CTL_MODE_M) | (p_ctl_mode[ctl_mode] & CTL_MODE_M)) == ((ctl_index[i] & CTL_MODE_M) | SD_NO_CTL))) { twice_min_edge_power = ar9300_eep_def_get_max_edge_power( p_eep_data, freq, i, IEEE80211_IS_CHAN_2GHZ(chan)); HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, " MATCH-EE_IDX %d: ch %d is2 %d " "2xMinEdge %d chainmask %d chains %d\n", i, freq, IEEE80211_IS_CHAN_2GHZ(chan), twice_min_edge_power, tx_chainmask, ar9300_get_ntxchains(tx_chainmask)); if ((cfg_ctl & ~CTL_MODE_M) == SD_NO_CTL) { /* * Find the minimum of all CTL edge powers * that apply to this channel */ twice_max_edge_power = AH_MIN(twice_max_edge_power, twice_min_edge_power); } else { /* specific */ twice_max_edge_power = twice_min_edge_power; break; } } } min_ctl_power = (u_int8_t)AH_MIN(twice_max_edge_power, scaled_power); HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, " SEL-Min ctl_mode %d p_ctl_mode %d " "2xMaxEdge %d sP %d min_ctl_pwr %d\n", ctl_mode, p_ctl_mode[ctl_mode], twice_max_edge_power, scaled_power, min_ctl_power); /* Apply ctl mode to correct target power set */ switch (p_ctl_mode[ctl_mode]) { case CTL_11B: for (i = ALL_TARGET_LEGACY_1L_5L; i <= ALL_TARGET_LEGACY_11S; i++) { p_pwr_array[i] = (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power); } break; case CTL_11A: case CTL_11G: for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) { p_pwr_array[i] = (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power); #ifdef ATH_BT_COEX if ((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) || (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) { if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) && (ahp->ah_bt_wlan_isolation < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) { u_int8_t reduce_pow; reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX - ahp->ah_bt_wlan_isolation) << 1; if (reduce_pow <= p_pwr_array[i]) { p_pwr_array[i] -= reduce_pow; } } if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) && (i != ALL_TARGET_LEGACY_36) && (i != ALL_TARGET_LEGACY_48) && (i != ALL_TARGET_LEGACY_54) && (p_ctl_mode[ctl_mode] == CTL_11G)) { p_pwr_array[i] = 0; } } #endif } break; case CTL_5GHT20: case CTL_2GHT20: for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_23; i++) { p_pwr_array[i] = (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power); #ifdef ATH_BT_COEX if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) || (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) && (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) && (ahp->ah_bt_wlan_isolation < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) { u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX - ahp->ah_bt_wlan_isolation) << 1; if (reduce_pow <= p_pwr_array[i]) { p_pwr_array[i] -= reduce_pow; } } #if ATH_SUPPORT_MCI else if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) && (p_ctl_mode[ctl_mode] == CTL_2GHT20) && (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) { u_int8_t max_pwr; max_pwr = MS(mci_concur_tx_max_pwr[2][1], ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK); if (p_pwr_array[i] > max_pwr) { p_pwr_array[i] = max_pwr; } } #endif #endif } break; case CTL_11B_EXT: #ifdef NOT_YET target_power_cck_ext.t_pow2x[0] = (u_int8_t) AH_MIN(target_power_cck_ext.t_pow2x[0], min_ctl_power); #endif /* NOT_YET */ break; case CTL_11A_EXT: case CTL_11G_EXT: #ifdef NOT_YET target_power_ofdm_ext.t_pow2x[0] = (u_int8_t) AH_MIN(target_power_ofdm_ext.t_pow2x[0], min_ctl_power); #endif /* NOT_YET */ break; case CTL_5GHT40: case CTL_2GHT40: for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_23; i++) { p_pwr_array[i] = (u_int8_t) AH_MIN(p_pwr_array[i], min_ctl_power); #ifdef ATH_BT_COEX if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) || (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) && (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) && (ahp->ah_bt_wlan_isolation < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) { u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX - ahp->ah_bt_wlan_isolation) << 1; if (reduce_pow <= p_pwr_array[i]) { p_pwr_array[i] -= reduce_pow; } } #if ATH_SUPPORT_MCI else if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) && (p_ctl_mode[ctl_mode] == CTL_2GHT40) && (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) { u_int8_t max_pwr; max_pwr = MS(mci_concur_tx_max_pwr[3][1], ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK); if (p_pwr_array[i] > max_pwr) { p_pwr_array[i] = max_pwr; } } #endif #endif } break; default: HALASSERT(0); break; } } /* end ctl mode checking */ return AH_TRUE; #undef EXT_ADDITIVE #undef CTL_11A_EXT #undef CTL_11G_EXT #undef CTL_11B_EXT #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN } /************************************************************** * ar9300_eeprom_set_transmit_power * * Set the transmit power in the baseband for the given * operating channel and mode. */ HAL_STATUS ar9300_eeprom_set_transmit_power(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data, const struct ieee80211_channel *chan, u_int16_t cfg_ctl, u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power, u_int16_t power_limit) { #define ABS(_x, _y) ((int)_x > (int)_y ? (int)_x - (int)_y : (int)_y - (int)_x) #define INCREASE_MAXPOW_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */ #define INCREASE_MAXPOW_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */ u_int8_t target_power_val_t2[ar9300_rate_size]; u_int8_t target_power_val_t2_eep[ar9300_rate_size]; int16_t twice_array_gain = 0, max_power_level = 0; struct ath_hal_9300 *ahp = AH9300(ah); int i = 0; u_int32_t tmp_paprd_rate_mask = 0, *tmp_ptr = NULL; int paprd_scale_factor = 5; HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); u_int8_t *ptr_mcs_rate2power_table_index; u_int8_t mcs_rate2power_table_index_ht20[24] = { ALL_TARGET_HT20_0_8_16, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_4, ALL_TARGET_HT20_5, ALL_TARGET_HT20_6, ALL_TARGET_HT20_7, ALL_TARGET_HT20_0_8_16, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_12, ALL_TARGET_HT20_13, ALL_TARGET_HT20_14, ALL_TARGET_HT20_15, ALL_TARGET_HT20_0_8_16, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_1_3_9_11_17_19, ALL_TARGET_HT20_20, ALL_TARGET_HT20_21, ALL_TARGET_HT20_22, ALL_TARGET_HT20_23 }; u_int8_t