/* * strlen benchmark. * * Copyright (c) 2020-2021, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #define _GNU_SOURCE #include #include #include #include #include "stringlib.h" #include "benchlib.h" #define ITERS 5000 #define ITERS2 20000000 #define ITERS3 2000000 #define NUM_TESTS 16384 #define MAX_ALIGN 32 #define MAX_STRLEN 256 static char a[(MAX_STRLEN + 1) * MAX_ALIGN] __attribute__((__aligned__(4096))); #define F(x, mte) {#x, x, mte}, static const struct fun { const char *name; size_t (*fun) (const char *s); int test_mte; } funtab[] = { // clang-format off F(strlen, 0) #if __aarch64__ F(__strlen_aarch64, 0) F(__strlen_aarch64_mte, 1) # if __ARM_FEATURE_SVE F(__strlen_aarch64_sve, 1) # endif #elif __arm__ # if __ARM_ARCH >= 6 && __ARM_ARCH_ISA_THUMB == 2 F(__strlen_armv6t2, 0) # endif #endif {0, 0, 0} // clang-format on }; #undef F static uint16_t strlen_tests[NUM_TESTS]; typedef struct { uint16_t size; uint16_t freq; } freq_data_t; typedef struct { uint8_t align; uint16_t freq; } align_data_t; #define SIZE_NUM 65536 #define SIZE_MASK (SIZE_NUM - 1) static uint8_t strlen_len_arr[SIZE_NUM]; /* Frequency data for strlen sizes up to 128 based on SPEC2017. */ static freq_data_t strlen_len_freq[] = { { 12,22671}, { 18,12834}, { 13, 9555}, { 6, 6348}, { 17, 6095}, { 11, 2115}, { 10, 1335}, { 7, 814}, { 2, 646}, { 9, 483}, { 8, 471}, { 16, 418}, { 4, 390}, { 1, 388}, { 5, 233}, { 3, 204}, { 0, 79}, { 14, 79}, { 15, 69}, { 26, 36}, { 22, 35}, { 31, 24}, { 32, 24}, { 19, 21}, { 25, 17}, { 28, 15}, { 21, 14}, { 33, 14}, { 20, 13}, { 24, 9}, { 29, 9}, { 30, 9}, { 23, 7}, { 34, 7}, { 27, 6}, { 44, 5}, { 42, 4}, { 45, 3}, { 47, 3}, { 40, 2}, { 41, 2}, { 43, 2}, { 58, 2}, { 78, 2}, { 36, 2}, { 48, 1}, { 52, 1}, { 60, 1}, { 64, 1}, { 56, 1}, { 76, 1}, { 68, 1}, { 80, 1}, { 84, 1}, { 72, 1}, { 86, 1}, { 35, 1}, { 39, 1}, { 50, 1}, { 38, 1}, { 37, 1}, { 46, 1}, { 98, 1}, {102, 1}, {128, 1}, { 51, 1}, {107, 1}, { 0, 0} }; #define ALIGN_NUM 1024 #define ALIGN_MASK (ALIGN_NUM - 1) static uint8_t strlen_align_arr[ALIGN_NUM]; /* Alignment data for strlen based on SPEC2017. */ static align_data_t string_align_freq[] = { {8, 470}, {32, 427}, {16, 99}, {1, 19}, {2, 6}, {4, 3}, {0, 0} }; static void init_strlen_distribution (void) { int i, j, freq, size, n; for (n = i = 0; (freq = strlen_len_freq[i].freq) != 0; i++) for (j = 0, size = strlen_len_freq[i].size; j < freq; j++) strlen_len_arr[n++] = size; assert (n == SIZE_NUM); for (n = i = 0; (freq = string_align_freq[i].freq) != 0; i++) for (j = 0, size = string_align_freq[i].align; j < freq; j++) strlen_align_arr[n++] = size; assert (n == ALIGN_NUM); } static void init_strlen_tests (void) { uint16_t index[MAX_ALIGN]; memset (a, 'x', sizeof (a)); /* Create indices for strings at all alignments. */ for (int i = 0; i < MAX_ALIGN; i++) { index[i] = i * (MAX_STRLEN + 1); a[index[i] + MAX_STRLEN] = 0; } /* Create a random set of strlen input strings using the string length and alignment distributions. */ for (int n = 0; n < NUM_TESTS; n++) { int align = strlen_align_arr[rand32 (0) & ALIGN_MASK]; int exp_len = strlen_len_arr[rand32 (0) & SIZE_MASK]; strlen_tests[n] = index[(align + exp_len) & (MAX_ALIGN - 1)] + MAX_STRLEN - exp_len; } } static volatile size_t maskv = 0; int main (void) { rand32 (0x12345678); init_strlen_distribution (); init_strlen_tests (); printf ("\nRandom strlen (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { size_t res = 0, strlen_size = 0, mask = maskv; printf ("%22s ", funtab[f].name); for (int c = 0; c < NUM_TESTS; c++) strlen_size += funtab[f].fun (a + strlen_tests[c]); strlen_size *= ITERS; /* Measure latency of strlen result with (res & mask). */ uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS; i++) for (int c = 0; c < NUM_TESTS; c++) res = funtab[f].fun (a + strlen_tests[c] + (res & mask)); t = clock_get_ns () - t; printf ("%.2f\n", (double)strlen_size / t); } printf ("\nSmall aligned strlen (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { printf ("%22s ", funtab[f].name); for (int size = 1; size <= 64; size *= 2) { memset (a, 'x', size); a[size - 1] = 0; uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS2; i++) funtab[f].fun (a); t = clock_get_ns () - t; printf ("%d%c: %.2f ", size < 1024 ? size : size / 1024, size < 1024 ? 'B' : 'K', (double)size * ITERS2 / t); } printf ("\n"); } printf ("\nSmall unaligned strlen (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { printf ("%22s ", funtab[f].name); int align = 9; for (int size = 1; size <= 64; size *= 2) { memset (a + align, 'x', size); a[align + size - 1] = 0; uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS2; i++) funtab[f].fun (a + align); t = clock_get_ns () - t; printf ("%d%c: %.2f ", size < 1024 ? size : size / 1024, size < 1024 ? 'B' : 'K', (double)size * ITERS2 / t); } printf ("\n"); } printf ("\nMedium strlen (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { printf ("%22s ", funtab[f].name); for (int size = 128; size <= 4096; size *= 2) { memset (a, 'x', size); a[size - 1] = 0; uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS3; i++) funtab[f].fun (a); t = clock_get_ns () - t; printf ("%d%c: %.2f ", size < 1024 ? size : size / 1024, size < 1024 ? 'B' : 'K', (double)size * ITERS3 / t); } printf ("\n"); } printf ("\n"); return 0; }