/* * Copyright (c) 2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ #include "opt_ah.h" #include "ah.h" #include "ah_desc.h" #include "ah_internal.h" #include "ar9300/ar9300.h" #include "ar9300/ar9300reg.h" #include "ar9300/ar9300phy.h" #include "ar9300/ar9300desc.h" #define TU_TO_USEC(_tu) ((_tu) << 10) #define ONE_EIGHTH_TU_TO_USEC(_tu8) ((_tu8) << 7) /* * Update Tx FIFO trigger level. * * Set b_inc_trig_level to TRUE to increase the trigger level. * Set b_inc_trig_level to FALSE to decrease the trigger level. * * Returns TRUE if the trigger level was updated */ HAL_BOOL ar9300_update_tx_trig_level(struct ath_hal *ah, HAL_BOOL b_inc_trig_level) { struct ath_hal_9300 *ahp = AH9300(ah); u_int32_t txcfg, cur_level, new_level; HAL_INT omask; if (AH9300(ah)->ah_tx_trig_level >= MAX_TX_FIFO_THRESHOLD && b_inc_trig_level) { return AH_FALSE; } /* * Disable interrupts while futzing with the fifo level. */ omask = ar9300_set_interrupts(ah, ahp->ah_mask_reg &~ HAL_INT_GLOBAL, 0); txcfg = OS_REG_READ(ah, AR_TXCFG); cur_level = MS(txcfg, AR_FTRIG); new_level = cur_level; if (b_inc_trig_level) { /* increase the trigger level */ if (cur_level < MAX_TX_FIFO_THRESHOLD) { new_level++; } } else if (cur_level > MIN_TX_FIFO_THRESHOLD) { new_level--; } if (new_level != cur_level) { /* Update the trigger level */ OS_REG_WRITE(ah, AR_TXCFG, (txcfg &~ AR_FTRIG) | SM(new_level, AR_FTRIG)); } /* re-enable chip interrupts */ ar9300_set_interrupts(ah, omask, 0); AH9300(ah)->ah_tx_trig_level = new_level; return (new_level != cur_level); } /* * Returns the value of Tx Trigger Level */ u_int16_t ar9300_get_tx_trig_level(struct ath_hal *ah) { return (AH9300(ah)->ah_tx_trig_level); } /* * Set the properties of the tx queue with the parameters * from q_info. */ HAL_BOOL ar9300_set_tx_queue_props(struct ath_hal *ah, int q, const HAL_TXQ_INFO *q_info) { struct ath_hal_9300 *ahp = AH9300(ah); HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; if (q >= p_cap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } return ath_hal_setTxQProps(ah, &ahp->ah_txq[q], q_info); } /* * Return the properties for the specified tx queue. */ HAL_BOOL ar9300_get_tx_queue_props(struct ath_hal *ah, int q, HAL_TXQ_INFO *q_info) { struct ath_hal_9300 *ahp = AH9300(ah); HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; if (q >= p_cap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } return ath_hal_getTxQProps(ah, q_info, &ahp->ah_txq[q]); } enum { AH_TX_QUEUE_MINUS_OFFSET_BEACON = 1, AH_TX_QUEUE_MINUS_OFFSET_CAB = 2, AH_TX_QUEUE_MINUS_OFFSET_UAPSD = 3, AH_TX_QUEUE_MINUS_OFFSET_PAPRD = 4, }; /* * Allocate and initialize a tx DCU/QCU combination. */ int ar9300_setup_tx_queue(struct ath_hal *ah, HAL_TX_QUEUE type, const HAL_TXQ_INFO *q_info) { struct ath_hal_9300 *ahp = AH9300(ah); HAL_TX_QUEUE_INFO *qi; HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; int q; /* XXX move queue assignment to driver */ switch (type) { case HAL_TX_QUEUE_BEACON: /* highest priority */ q = p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_BEACON; break; case HAL_TX_QUEUE_CAB: /* next highest priority */ q = p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_CAB; break; case HAL_TX_QUEUE_UAPSD: q = p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_UAPSD; break; case HAL_TX_QUEUE_PAPRD: q = p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_PAPRD; break; case HAL_TX_QUEUE_DATA: /* * don't infringe on top 4 queues, reserved for: * beacon, CAB, UAPSD, PAPRD */ for (q = 0; q < p_cap->halTotalQueues - AH_TX_QUEUE_MINUS_OFFSET_PAPRD; q++) { if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE) { break; } } if (q == p_cap->halTotalQueues - 3) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: no available tx queue\n", __func__); return -1; } break; default: HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: bad tx queue type %u\n", __func__, type); return -1; } HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: queue %u\n", __func__, q); qi = &ahp->ah_txq[q]; if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: tx queue %u already active\n", __func__, q); return -1; } OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO)); qi->tqi_type = type; if (q_info == AH_NULL) { /* by default enable OK+ERR+DESC+URN interrupts */ qi->tqi_qflags = HAL_TXQ_TXOKINT_ENABLE | HAL_TXQ_TXERRINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE | HAL_TXQ_TXURNINT_ENABLE; qi->tqi_aifs = INIT_AIFS; qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */ qi->tqi_cwmax = INIT_CWMAX; qi->tqi_shretry = INIT_SH_RETRY; qi->tqi_lgretry = INIT_LG_RETRY; qi->tqi_physCompBuf = 0; } else { qi->tqi_physCompBuf = q_info->tqi_compBuf; (void) ar9300_set_tx_queue_props(ah, q, q_info); } /* NB: must be followed by ar9300_reset_tx_queue */ return q; } /* * Update the h/w interrupt registers to reflect a tx q's configuration. */ static void set_tx_q_interrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi) { struct ath_hal_9300 *ahp = AH9300(ah); HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: tx ok 0x%x err 0x%x eol 0x%x urn 0x%x\n", __func__, ahp->ah_tx_ok_interrupt_mask, ahp->ah_tx_err_interrupt_mask, ahp->ah_tx_eol_interrupt_mask, ahp->ah_tx_urn_interrupt_mask); OS_REG_WRITE(ah, AR_IMR_S0, SM(ahp->ah_tx_ok_interrupt_mask, AR_IMR_S0_QCU_TXOK)); OS_REG_WRITE(ah, AR_IMR_S1, SM(ahp->ah_tx_err_interrupt_mask, AR_IMR_S1_QCU_TXERR) | SM(ahp->ah_tx_eol_interrupt_mask, AR_IMR_S1_QCU_TXEOL)); OS_REG_RMW_FIELD(ah, AR_IMR_S2, AR_IMR_S2_QCU_TXURN, ahp->ah_tx_urn_interrupt_mask); ahp->ah_mask2Reg = OS_REG_READ(ah, AR_IMR_S2); } /* * Free a tx DCU/QCU combination. */ HAL_BOOL ar9300_release_tx_queue(struct ath_hal *ah, u_int q) { struct ath_hal_9300 *ahp = AH9300(ah); HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; HAL_TX_QUEUE_INFO *qi; if (q >= p_cap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: inactive queue %u\n", __func__, q); return AH_FALSE; } HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: release queue %u\n", __func__, q); qi->tqi_type = HAL_TX_QUEUE_INACTIVE; ahp->ah_tx_ok_interrupt_mask &= ~(1 << q); ahp->ah_tx_err_interrupt_mask &= ~(1 << q); ahp->ah_tx_eol_interrupt_mask &= ~(1 << q); ahp->ah_tx_urn_interrupt_mask &= ~(1 << q); set_tx_q_interrupts(ah, qi); return AH_TRUE; } /* * Set the retry, aifs, cwmin/max, ready_time regs for specified queue * Assumes: * phw_channel has been set to point to the current channel */ HAL_BOOL ar9300_reset_tx_queue(struct ath_hal *ah, u_int q) { struct ath_hal_9300 *ahp = AH9300(ah); // struct ath_hal_private *ap = AH_PRIVATE(ah); HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan; HAL_TX_QUEUE_INFO *qi; u_int32_t cw_min, chan_cw_min, value; if (q >= p_cap->halTotalQueues) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: invalid queue num %u\n", __func__, q); return AH_FALSE; } qi = &ahp->ah_txq[q]; if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: inactive queue %u\n", __func__, q); return AH_TRUE; /* XXX??? */ } HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: reset queue %u\n", __func__, q); if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) { /* * Select cwmin according to channel type. * NB: chan can be NULL during attach */ if (chan && IEEE80211_IS_CHAN_B(chan)) { chan_cw_min = INIT_CWMIN_11B; } else { chan_cw_min = INIT_CWMIN; } /* make sure that the CWmin is of the form (2^n - 1) */ for (cw_min = 1; cw_min < chan_cw_min; cw_min = (cw_min << 1) | 1) {} } else { cw_min = qi->tqi_cwmin; } /* set cw_min/Max and AIFS values */ if (q > 3 || (!AH9300(ah)->ah_fccaifs)) /* values should not be overwritten if domain is FCC and manual rate less than 24Mb is set, this check is making sure this */ { OS_REG_WRITE(ah, AR_DLCL_IFS(q), SM(cw_min, AR_D_LCL_IFS_CWMIN) | SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); } /* Set retry limit values */ OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q), SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)); /* enable early termination on the QCU */ OS_REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ); /* enable DCU to wait for next fragment from QCU */ if (AR_SREV_WASP(ah) && (AH_PRIVATE((ah))->ah_macRev <= AR_SREV_REVISION_WASP_12)) { /* WAR for EV#85395: Wasp Rx overrun issue - reduces Tx queue backoff * threshold to 1 to avoid Rx overruns - Fixed in Wasp 1.3 */ OS_REG_WRITE(ah, AR_DMISC(q), AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1); } else { OS_REG_WRITE(ah, AR_DMISC(q), AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2); } /* multiqueue support */ if (qi->tqi_cbrPeriod) { OS_REG_WRITE(ah, AR_QCBRCFG(q), SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) | SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH)); OS_REG_WRITE(ah, AR_QMISC(q), OS_REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_CBR | (qi->tqi_cbrOverflowLimit ? AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0)); } if (qi->tqi_readyTime && (qi->tqi_type != HAL_TX_QUEUE_CAB)) { OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) | AR_Q_RDYTIMECFG_EN); } OS_REG_WRITE(ah, AR_DCHNTIME(q), SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) | (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0)); if (qi->tqi_burstTime && (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE)) { OS_REG_WRITE(ah, AR_QMISC(q), OS_REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_RDYTIME_EXP_POLICY); } if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) { OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_POST_FR_BKOFF_DIS); } if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) { OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_FRAG_BKOFF_EN); } switch (qi->tqi_type) { case HAL_TX_QUEUE_BEACON: /* beacon frames */ OS_REG_WRITE(ah, AR_QMISC(q), OS_REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_BEACON_USE | AR_Q_MISC_CBR_INCR_DIS1); OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q)) | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S) | AR_D_MISC_BEACON_USE | AR_D_MISC_POST_FR_BKOFF_DIS); /* XXX cwmin and cwmax should be 0 for beacon queue */ if (AH_PRIVATE(ah)->ah_opmode != HAL_M_IBSS) { OS_REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN) | SM(0, AR_D_LCL_IFS_CWMAX) | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS)); } break; case HAL_TX_QUEUE_CAB: /* CAB frames */ /* * No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY, * bug #6079. There is an issue with the CAB Queue * not properly refreshing the Tx descriptor if * the TXE clear setting is used. */ OS_REG_WRITE(ah, AR_QMISC(q), OS_REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_FSP_DBA_GATED | AR_Q_MISC_CBR_INCR_DIS1 | AR_Q_MISC_CBR_INCR_DIS0); value = TU_TO_USEC(qi->tqi_readyTime) - (ah->ah_config.ah_sw_beacon_response_time - ah->ah_config.ah_dma_beacon_response_time) - ah->ah_config.ah_additional_swba_backoff; OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_EN); OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q)) | (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL << AR_D_MISC_ARB_LOCKOUT_CNTRL_S)); break; case HAL_TX_QUEUE_PSPOLL: /* * We may configure ps_poll QCU to be TIM-gated in the * future; TIM_GATED bit is not enabled currently because * of a hardware problem in Oahu that overshoots the TIM * bitmap in beacon and may find matching associd bit in * non-TIM elements and send PS-poll PS poll processing * will be done in software */ OS_REG_WRITE(ah, AR_QMISC(q), OS_REG_READ(ah, AR_QMISC(q)) | AR_Q_MISC_CBR_INCR_DIS1); break; case HAL_TX_QUEUE_UAPSD: OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q)) | AR_D_MISC_POST_FR_BKOFF_DIS); break; default: /* NB: silence compiler */ break; } #ifndef AH_DISABLE_WME /* * Yes, this is a hack and not the right way to do it, but * it does get the lockout bits and backoff set for the * high-pri WME queues for testing. We need to either extend * the meaning of queue_info->mode, or create something like * queue_info->dcumode. */ if (qi->tqi_intFlags & HAL_TXQ_USE_LOCKOUT_BKOFF_DIS) { OS_REG_WRITE(ah, AR_DMISC(q), OS_REG_READ(ah, AR_DMISC(q)) | SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL, AR_D_MISC_ARB_LOCKOUT_CNTRL) | AR_D_MISC_POST_FR_BKOFF_DIS); } #endif OS_REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN); /* * Always update the secondary interrupt mask registers - this * could be a new queue getting enabled in a running system or * hw getting re-initialized during a reset! * * Since we don't differentiate between tx interrupts corresponding * to individual queues - secondary tx mask regs are always unmasked; * tx interrupts are enabled/disabled for all queues collectively * using the primary mask reg */ if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE) { ahp->ah_tx_ok_interrupt_mask |= (1 << q); } else { ahp->ah_tx_ok_interrupt_mask &= ~(1 << q); } if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE) { ahp->ah_tx_err_interrupt_mask |= (1 << q); } else { ahp->ah_tx_err_interrupt_mask &= ~(1 << q); } if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE) { ahp->ah_tx_eol_interrupt_mask |= (1 << q); } else { ahp->ah_tx_eol_interrupt_mask &= ~(1 << q); } if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE) { ahp->ah_tx_urn_interrupt_mask |= (1 << q); } else { ahp->ah_tx_urn_interrupt_mask &= ~(1 << q); } set_tx_q_interrupts(ah, qi); return AH_TRUE; } /* * Get the TXDP for the specified queue */ u_int32_t ar9300_get_tx_dp(struct ath_hal *ah, u_int q) { HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); return OS_REG_READ(ah, AR_QTXDP(q)); } /* * Set the tx_dp for the specified queue */ HAL_BOOL ar9300_set_tx_dp(struct ath_hal *ah, u_int q, u_int32_t txdp) { HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); HALASSERT(AH9300(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); HALASSERT(txdp != 0); OS_REG_WRITE(ah, AR_QTXDP(q), txdp); return AH_TRUE; } /* * Transmit Enable is read-only now */ HAL_BOOL ar9300_start_tx_dma(struct ath_hal *ah, u_int q) { return AH_TRUE; } /* * Return the number of pending frames or 0 if the specified * queue is stopped. */ u_int32_t ar9300_num_tx_pending(struct ath_hal *ah, u_int q) { u_int32_t npend; HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); npend = OS_REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT; if (npend == 0) { /* * Pending frame count (PFC) can momentarily go to zero * while TXE remains asserted. In other words a PFC of * zero is not sufficient to say that the queue has stopped. */ if (OS_REG_READ(ah, AR_Q_TXE) & (1 << q)) { npend = 1; /* arbitrarily return 1 */ } } #ifdef DEBUG if (npend && (AH9300(ah)->ah_txq[q].tqi_type == HAL_TX_QUEUE_CAB)) { if (OS_REG_READ(ah, AR_Q_RDYTIMESHDN) & (1 << q)) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "RTSD on CAB queue\n"); /* Clear the ready_time shutdown status bits */ OS_REG_WRITE(ah, AR_Q_RDYTIMESHDN, 1 << q); } } #endif HALASSERT((npend == 0) || (AH9300(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE)); return npend; } /* * Stop transmit on the specified queue */ HAL_BOOL ar9300_stop_tx_dma(struct ath_hal *ah, u_int q, u_int timeout) { struct ath_hal_9300 *ahp = AH9300(ah); /* * If we call abort txdma instead, no need to stop RX. * Otherwise, the RX logic might not be restarted properly. */ ahp->ah_abort_txdma_norx = AH_FALSE; /* * Directly call abort. It is better, hardware-wise, to stop all * queues at once than individual ones. */ return ar9300_abort_tx_dma(ah); #if 0 #define AH_TX_STOP_DMA_TIMEOUT 4000 /* usec */ #define AH_TIME_QUANTUM 100 /* usec */ u_int wait; HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); HALASSERT(AH9300(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); if (timeout == 0) { timeout = AH_TX_STOP_DMA_TIMEOUT; } OS_REG_WRITE(ah, AR_Q_TXD, 1 << q); for (wait = timeout / AH_TIME_QUANTUM; wait != 0; wait--) { if (ar9300_num_tx_pending(ah, q) == 0) { break; } OS_DELAY(AH_TIME_QUANTUM); /* XXX get actual value */ } #ifdef AH_DEBUG if (wait == 0) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: queue %u DMA did not stop in 100 msec\n", __func__, q); HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__, OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE), OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q))); HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n", __func__, OS_REG_READ(ah, AR_QMISC(q)), OS_REG_READ(ah, AR_QRDYTIMECFG(q)), OS_REG_READ(ah, AR_Q_RDYTIMESHDN)); } #endif /* AH_DEBUG */ /* 2413+ and up can kill packets at the PCU level */ if (ar9300_num_tx_pending(ah, q)) { u_int32_t tsf_low, j; HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: Num of pending TX Frames %d on Q %d\n", __func__, ar9300_num_tx_pending(ah, q), q); /* Kill last PCU Tx Frame */ /* TODO - save off and restore current values of Q1/Q2? */ for (j = 0; j < 2; j++) { tsf_low = OS_REG_READ(ah, AR_TSF_L32); OS_REG_WRITE(ah, AR_QUIET2, SM(10, AR_QUIET2_QUIET_DUR)); OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100); OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsf_low >> 10); OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsf_low >> 10)) { break; } HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved while trying to set " "quiet time TSF: 0x%08x\n", __func__, tsf_low); /* TSF shouldn't count twice or reg access is taking forever */ HALASSERT(j < 1); } OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); /* Allow the quiet mechanism to do its work */ OS_DELAY(200); OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); /* Verify all transmit is dead */ wait = timeout / AH_TIME_QUANTUM; while (ar9300_num_tx_pending(ah, q)) { if ((--wait) == 0) { HALDEBUG(ah, HAL_DEBUG_TX, "%s: Failed to stop Tx DMA in %d msec " "after killing last frame\n", __func__, timeout / 1000); break; } OS_DELAY(AH_TIME_QUANTUM); } OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); } OS_REG_WRITE(ah, AR_Q_TXD, 0); return (wait != 0); #undef AH_TX_STOP_DMA_TIMEOUT #undef AH_TIME_QUANTUM #endif } /* * Really Stop transmit on the specified queue */ HAL_BOOL ar9300_stop_tx_dma_indv_que(struct ath_hal *ah, u_int q, u_int timeout) { #define AH_TX_STOP_DMA_TIMEOUT 4000 /* usec */ #define AH_TIME_QUANTUM 100 /* usec */ u_int wait; HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues); HALASSERT(AH9300(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE); if (timeout == 0) { timeout = AH_TX_STOP_DMA_TIMEOUT; } OS_REG_WRITE(ah, AR_Q_TXD, 1 << q); for (wait = timeout / AH_TIME_QUANTUM; wait != 0; wait--) { if (ar9300_num_tx_pending(ah, q) == 0) { break; } OS_DELAY(AH_TIME_QUANTUM); /* XXX get actual value */ } #ifdef AH_DEBUG if (wait == 0) { HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: queue %u DMA did not stop in 100 msec\n", __func__, q); HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__, OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE), OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q))); HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n", __func__, OS_REG_READ(ah, AR_QMISC(q)), OS_REG_READ(ah, AR_QRDYTIMECFG(q)), OS_REG_READ(ah, AR_Q_RDYTIMESHDN)); } #endif /* AH_DEBUG */ /* 2413+ and up can kill packets at the PCU level */ if (ar9300_num_tx_pending(ah, q)) { u_int32_t tsf_low, j; HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: Num of pending TX Frames %d on Q %d\n", __func__, ar9300_num_tx_pending(ah, q), q); /* Kill last PCU Tx Frame */ /* TODO - save off and restore current values of Q1/Q2? */ for (j = 0; j < 2; j++) { tsf_low = OS_REG_READ(ah, AR_TSF_L32); OS_REG_WRITE(ah, AR_QUIET2, SM(10, AR_QUIET2_QUIET_DUR)); OS_REG_WRITE(ah, AR_QUIET_PERIOD, 100); OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, tsf_low >> 10); OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsf_low >> 10)) { break; } HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved while trying to set " "quiet time TSF: 0x%08x\n", __func__, tsf_low); /* TSF shouldn't count twice or reg access is taking forever */ HALASSERT(j < 1); } OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); /* Allow the quiet mechanism to do its work */ OS_DELAY(200); OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN); /* Verify all transmit is dead */ wait = timeout / AH_TIME_QUANTUM; while (ar9300_num_tx_pending(ah, q)) { if ((--wait) == 0) { HALDEBUG(ah, HAL_DEBUG_TX, "%s: Failed to stop Tx DMA in %d msec " "after killing last frame\n", __func__, timeout / 1000); break; } OS_DELAY(AH_TIME_QUANTUM); } OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH); } OS_REG_WRITE(ah, AR_Q_TXD, 0); return (wait != 0); #undef AH_TX_STOP_DMA_TIMEOUT #undef AH_TIME_QUANTUM } /* * Abort transmit on all queues */ #define AR9300_ABORT_LOOPS 1000 #define AR9300_ABORT_WAIT 5 #define NEXT_TBTT_NOW 10 HAL_BOOL ar9300_abort_tx_dma(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); int i, q; u_int32_t nexttbtt, nextdba, tsf_tbtt, tbtt, dba; HAL_BOOL stopped; HAL_BOOL status = AH_TRUE; if (ahp->ah_abort_txdma_norx) { /* * First of all, make sure RX has been stopped */ if (ar9300_get_power_mode(ah) != HAL_PM_FULL_SLEEP) { /* Need to stop RX DMA before reset otherwise chip might hang */ stopped = ar9300_set_rx_abort(ah, AH_TRUE); /* abort and disable PCU */ ar9300_set_rx_filter(ah, 0); stopped &= ar9300_stop_dma_receive(ah, 0); /* stop and disable RX DMA */ if (!stopped) { /* * During the transition from full sleep to reset, * recv DMA regs are not available to be read */ HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s[%d]: ar9300_stop_dma_receive failed\n", __func__, __LINE__); //We still continue to stop TX dma //return AH_FALSE; } } else { HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s[%d]: Chip is already in full sleep\n", __func__, __LINE__); } } /* * set txd on all queues */ OS_REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M); /* * set tx abort bits (also disable rx) */ OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF); /* Add a new receipe from K31 code */ OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH | AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT | AR_DIAG_FORCE_RX_CLEAR); /* beacon Q flush */ nexttbtt = OS_REG_READ(ah, AR_NEXT_TBTT_TIMER); nextdba = OS_REG_READ(ah, AR_NEXT_DMA_BEACON_ALERT); //printk("%s[%d]:dba: %d, nt: %d \n", __func__, __LINE__, nextdba, nexttbtt); tsf_tbtt = OS_REG_READ(ah, AR_TSF_L32); tbtt = tsf_tbtt + NEXT_TBTT_NOW; dba = tsf_tbtt; OS_REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, dba); OS_REG_WRITE(ah, AR_NEXT_TBTT_TIMER, tbtt); OS_REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF); /* * Let TXE (all queues) clear before waiting for any pending frames * This is needed before starting the RF_BUS GRANT sequence other wise causes kernel * panic */ for(i = 0; i < AR9300_ABORT_LOOPS; i++) { if(OS_REG_READ(ah, AR_Q_TXE) == 0) { break; } OS_DELAY(AR9300_ABORT_WAIT); } if (i == AR9300_ABORT_LOOPS) { HALDEBUG(ah, HAL_DEBUG_TX, "%s[%d] reached max wait on TXE\n", __func__, __LINE__); } /* * wait on all tx queues * This need to be checked in the last to gain extra 50 usec. on avg. * Currently checked first since we dont have a previous channel information currently. * Which is needed to revert the rf changes. */ for (q = AR_NUM_QCU - 1; q >= 0; q--) { for (i = 0; i < AR9300_ABORT_LOOPS; i++) { if (!(ar9300_num_tx_pending(ah, q))) { break; } OS_DELAY(AR9300_ABORT_WAIT); } if (i == AR9300_ABORT_LOOPS) { status = AH_FALSE; HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "ABORT LOOP finsihsed for Q: %d, num_pending: %d \n", q, ar9300_num_tx_pending(ah, q)); goto exit; } } /* Updating the beacon alert register with correct value */ OS_REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, nextdba); OS_REG_WRITE(ah, AR_NEXT_TBTT_TIMER, nexttbtt); exit: /* * clear tx abort bits */ OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF); /* Added a new receipe from K31 code */ OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH | AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT | AR_DIAG_FORCE_RX_CLEAR); OS_REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF); /* * clear txd */ OS_REG_WRITE(ah, AR_Q_TXD, 0); ahp->ah_abort_txdma_norx = AH_TRUE; return status; } /* * Determine which tx queues need interrupt servicing. */ void ar9300_get_tx_intr_queue(struct ath_hal *ah, u_int32_t *txqs) { HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, "ar9300_get_tx_intr_queue: Should not be called\n"); #if 0 struct ath_hal_9300 *ahp = AH9300(ah); *txqs &= ahp->ah_intr_txqs; ahp->ah_intr_txqs &= ~(*txqs); #endif } void ar9300_reset_tx_status_ring(struct ath_hal *ah) { struct ath_hal_9300 *ahp = AH9300(ah); ahp->ts_tail = 0; /* Zero out the status descriptors */ OS_MEMZERO((void *)ahp->ts_ring, ahp->ts_size * sizeof(struct ar9300_txs)); HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TS Start 0x%x End 0x%x Virt %p, Size %d\n", __func__, ahp->ts_paddr_start, ahp->ts_paddr_end, ahp->ts_ring, ahp->ts_size); OS_REG_WRITE(ah, AR_Q_STATUS_RING_START, ahp->ts_paddr_start); OS_REG_WRITE(ah, AR_Q_STATUS_RING_END, ahp->ts_paddr_end); } void ar9300_setup_tx_status_ring(struct ath_hal *ah, void *ts_start, u_int32_t ts_paddr_start, u_int16_t size) { struct ath_hal_9300 *ahp = AH9300(ah); ahp->ts_paddr_start = ts_paddr_start; ahp->ts_paddr_end = ts_paddr_start + (size * sizeof(struct ar9300_txs)); ahp->ts_size = size; ahp->ts_ring = (struct ar9300_txs *)ts_start; ar9300_reset_tx_status_ring(ah); }