mcs_rate2power_table_index_ht40[24] = { ALL_TARGET_HT40_0_8_16, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_4, ALL_TARGET_HT40_5, ALL_TARGET_HT40_6, ALL_TARGET_HT40_7, ALL_TARGET_HT40_0_8_16, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_12, ALL_TARGET_HT40_13, ALL_TARGET_HT40_14, ALL_TARGET_HT40_15, ALL_TARGET_HT40_0_8_16, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_1_3_9_11_17_19, ALL_TARGET_HT40_20, ALL_TARGET_HT40_21, ALL_TARGET_HT40_22, ALL_TARGET_HT40_23, }; HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d] +++chan %d,cfgctl 0x%04x " "antenna_reduction 0x%04x, twice_max_regulatory_power 0x%04x " "power_limit 0x%04x\n", __func__, __LINE__, ichan->channel, cfg_ctl, antenna_reduction, twice_max_regulatory_power, power_limit); ar9300_set_target_power_from_eeprom(ah, ichan->channel, target_power_val_t2); if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) { if (IEEE80211_IS_CHAN_2GHZ(chan)) { if (IEEE80211_IS_CHAN_HT40(chan)) { tmp_paprd_rate_mask = p_eep_data->modal_header_2g.paprd_rate_mask_ht40; tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht40; } else { tmp_paprd_rate_mask = p_eep_data->modal_header_2g.paprd_rate_mask_ht20; tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht20; } } else { if (IEEE80211_IS_CHAN_HT40(chan)) { tmp_paprd_rate_mask = p_eep_data->modal_header_5g.paprd_rate_mask_ht40; tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht40; } else { tmp_paprd_rate_mask = p_eep_data->modal_header_5g.paprd_rate_mask_ht20; tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht20; } } AH_PAPRD_GET_SCALE_FACTOR( paprd_scale_factor, p_eep_data, IEEE80211_IS_CHAN_2GHZ(chan), ichan->channel); HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d] paprd_scale_factor %d\n", __func__, __LINE__, paprd_scale_factor); /* PAPRD is not done yet, Scale down the EEP power */ if (IEEE80211_IS_CHAN_HT40(chan)) { ptr_mcs_rate2power_table_index = &mcs_rate2power_table_index_ht40[0]; } else { ptr_mcs_rate2power_table_index = &mcs_rate2power_table_index_ht20[0]; } if (! ichan->paprd_table_write_done) { for (i = 0; i < 24; i++) { /* PAPRD is done yet, so Scale down Power for PAPRD Rates*/ if (tmp_paprd_rate_mask & (1 << i)) { target_power_val_t2[ptr_mcs_rate2power_table_index[i]] -= paprd_scale_factor; HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d]: Chan %d " "Scale down target_power_val_t2[%d] = 0x%04x\n", __func__, __LINE__, ichan->channel, i, target_power_val_t2[i]); } } } else { HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d]: PAPRD Done No TGT PWR Scaling\n", __func__, __LINE__); } } /* Save the Target power for future use */ OS_MEMCPY(target_power_val_t2_eep, target_power_val_t2, sizeof(target_power_val_t2)); ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan, target_power_val_t2, cfg_ctl, antenna_reduction, twice_max_regulatory_power, power_limit, 0); /* Save this for quick lookup */ ahp->reg_dmn = ath_hal_getctl(ah, chan); /* * Always use CDD/direct per rate power table for register based approach. * For FCC, CDD calculations should factor in the array gain, hence * this adjust call. ETSI and MKK does not have this requirement. */ if (is_reg_dmn_fcc(ahp->reg_dmn)) { HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: FCC regdomain, calling reg_txpower_cdd\n", __func__); ar9300_adjust_reg_txpower_cdd(ah, target_power_val_t2); } if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) { for (i = 0; i < ar9300_rate_size; i++) { /* * EEPROM TGT PWR is not same as current TGT PWR, * so Disable PAPRD for this rate. * Some of APs might ask to reduce Target Power, * if target power drops significantly, * disable PAPRD for that rate. */ if (tmp_paprd_rate_mask & (1 << i)) { if (ABS(target_power_val_t2_eep[i], target_power_val_t2[i]) > paprd_scale_factor) { tmp_paprd_rate_mask &= ~(1 << i); HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: EEP TPC[%02d] 0x%08x " "Curr TPC[%02d] 0x%08x mask = 0x%08x\n", __func__, i, target_power_val_t2_eep[i], i, target_power_val_t2[i], tmp_paprd_rate_mask); } } } HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: Chan %d After tmp_paprd_rate_mask = 0x%08x\n", __func__, ichan->channel, tmp_paprd_rate_mask); if (tmp_ptr) { *tmp_ptr = tmp_paprd_rate_mask; } } /* Write target power array to registers */ ar9300_transmit_power_reg_write(ah, target_power_val_t2); /* Write target power for self generated frames to the TPC register */ ar9300_selfgen_tpc_reg_write(ah, chan, target_power_val_t2); /* GreenTx or Paprd */ if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable || AH_PRIVATE(ah)->ah_caps.halPaprdEnabled) { if (AR_SREV_POSEIDON(ah)) { /*For HAL_RSSI_TX_POWER_NONE array*/ OS_MEMCPY(ahp->ah_default_tx_power, target_power_val_t2, sizeof(target_power_val_t2)); /* Get defautl tx related register setting for GreenTx */ /* Record OB/DB */ ahp->ah_ob_db1[POSEIDON_STORED_REG_OBDB] = OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2); /* Record TPC settting */ ahp->ah_ob_db1[POSEIDON_STORED_REG_TPC] = OS_REG_READ(ah, AR_TPC); /* Record BB_powertx_rate9 setting */ ahp->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9] = OS_REG_READ(ah, AR_PHY_BB_POWERTX_RATE9); } } /* * Return tx power used to iwconfig. * Since power is rate dependent, use one of the indices from the * AR9300_Rates enum to select an entry from target_power_val_t2[] * to report. * Currently returns the power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps * as CCK power is less interesting (?). */ i = ALL_TARGET_LEGACY_6_24; /* legacy */ if (IEEE80211_IS_CHAN_HT40(chan)) { i = ALL_TARGET_HT40_0_8_16; /* ht40 */ } else if (IEEE80211_IS_CHAN_HT20(chan)) { i = ALL_TARGET_HT20_0_8_16; /* ht20 */ } max_power_level = target_power_val_t2[i]; /* Adjusting the ah_max_power_level based on chains and antennaGain*/ switch (ar9300_get_ntxchains(((ahp->ah_tx_chainmaskopt > 0) ? ahp->ah_tx_chainmaskopt : ahp->ah_tx_chainmask))) { case 1: break; case 2: twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0: ((int16_t)AH_MIN((ahp->twice_antenna_reduction - (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_TWO_CHAIN)), 0)); /* Adjusting maxpower with antennaGain */ max_power_level -= twice_array_gain; /* Adjusting maxpower based on chain */ max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN; break; case 3: twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0: ((int16_t)AH_MIN((ahp->twice_antenna_reduction - (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_THREE_CHAIN)), 0)); /* Adjusting maxpower with antennaGain */ max_power_level -= twice_array_gain; /* Adjusting maxpower based on chain */ max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN; break; default: HALASSERT(0); /* Unsupported number of chains */ } AH_PRIVATE(ah)->ah_maxPowerLevel = (int8_t)max_power_level; ar9300_calibration_apply(ah, ichan->channel); #undef ABS /* Handle per packet TPC initializations */ if (ah->ah_config.ath_hal_desc_tpc) { /* Transmit Power per-rate per-chain are computed here. A separate * power table is maintained for different MIMO modes (i.e. TXBF ON, * STBC) to enable easy lookup during packet transmit. * The reason for maintaing each of these tables per chain is that * the transmit power used for different number of chains is different * depending on whether the power has been limited by the target power, * the regulatory domain or the CTL limits. */ u_int mode = ath_hal_get_curmode(ah, chan); u_int32_t val = 0; u_int8_t chainmasks[AR9300_MAX_CHAINS] = {OSPREY_1_CHAINMASK, OSPREY_2LOHI_CHAINMASK, OSPREY_3_CHAINMASK}; for (i = 0; i < AR9300_MAX_CHAINS; i++) { OS_MEMCPY(target_power_val_t2, target_power_val_t2_eep, sizeof(target_power_val_t2_eep)); ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan, target_power_val_t2, cfg_ctl, antenna_reduction, twice_max_regulatory_power, power_limit, chainmasks[i]); HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, " Channel = %d Chainmask = %d, Upper Limit = [%2d.%1d dBm]\n", ichan->channel, i, ahp->upper_limit[i]/2, ahp->upper_limit[i]%2 * 5); ar9300_init_rate_txpower(ah, mode, chan, target_power_val_t2, chainmasks[i]); } /* Enable TPC */ OS_REG_WRITE(ah, AR_PHY_PWRTX_MAX, AR_PHY_PWRTX_MAX_TPC_ENABLE); /* * Disable per chain power reduction since we are already * accounting for this in our calculations */ val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB); if (AR_SREV_WASP(ah)) { OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, val & AR_PHY_POWER_TX_SUB_2_DISABLE); } else { OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB, val & AR_PHY_POWER_TX_SUB_3_DISABLE); } } return HAL_OK; } /************************************************************** * ar9300_eeprom_set_addac * * Set the ADDAC from eeprom. */ void ar9300_eeprom_set_addac(struct ath_hal *ah, struct ieee80211_channel *chan) { HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, "FIXME: ar9300_eeprom_def_set_addac called\n"); #if 0 MODAL_EEPDEF_HEADER *p_modal; struct ath_hal_9300 *ahp = AH9300(ah); ar9300_eeprom_t *eep = &ahp->ah_eeprom.def; u_int8_t biaslevel; if (AH_PRIVATE(ah)->ah_macVersion != AR_SREV_VERSION_SOWL) { return; } HALASSERT(owl_get_eepdef_ver(ahp) == AR9300_EEP_VER); /* Xpa bias levels in eeprom are valid from rev 14.7 */ if (owl_get_eepdef_rev(ahp) < AR9300_EEP_MINOR_VER_7) { return; } if (ahp->ah_emu_eeprom) { return; } p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]); if (p_modal->xpa_bias_lvl != 0xff) { biaslevel = p_modal->xpa_bias_lvl; } else { /* Use freqeuncy specific xpa bias level */ u_int16_t reset_freq_bin, freq_bin, freq_count = 0; CHAN_CENTERS centers; ar9300_get_channel_centers(ah, chan, ¢ers); reset_freq_bin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan)); freq_bin = p_modal->xpa_bias_lvl_freq[0] & 0xff; biaslevel = (u_int8_t)(p_modal->xpa_bias_lvl_freq[0] >> 14); freq_count++; while (freq_count < 3) { if (p_modal->xpa_bias_lvl_freq[freq_count] == 0x0) { break; } freq_bin = p_modal->xpa_bias_lvl_freq[freq_count] & 0xff; if (reset_freq_bin >= freq_bin) { biaslevel = (u_int8_t)(p_modal->xpa_bias_lvl_freq[freq_count] >> 14); } else { break; } freq_count++; } } /* Apply bias level to the ADDAC values in the INI array */ if (IEEE80211_IS_CHAN_2GHZ(chan)) { INI_RA(&ahp->ah_ini_addac, 7, 1) = (INI_RA(&ahp->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3; } else { INI_RA(&ahp->ah_ini_addac, 6, 1) = (INI_RA(&ahp->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6; } #endif } u_int ar9300_eeprom_dump_support(struct ath_hal *ah, void **pp_e) { *pp_e = &(AH9300(ah)->ah_eeprom); return sizeof(ar9300_eeprom_t); } u_int8_t ar9300_eeprom_get_num_ant_config(struct ath_hal_9300 *ahp, HAL_FREQ_BAND freq_band) { #if 0 ar9300_eeprom_t *eep = &ahp->ah_eeprom.def; MODAL_EEPDEF_HEADER *p_modal = &(eep->modal_header[HAL_FREQ_BAND_2GHZ == freq_band]); BASE_EEPDEF_HEADER *p_base = &eep->base_eep_header; u_int8_t num_ant_config; num_ant_config = 1; /* default antenna configuration */ if (p_base->version >= 0x0E0D) { if (p_modal->use_ant1) { num_ant_config += 1; } } return num_ant_config; #else return 1; #endif } HAL_STATUS ar9300_eeprom_get_ant_cfg(struct ath_hal_9300 *ahp, const struct ieee80211_channel *chan, u_int8_t index, u_int16_t *config) { #if 0 ar9300_eeprom_t *eep = &ahp->ah_eeprom.def; MODAL_EEPDEF_HEADER *p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]); BASE_EEPDEF_HEADER *p_base = &eep->base_eep_header; switch (index) { case 0: *config = p_modal->ant_ctrl_common & 0xFFFF; return HAL_OK; case 1: if (p_base->version >= 0x0E0D) { if (p_modal->use_ant1) { *config = ((p_modal->ant_ctrl_common & 0xFFFF0000) >> 16); return HAL_OK; } } break; default: break; } #endif return HAL_EINVAL; } u_int8_t* ar9300_eeprom_get_cust_data(struct ath_hal_9300 *ahp) { return (u_int8_t *)ahp; } #ifdef UNUSED static inline HAL_STATUS ar9300_check_eeprom(struct ath_hal *ah) { #if 0 u_int32_t sum = 0, el; u_int16_t *eepdata; int i; struct ath_hal_9300 *ahp = AH9300(ah); HAL_BOOL need_swap = AH_FALSE; ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom.def; u_int16_t magic, magic2; int addr; u_int16_t temp; /* ** We need to check the EEPROM data regardless of if it's in flash or ** in EEPROM. */ if (!ahp->ah_priv.priv.ah_eeprom_read( ah, AR9300_EEPROM_MAGIC_OFFSET, &magic)) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Reading Magic # failed\n", __func__); return AH_FALSE; } HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Read Magic = 0x%04X\n", __func__, magic); if (!ar9300_eep_data_in_flash(ah)) { if (magic != AR9300_EEPROM_MAGIC) { magic2 = SWAP16(magic); if (magic2 == AR9300_EEPROM_MAGIC) { need_swap = AH_TRUE; eepdata = (u_int16_t *)(&ahp->ah_eeprom); for (addr = 0; addr < sizeof(ar9300_eeprom_t) / sizeof(u_int16_t); addr++) { temp = SWAP16(*eepdata); *eepdata = temp; eepdata++; HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "0x%04X ", *eepdata); if (((addr + 1) % 6) == 0) { HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "\n"); } } } else { HALDEBUG(ah, HAL_DEBUG_EEPROM, "Invalid EEPROM Magic. endianness missmatch.\n"); return HAL_EEBADSUM; } } } else { HALDEBUG(ah, HAL_DEBUG_EEPROM, "EEPROM being read from flash @0x%p\n", AH_PRIVATE(ah)->ah_st); } HALDEBUG(ah, HAL_DEBUG_EEPROM, "need_swap = %s.\n", need_swap?"True":"False"); if (need_swap) { el = SWAP16(ahp->ah_eeprom.def.base_eep_header.length); } else { el = ahp->ah_eeprom.def.base_eep_header.length; } eepdata = (u_int16_t *)(&ahp->ah_eeprom.def); for (i = 0; i < AH_MIN(el, sizeof(ar9300_eeprom_t)) / sizeof(u_int16_t); i++) { sum ^= *eepdata++; } if (need_swap) { /* * preddy: EEPROM endianness does not match. So change it * 8bit values in eeprom data structure does not need to be swapped * Only >8bits (16 & 32) values need to be swapped * If a new 16 or 32 bit field is added to the EEPROM contents, * please make sure to swap the field here */ u_int32_t integer, j; u_int16_t word; HALDEBUG(ah, HAL_DEBUG_EEPROM, "EEPROM Endianness is not native.. Changing \n"); /* convert Base Eep header */ word = SWAP16(eep->base_eep_header.length); eep->base_eep_header.length = word; word = SWAP16(eep->base_eep_header.checksum); eep->base_eep_header.checksum = word; word = SWAP16(eep->base_eep_header.version); eep->base_eep_header.version = word; word = SWAP16(eep->base_eep_header.reg_dmn[0]); eep->base_eep_header.reg_dmn[0] = word; word = SWAP16(eep->base_eep_header.reg_dmn[1]); eep->base_eep_header.reg_dmn[1] = word; word = SWAP16(eep->base_eep_header.rf_silent); eep->base_eep_header.rf_silent = word; word = SWAP16(eep->base_eep_header.blue_tooth_options); eep->base_eep_header.blue_tooth_options = word; word = SWAP16(eep->base_eep_header.device_cap); eep->base_eep_header.device_cap = word; /* convert Modal Eep header */ for (j = 0; j < ARRAY_LENGTH(eep->modal_header); j++) { MODAL_EEPDEF_HEADER *p_modal = &eep->modal_header[j]; integer = SWAP32(p_modal->ant_ctrl_common); p_modal->ant_ctrl_common = integer; for (i = 0; i < AR9300_MAX_CHAINS; i++) { integer = SWAP32(p_modal->ant_ctrl_chain[i]); p_modal->ant_ctrl_chain[i] = integer; } for (i = 0; i < AR9300_EEPROM_MODAL_SPURS; i++) { word = SWAP16(p_modal->spur_chans[i].spur_chan); p_modal->spur_chans[i].spur_chan = word; } } } /* Check CRC - Attach should fail on a bad checksum */ if (sum != 0xffff || owl_get_eepdef_ver(ahp) != AR9300_EEP_VER || owl_get_eepdef_rev(ahp) < AR9300_EEP_NO_BACK_VER) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "Bad EEPROM checksum 0x%x or revision 0x%04x\n", sum, owl_get_eepdef_ver(ahp)); return HAL_EEBADSUM; } #ifdef EEPROM_DUMP ar9300_eeprom_def_dump(ah, eep); #endif #if 0 #ifdef AH_AR9300_OVRD_TGT_PWR /* * 14.4 EEPROM contains low target powers. * Hardcode until EEPROM > 14.4 */ if (owl_get_eepdef_ver(ahp) == 14 && owl_get_eepdef_rev(ahp) <= 4) { MODAL_EEPDEF_HEADER *p_modal; #ifdef EEPROM_DUMP HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Original Target Powers\n"); ar9300_eep_def_dump_tgt_power(ah, eep); #endif HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Override Target Powers. EEPROM Version is %d.%d, " "Device Type %d\n", owl_get_eepdef_ver(ahp), owl_get_eepdef_rev(ahp), eep->base_eep_header.device_type); ar9300_eep_def_override_tgt_power(ah, eep); if (eep->base_eep_header.device_type == 5) { /* for xb72 only: improve transmit EVM for interop */ p_modal = &eep->modal_header[1]; p_modal->tx_frame_to_data_start = 0x23; p_modal->tx_frame_to_xpa_on = 0x23; p_modal->tx_frame_to_pa_on = 0x23; } #ifdef EEPROM_DUMP HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Modified Target Powers\n"); ar9300_eep_def_dump_tgt_power(ah, eep); #endif } #endif /* AH_AR9300_OVRD_TGT_PWR */ #endif #endif return HAL_OK; } #endif static u_int16_t ar9300_eeprom_get_spur_chan(struct ath_hal *ah, int i, HAL_BOOL is_2ghz) { u_int16_t spur_val = AR_NO_SPUR; #if 0 struct ath_hal_9300 *ahp = AH9300(ah); ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom; HALASSERT(i < AR_EEPROM_MODAL_SPURS ); HALDEBUG(ah, HAL_DEBUG_ANI, "Getting spur idx %d is2Ghz. %d val %x\n", i, is_2ghz, AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz]); switch (AH_PRIVATE(ah)->ah_config.ath_hal_spur_mode) { case SPUR_DISABLE: /* returns AR_NO_SPUR */ break; case SPUR_ENABLE_IOCTL: spur_val = AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz]; HALDEBUG(ah, HAL_DEBUG_ANI, "Getting spur val from new loc. %d\n", spur_val); break; case SPUR_ENABLE_EEPROM: spur_val = eep->modal_header[is_2ghz].spur_chans[i].spur_chan; break; } #endif return spur_val; } #ifdef UNUSED static inline HAL_BOOL ar9300_fill_eeprom(struct ath_hal *ah) { return ar9300_eeprom_restore(ah); } #endif u_int16_t ar9300_eeprom_struct_size(void) { return sizeof(ar9300_eeprom_t); } int ar9300_eeprom_struct_default_many(void) { return ARRAY_LENGTH(default9300); } ar9300_eeprom_t * ar9300_eeprom_struct_default(int default_index) { if (default_index >= 0 && default_index < ARRAY_LENGTH(default9300)) { return default9300[default_index]; } else { return 0; } } ar9300_eeprom_t * ar9300_eeprom_struct_default_find_by_id(int id) { int it; for (it = 0; it < ARRAY_LENGTH(default9300); it++) { if (default9300[it] != 0 && default9300[it]->template_version == id) { return default9300[it]; } } return 0; } HAL_BOOL ar9300_calibration_data_read_flash(struct ath_hal *ah, long address, u_int8_t *buffer, int many) { if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE - 1)) { return AH_FALSE; } return AH_FALSE; } HAL_BOOL ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address, u_int8_t *buffer, int many) { int i; u_int8_t value[2]; unsigned long eep_addr; unsigned long byte_addr; u_int16_t *svalue; if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE)) { return AH_FALSE; } for (i = 0; i < many; i++) { eep_addr = (u_int16_t) (address + i) / 2; byte_addr = (u_int16_t) (address + i) % 2; svalue = (u_int16_t *) value; if (! ath_hal_eepromRead(ah, eep_addr, svalue)) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Unable to read eeprom region \n", __func__); return AH_FALSE; } buffer[i] = (*svalue >> (8 * byte_addr)) & 0xff; } return AH_TRUE; } HAL_BOOL ar9300_calibration_data_read_otp(struct ath_hal *ah, long address, u_int8_t *buffer, int many, HAL_BOOL is_wifi) { int i; unsigned long eep_addr; unsigned long byte_addr; u_int32_t svalue; if (((address) < 0) || ((address + many) > 0x400)) { return AH_FALSE; } for (i = 0; i < many; i++) { eep_addr = (u_int16_t) (address + i) / 4; /* otp is 4 bytes long???? */ byte_addr = (u_int16_t) (address + i) % 4; if (!ar9300_otp_read(ah, eep_addr, &svalue, is_wifi)) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Unable to read otp region \n", __func__); return AH_FALSE; } buffer[i] = (svalue >> (8 * byte_addr)) & 0xff; } return AH_TRUE; } #ifdef ATH_CAL_NAND_FLASH HAL_BOOL ar9300_calibration_data_read_nand(struct ath_hal *ah, long address, u_int8_t *buffer, int many) { int ret_len; int ret_val = 1; /* Calling OS based API to read NAND */ ret_val = OS_NAND_FLASH_READ(ATH_CAL_NAND_PARTITION, address, many, &ret_len, buffer); return (ret_val ? AH_FALSE: AH_TRUE); } #endif HAL_BOOL ar9300_calibration_data_read(struct ath_hal *ah, long address, u_int8_t *buffer, int many) { switch (AH9300(ah)->calibration_data_source) { case calibration_data_flash: return ar9300_calibration_data_read_flash(ah, address, buffer, many); case calibration_data_eeprom: return ar9300_calibration_data_read_eeprom(ah, address, buffer, many); case calibration_data_otp: return ar9300_calibration_data_read_otp(ah, address, buffer, many, 1); #ifdef ATH_CAL_NAND_FLASH case calibration_data_nand: return ar9300_calibration_data_read_nand(ah,address,buffer,many); #endif } return AH_FALSE; } HAL_BOOL ar9300_calibration_data_read_array(struct ath_hal *ah, int address, u_int8_t *buffer, int many) { int it; for (it = 0; it < many; it++) { (void)ar9300_calibration_data_read(ah, address - it, buffer + it, 1); } return AH_TRUE; } /* * the address where the first configuration block is written */ static const int base_address = 0x3ff; /* 1KB */ static const int base_address_512 = 0x1ff; /* 512Bytes */ /* * the address where the NAND first configuration block is written */ #ifdef ATH_CAL_NAND_FLASH static const int base_address_nand = AR9300_FLASH_CAL_START_OFFSET; #endif /* * the lower limit on configuration data */ static const int low_limit = 0x040; /* * returns size of the physical eeprom in bytes. * 1024 and 2048 are normal sizes. * 0 means there is no eeprom. */ int32_t ar9300_eeprom_size(struct ath_hal *ah) { u_int16_t data; /* * first we'll try for 4096 bytes eeprom */ if (ar9300_eeprom_read_word(ah, 2047, &data)) { if (data != 0) { return 4096; } } /* * then we'll try for 2048 bytes eeprom */ if (ar9300_eeprom_read_word(ah, 1023, &data)) { if (data != 0) { return 2048; } } /* * then we'll try for 1024 bytes eeprom */ if (ar9300_eeprom_read_word(ah, 511, &data)) { if (data != 0) { return 1024; } } return 0; } /* * returns size of the physical otp in bytes. * 1024 and 2048 are normal sizes. * 0 means there is no eeprom. */ int32_t ar9300_otp_size(struct ath_hal *ah) { if (AR_SREV_POSEIDON(ah) || AR_SREV_HORNET(ah)) { return base_address_512+1; } else { return base_address+1; } } /* * find top of memory */ int ar9300_eeprom_base_address(struct ath_hal *ah) { int size; if (AH9300(ah)->calibration_data_source == calibration_data_otp) { return ar9300_otp_size(ah)-1; } else { size = ar9300_eeprom_size(ah); if (size > 0) { return size - 1; } else { return ar9300_otp_size(ah)-1; } } } int ar9300_eeprom_volatile(struct ath_hal *ah) { if (AH9300(ah)->calibration_data_source == calibration_data_otp) { return 0; /* no eeprom, use otp */ } else { return 1; /* board has eeprom or flash */ } } /* * need to change this to look for the pcie data in the low parts of memory * cal data needs to stop a few locations above */ int ar9300_eeprom_low_limit(struct ath_hal *ah) { return low_limit; } u_int16_t ar9300_compression_checksum(u_int8_t *data, int dsize) { int it; int checksum = 0; for (it = 0; it < dsize; it++) { checksum += data[it]; checksum &= 0xffff; } return checksum; } int ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference, int *length, int *major, int *minor) { unsigned long value[4]; value[0] = best[0]; value[1] = best[1]; value[2] = best[2]; value[3] = best[3]; *code = ((value[0] >> 5) & 0x0007); *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020); *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f); *major = (value[2] & 0x000f); *minor = (value[3] & 0x00ff); return 4; } static HAL_BOOL ar9300_uncompress_block(struct ath_hal *ah, u_int8_t *mptr, int mdata_size, u_int8_t *block, int size) { int it; int spot; int offset; int length; spot = 0; for (it = 0; it < size; it += (length + 2)) { offset = block[it]; offset &= 0xff; spot += offset; length = block[it + 1]; length &= 0xff; if (length > 0 && spot >= 0 && spot + length <= mdata_size) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Restore at %d: spot=%d offset=%d length=%d\n", __func__, it, spot, offset, length); OS_MEMCPY(&mptr[spot], &block[it + 2], length); spot += length; } else if (length > 0) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Bad restore at %d: spot=%d offset=%d length=%d\n", __func__, it, spot, offset, length); return AH_FALSE; } } return AH_TRUE; } static int ar9300_eeprom_restore_internal_address(struct ath_hal *ah, ar9300_eeprom_t *mptr, int mdata_size, int cptr, u_int8_t blank) { u_int8_t word[MOUTPUT]; ar9300_eeprom_t *dptr; /* was uint8 */ int code; int reference, length, major, minor; int osize; int it; int restored; u_int16_t checksum, mchecksum; restored = 0; for (it = 0; it < MSTATE; it++) { (void) ar9300_calibration_data_read_array( ah, cptr, word, compression_header_length); if (word[0] == blank && word[1] == blank && word[2] == blank && word[3] == blank) { break; } ar9300_compression_header_unpack( word, &code, &reference, &length, &major, &minor); HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Found block at %x: " "code=%d ref=%d length=%d major=%d minor=%d\n", __func__, cptr, code, reference, length, major, minor); #ifdef DONTUSE if (length >= 1024) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Skipping bad header\n", __func__); cptr -= compression_header_length; continue; } #endif osize = length; (void) ar9300_calibration_data_read_array( ah, cptr, word, compression_header_length + osize + compression_checksum_length); checksum = ar9300_compression_checksum( &word[compression_header_length], length); mchecksum = word[compression_header_length + osize] | (word[compression_header_length + osize + 1] << 8); HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: checksum %x %x\n", __func__, checksum, mchecksum); if (checksum == mchecksum) { switch (code) { case _compress_none: if (length != mdata_size) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: EEPROM structure size mismatch " "memory=%d eeprom=%d\n", __func__, mdata_size, length); return -1; } OS_MEMCPY((u_int8_t *)mptr, (u_int8_t *)(word + compression_header_length), length); HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: restored eeprom %d: uncompressed, length %d\n", __func__, it, length); restored = 1; break; #ifdef UNUSED case _compress_lzma: if (reference == reference_current) { dptr = mptr; } else { dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id( reference); if (dptr == 0) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Can't find reference eeprom struct %d\n", __func__, reference); goto done; } } usize = -1; if (usize != mdata_size) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: uncompressed data is wrong size %d %d\n", __func__, usize, mdata_size); goto done; } for (ib = 0; ib < mdata_size; ib++) { mptr[ib] = dptr[ib] ^ word[ib + overhead]; } HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: restored eeprom %d: compressed, " "reference %d, length %d\n", __func__, it, reference, length); break; case _compress_pairs: if (reference == reference_current) { dptr = mptr; } else { dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id( reference); if (dptr == 0) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Can't find the reference " "eeprom structure %d\n", __func__, reference); goto done; } } HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: restored eeprom %d: " "pairs, reference %d, length %d,\n", __func__, it, reference, length); break; #endif case _compress_block: if (reference == reference_current) { dptr = mptr; } else { dptr = ar9300_eeprom_struct_default_find_by_id(reference); if (dptr == 0) { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: can't find reference eeprom struct %d\n", __func__, reference); break; } OS_MEMCPY(mptr, dptr, mdata_size); } HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: restore eeprom %d: block, reference %d, length %d\n", __func__, it, reference, length); (void) ar9300_uncompress_block(ah, (u_int8_t *) mptr, mdata_size, (u_int8_t *) (word + compression_header_length), length); restored = 1; break; default: HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: unknown compression code %d\n", __func__, code); break; } } else { HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: skipping block with bad checksum\n", __func__); } cptr -= compression_header_length + osize + compression_checksum_length; } if (!restored) { cptr = -1; } return cptr; } static int ar9300_eeprom_restore_from_dram(struct ath_hal *ah, ar9300_eeprom_t *mptr, int mdata_size) { struct ath_hal_9300 *ahp = AH9300(ah); #if !defined(USE_PLATFORM_FRAMEWORK) char *cal_ptr; #endif HALASSERT(mdata_size > 0); /* if cal_in_flash is AH_TRUE, the address sent by LMAC to HAL (i.e. ah->ah_st) is corresponding to Flash. so return from here if ar9300_eep_data_in_flash(ah) returns AH_TRUE */ if(ar9300_eep_data_in_flash(ah)) return -1; #if 0 /* check if LMAC sent DRAM address is valid */ if (!(uintptr_t)(AH_PRIVATE(ah)->ah_st)) { return -1; } #endif /* When calibration data is from host, Host will copy the compressed data to the predefined DRAM location saved at ah->ah_st */ #if 0 ath_hal_printf(ah, "Restoring Cal data from DRAM\n"); ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st), HOST_CALDATA_SIZE); #endif if (!ahp->ah_cal_mem) { HALDEBUG(ah, HAL_DEBUG_EEPROM,"%s: can't remap dram region\n", __func__); return -1; } #if !defined(USE_PLATFORM_FRAMEWORK) cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET]; OS_MEMCPY(mptr, cal_ptr, mdata_size); #else OS_MEMCPY(mptr, ahp->ah_cal_mem, mdata_size); #endif if (mptr->eeprom_version == 0xff || mptr->template_version == 0xff || mptr->eeprom_version == 0 || mptr->template_version == 0) { /* The board is uncalibrated */ return -1; } if (mptr->eeprom_version != 0x2) { return -1; } return mdata_size; } static int ar9300_eeprom_restore_from_flash(struct ath_hal *ah, ar9300_eeprom_t *mptr, int mdata_size) { struct ath_hal_9300 *ahp = AH9300(ah); char *cal_ptr; HALASSERT(mdata_size > 0); if (!ahp->ah_cal_mem) { return -1; } ath_hal_printf(ah, "Restoring Cal data from Flash\n"); /* * When calibration data is saved in flash, read * uncompressed eeprom structure from flash and return */ cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET]; OS_MEMCPY(mptr, cal_ptr, mdata_size); #if 0 ar9300_swap_eeprom((ar9300_eeprom_t *)mptr); DONE IN ar9300_restore() #endif if (mptr->eeprom_version == 0xff || mptr->template_version == 0xff || mptr->eeprom_version == 0 || mptr->template_version == 0) { /* The board is uncalibrated */ return -1; } if (mptr->eeprom_version != 0x2) { return -1; } return mdata_size; } /* * Read the configuration data from the storage. We try the order with: * EEPROM, Flash, OTP. If all of above failed, use the default template. * The data can be put in any specified memory buffer. * * Returns -1 on error. * Returns address of next memory location on success. */ int ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr, int mdata_size) { int nptr; nptr = -1; if ((AH9300(ah)->calibration_data_try == calibration_data_none || AH9300(ah)->calibration_data_try == calibration_data_dram) && AH9300(ah)->try_dram && nptr < 0) { ath_hal_printf(ah, "Restoring Cal data from DRAM\n"); AH9300(ah)->calibration_data_source = calibration_data_dram; AH9300(ah)->calibration_data_source_address = 0; nptr = ar9300_eeprom_restore_from_dram(ah, mptr, mdata_size); if (nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_none; AH9300(ah)->calibration_data_source_address = 0; } } if ((AH9300(ah)->calibration_data_try == calibration_data_none || AH9300(ah)->calibration_data_try == calibration_data_eeprom) && AH9300(ah)->try_eeprom && nptr < 0) { /* * need to look at highest eeprom address as well as at * base_address=0x3ff where we used to write the data */ ath_hal_printf(ah, "Restoring Cal data from EEPROM\n"); AH9300(ah)->calibration_data_source = calibration_data_eeprom; if (AH9300(ah)->calibration_data_try_address != 0) { AH9300(ah)->calibration_data_source_address = AH9300(ah)->calibration_data_try_address; nptr = ar9300_eeprom_restore_internal_address( ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0xff); } else { AH9300(ah)->calibration_data_source_address = ar9300_eeprom_base_address(ah); nptr = ar9300_eeprom_restore_internal_address( ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0xff); if (nptr < 0 && AH9300(ah)->calibration_data_source_address != base_address) { AH9300(ah)->calibration_data_source_address = base_address; nptr = ar9300_eeprom_restore_internal_address( ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0xff); } } if (nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_none; AH9300(ah)->calibration_data_source_address = 0; } } /* * ##### should be an ifdef test for any AP usage, * either in driver or in nart */ if ((AH9300(ah)->calibration_data_try == calibration_data_none || AH9300(ah)->calibration_data_try == calibration_data_flash) && AH9300(ah)->try_flash && nptr < 0) { ath_hal_printf(ah, "Restoring Cal data from Flash\n"); AH9300(ah)->calibration_data_source = calibration_data_flash; /* how are we supposed to set this for flash? */ AH9300(ah)->calibration_data_source_address = 0; nptr = ar9300_eeprom_restore_from_flash(ah, mptr, mdata_size); if (nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_none; AH9300(ah)->calibration_data_source_address = 0; } } if ((AH9300(ah)->calibration_data_try == calibration_data_none || AH9300(ah)->calibration_data_try == calibration_data_otp) && AH9300(ah)->try_otp && nptr < 0) { ath_hal_printf(ah, "Restoring Cal data from OTP\n"); AH9300(ah)->calibration_data_source = calibration_data_otp; if (AH9300(ah)->calibration_data_try_address != 0) { AH9300(ah)->calibration_data_source_address = AH9300(ah)->calibration_data_try_address; } else { AH9300(ah)->calibration_data_source_address = ar9300_eeprom_base_address(ah); } nptr = ar9300_eeprom_restore_internal_address( ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0); if (nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_none; AH9300(ah)->calibration_data_source_address = 0; } } #ifdef ATH_CAL_NAND_FLASH if ((AH9300(ah)->calibration_data_try == calibration_data_none || AH9300(ah)->calibration_data_try == calibration_data_nand) && AH9300(ah)->try_nand && nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_nand; AH9300(ah)->calibration_data_source_address = ((unsigned int)(AH_PRIVATE(ah)->ah_st)) + base_address_nand; if(ar9300_calibration_data_read( ah, AH9300(ah)->calibration_data_source_address, (u_int8_t *)mptr, mdata_size) == AH_TRUE) { nptr = mdata_size; } /*nptr=ar9300EepromRestoreInternalAddress(ah, mptr, mdataSize, CalibrationDataSourceAddress);*/ if(nptr < 0) { AH9300(ah)->calibration_data_source = calibration_data_none; AH9300(ah)->calibration_data_source_address = 0; } } #endif if (nptr < 0) { ath_hal_printf(ah, "%s[%d] No vaid CAL, calling default template\n", __func__, __LINE__); nptr = ar9300_eeprom_restore_something(ah, mptr, mdata_size); } return nptr; } /******************************************************************************/ /*! ** \brief Eeprom Swapping Function ** ** This function will swap the contents of the "longer" EEPROM data items ** to ensure they are consistent with the endian requirements for the platform ** they are being compiled for ** ** \param eh Pointer to the EEPROM data structure ** \return N/A */ #if AH_BYTE_ORDER == AH_BIG_ENDIAN void ar9300_swap_eeprom(ar9300_eeprom_t *eep) { u_int32_t dword; u_int16_t word; int i; word = __bswap16(eep->base_eep_header.reg_dmn[0]); eep->base_eep_header.reg_dmn[0] = word; word = __bswap16(eep->base_eep_header.reg_dmn[1]); eep->base_eep_header.reg_dmn[1] = word; dword = __bswap32(eep->base_eep_header.swreg); eep->base_eep_header.swreg = dword; dword = __bswap32(eep->modal_header_2g.ant_ctrl_common); eep->modal_header_2g.ant_ctrl_common = dword; dword = __bswap32(eep->modal_header_2g.ant_ctrl_common2); eep->modal_header_2g.ant_ctrl_common2 = dword; dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht20); eep->modal_header_2g.paprd_rate_mask_ht20 = dword; dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht40); eep->modal_header_2g.paprd_rate_mask_ht40 = dword; dword = __bswap32(eep->modal_header_5g.ant_ctrl_common); eep->modal_header_5g.ant_ctrl_common = dword; dword = __bswap32(eep->modal_header_5g.ant_ctrl_common2); eep->modal_header_5g.ant_ctrl_common2 = dword; dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht20); eep->modal_header_5g.paprd_rate_mask_ht20 = dword; dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht40); eep->modal_header_5g.paprd_rate_mask_ht40 = dword; for (i = 0; i < OSPREY_MAX_CHAINS; i++) { word = __bswap16(eep->modal_header_2g.ant_ctrl_chain[i]); eep->modal_header_2g.ant_ctrl_chain[i] = word; word = __bswap16(eep->modal_header_5g.ant_ctrl_chain[i]); eep->modal_header_5g.ant_ctrl_chain[i] = word; } } void ar9300_eeprom_template_swap(void) { int it; ar9300_eeprom_t *dptr; for (it = 0; it < ARRAY_LENGTH(default9300); it++) { dptr = ar9300_eeprom_struct_default(it); if (dptr != 0) { ar9300_swap_eeprom(dptr); } } } #endif /* * Restore the configuration structure by reading the eeprom. * This function destroys any existing in-memory structure content. */ HAL_BOOL ar9300_eeprom_restore(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); ar9300_eeprom_t *mptr; int mdata_size; HAL_BOOL status = AH_FALSE; mptr = &ahp->ah_eeprom; mdata_size = ar9300_eeprom_struct_size(); if (mptr != 0 && mdata_size > 0) { #if AH_BYTE_ORDER == AH_BIG_ENDIAN ar9300_eeprom_template_swap(); ar9300_swap_eeprom(mptr); #endif /* * At this point, mptr points to the eeprom data structure * in it's "default" state. If this is big endian, swap the * data structures back to "little endian" form. */ if (ar9300_eeprom_restore_internal(ah, mptr, mdata_size) >= 0) { status = AH_TRUE; } #if AH_BYTE_ORDER == AH_BIG_ENDIAN /* Second Swap, back to Big Endian */ ar9300_eeprom_template_swap(); ar9300_swap_eeprom(mptr); #endif } ahp->ah_2g_paprd_rate_mask_ht40 = mptr->modal_header_2g.paprd_rate_mask_ht40; ahp->ah_2g_paprd_rate_mask_ht20 = mptr->modal_header_2g.paprd_rate_mask_ht20; ahp->ah_5g_paprd_rate_mask_ht40 = mptr->modal_header_5g.paprd_rate_mask_ht40; ahp->ah_5g_paprd_rate_mask_ht20 = mptr->modal_header_5g.paprd_rate_mask_ht20; return status; } int32_t ar9300_thermometer_get(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); int thermometer; thermometer = (ahp->ah_eeprom.base_eep_header.misc_configuration >> 1) & 0x3; thermometer--; return thermometer; } HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah) { int thermometer = ar9300_thermometer_get(ah); /* ch0_RXTX4 */ /*#define AR_PHY_65NM_CH0_RXTX4 AR_PHY_65NM(ch0_RXTX4)*/ #define AR_PHY_65NM_CH1_RXTX4 AR_PHY_65NM(ch1_RXTX4) #define AR_PHY_65NM_CH2_RXTX4 AR_PHY_65NM(ch2_RXTX4) /*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON 0x10000000*/ /*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_S 28*/ #define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S 29 #define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR \ (0x1<ah_eeprom; tuning_caps_params = eep->base_eep_header.params_for_tuning_caps[0]; return tuning_caps_params; } /* * Read the tuning caps params from eeprom and set to correct register. * To regulation the frequency accuracy. */ HAL_BOOL ar9300_tuning_caps_apply(struct ath_hal *ah) { int tuning_caps_params; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; tuning_caps_params = ar9300_tuning_caps_params_get(ah); if ((eep->base_eep_header.feature_enable & 0x40) >> 6) { tuning_caps_params &= 0x7f; if (AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) { return true; } else if (AR_SREV_HORNET(ah)) { OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC, tuning_caps_params); OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC, tuning_caps_params); } else if (AR_SREV_SCORPION(ah)) { OS_REG_RMW_FIELD(ah, AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC, tuning_caps_params); OS_REG_RMW_FIELD(ah, AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC, tuning_caps_params); } else { OS_REG_RMW_FIELD(ah, AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC, tuning_caps_params); OS_REG_RMW_FIELD(ah, AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC, tuning_caps_params); } } return AH_TRUE; } /* * Read the tx_frame_to_xpa_on param from eeprom and apply the value to * correct register. */ HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz) { u_int8_t xpa_timing_control; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if ((eep->base_eep_header.feature_enable & 0x80) >> 7) { if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah)) { if (is_2ghz) { xpa_timing_control = eep->modal_header_2g.tx_frame_to_xpa_on; OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_timing_control); } else { xpa_timing_control = eep->modal_header_5g.tx_frame_to_xpa_on; OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_timing_control); } } } return AH_TRUE; } /* * Read the xLNA_bias_strength param from eeprom and apply the value to * correct register. */ HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz) { u_int8_t x_lNABias; u_int32_t value = 0; ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if ((eep->base_eep_header.misc_configuration & 0x40) >> 6) { if (AR_SREV_OSPREY(ah)) { if (is_2ghz) { x_lNABias = eep->modal_header_2g.xLNA_bias_strength; } else { x_lNABias = eep->modal_header_5g.xLNA_bias_strength; } value = x_lNABias & ( 0x03 ); // bit0,1 for chain0 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value); value = (x_lNABias >> 2) & ( 0x03 ); // bit2,3 for chain1 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value); value = (x_lNABias >> 4) & ( 0x03 ); // bit4,5 for chain2 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value); } } return AH_TRUE; } /* * Read EEPROM header info and program the device for correct operation * given the channel value. */ HAL_BOOL ar9300_eeprom_set_board_values(struct ath_hal *ah, const struct ieee80211_channel *chan) { HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); ar9300_xpa_bias_level_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan)); ar9300_xpa_timing_control_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan)); ar9300_ant_ctrl_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan)); ar9300_drive_strength_apply(ah); ar9300_x_lNA_bias_strength_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan)); /* wait for Poseidon internal regular turnning */ /* for Hornet we move it before initPLL to avoid an access issue */ /* Function not used when EMULATION. */ if (!AR_SREV_HORNET(ah) && !AR_SREV_WASP(ah) && !AR_SREV_HONEYBEE(ah)) { ar9300_internal_regulator_apply(ah); } ar9300_attenuation_apply(ah, ichan->channel); ar9300_quick_drop_apply(ah, ichan->channel); ar9300_thermometer_apply(ah); if(!AR_SREV_WASP(ah)) { ar9300_tuning_caps_apply(ah); } ar9300_tx_end_to_xpab_off_apply(ah, ichan->channel); return AH_TRUE; } u_int8_t * ar9300_eeprom_get_spur_chans_ptr(struct ath_hal *ah, HAL_BOOL is_2ghz) { ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom; if (is_2ghz) { return &(eep->modal_header_2g.spur_chans[0]); } else { return &(eep->modal_header_5g.spur_chans[0]); } } static u_int8_t ar9300_eeprom_get_tx_gain_table_number_max(struct ath_hal *ah) { unsigned long tx_gain_table_max; tx_gain_table_max = OS_REG_READ_FIELD(ah, AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX); return tx_gain_table_max; } u_int8_t ar9300_eeprom_tx_gain_table_index_max_apply(struct ath_hal *ah, u_int16_t channel) { unsigned int index; ar9300_eeprom_t *ahp_Eeprom; struct ath_hal_9300 *ahp = AH9300(ah); ahp_Eeprom = &ahp->ah_eeprom; if (ahp_Eeprom->base_ext1.misc_enable == 0) return AH_FALSE; if (channel < 4000) { index = ahp_Eeprom->modal_header_2g.tx_gain_cap; } else { index = ahp_Eeprom->modal_header_5g.tx_gain_cap; } OS_REG_RMW_FIELD(ah, AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX, index); return AH_TRUE; } static u_int8_t ar9300_eeprom_get_pcdac_tx_gain_table_i(struct ath_hal *ah, int i, u_int8_t *pcdac) { unsigned long tx_gain; u_int8_t tx_gain_table_max; tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah); if (i <= 0 || i > tx_gain_table_max) { *pcdac = 0; return AH_FALSE; } tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4); *pcdac = ((tx_gain >> 24) & 0xff); return AH_TRUE; } u_int8_t ar9300_eeprom_set_tx_gain_cap(struct ath_hal *ah, int *tx_gain_max) // pcdac read back from reg, read back value depends on reset 2GHz/5GHz ini // tx_gain_table, this function will be called twice after each // band's calibration. // after 2GHz cal, tx_gain_max[0] has 2GHz, calibration max txgain, // tx_gain_max[1]=-100 // after 5GHz cal, tx_gain_max[0],tx_gain_max[1] have calibration // value for both band // reset is on 5GHz, reg reading from tx_gain_table is for 5GHz, // so program can't recalculate 2g.tx_gain_cap at this point. { int i = 0, ig, im = 0; u_int8_t pcdac = 0; u_int8_t tx_gain_table_max; ar9300_eeprom_t *ahp_Eeprom; struct ath_hal_9300 *ahp = AH9300(ah); ahp_Eeprom = &ahp->ah_eeprom; if (ahp_Eeprom->base_ext1.misc_enable == 0) return AH_FALSE; tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah); for (i = 0; i < 2; i++) { if (tx_gain_max[i]>-100) { // -100 didn't cal that band. if ( i== 0) { if (tx_gain_max[1]>-100) { continue; // both band are calibrated, skip 2GHz 2g.tx_gain_cap reset } } for (ig = 1; ig <= tx_gain_table_max; ig++) { if (ah != 0 && ah->ah_reset != 0) { ar9300_eeprom_get_pcdac_tx_gain_table_i(ah, ig, &pcdac); if (pcdac >= tx_gain_max[i]) break; } } if (ig+1 <= tx_gain_table_max) { if (pcdac == tx_gain_max[i]) im = ig; else im = ig + 1; if (i == 0) { ahp_Eeprom->modal_header_2g.tx_gain_cap = im; } else { ahp_Eeprom->modal_header_5g.tx_gain_cap = im; } } else { if (i == 0) { ahp_Eeprom->modal_header_2g.tx_gain_cap = ig; } else { ahp_Eeprom->modal_header_5g.tx_gain_cap = ig; } } } } return AH_TRUE; }