/* * Copyright (c) 2016 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "bearssl.h" /* * Connect to the specified host and port. The connected socket is * returned, or -1 on error. */ static int host_connect(const char *host, const char *port) { struct addrinfo hints, *si, *p; int fd; int err; memset(&hints, 0, sizeof hints); hints.ai_family = PF_UNSPEC; hints.ai_socktype = SOCK_STREAM; err = getaddrinfo(host, port, &hints, &si); if (err != 0) { fprintf(stderr, "ERROR: getaddrinfo(): %s\n", gai_strerror(err)); return -1; } fd = -1; for (p = si; p != NULL; p = p->ai_next) { struct sockaddr *sa; void *addr; char tmp[INET6_ADDRSTRLEN + 50]; sa = (struct sockaddr *)p->ai_addr; if (sa->sa_family == AF_INET) { addr = &((struct sockaddr_in *)sa)->sin_addr; } else if (sa->sa_family == AF_INET6) { addr = &((struct sockaddr_in6 *)sa)->sin6_addr; } else { addr = NULL; } if (addr != NULL) { inet_ntop(p->ai_family, addr, tmp, sizeof tmp); } else { sprintf(tmp, "", (int)sa->sa_family); } fprintf(stderr, "connecting to: %s\n", tmp); fd = socket(p->ai_family, p->ai_socktype, p->ai_protocol); if (fd < 0) { perror("socket()"); continue; } if (connect(fd, p->ai_addr, p->ai_addrlen) < 0) { perror("connect()"); close(fd); continue; } break; } if (p == NULL) { freeaddrinfo(si); fprintf(stderr, "ERROR: failed to connect\n"); return -1; } freeaddrinfo(si); fprintf(stderr, "connected.\n"); return fd; } /* * Low-level data read callback for the simplified SSL I/O API. */ static int sock_read(void *ctx, unsigned char *buf, size_t len) { for (;;) { ssize_t rlen; rlen = read(*(int *)ctx, buf, len); if (rlen <= 0) { if (rlen < 0 && errno == EINTR) { continue; } return -1; } return (int)rlen; } } /* * Low-level data write callback for the simplified SSL I/O API. */ static int sock_write(void *ctx, const unsigned char *buf, size_t len) { for (;;) { ssize_t wlen; wlen = write(*(int *)ctx, buf, len); if (wlen <= 0) { if (wlen < 0 && errno == EINTR) { continue; } return -1; } return (int)wlen; } } /* * The hardcoded trust anchors. These are the two DN + public key that * correspond to the self-signed certificates cert-root-rsa.pem and * cert-root-ec.pem. * * C code for hardcoded trust anchors can be generated with the "brssl" * command-line tool (with the "ta" command). */ static const unsigned char TA0_DN[] = { 0x30, 0x1C, 0x31, 0x0B, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x43, 0x41, 0x31, 0x0D, 0x30, 0x0B, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x52, 0x6F, 0x6F, 0x74 }; static const unsigned char TA0_RSA_N[] = { 0xB6, 0xD9, 0x34, 0xD4, 0x50, 0xFD, 0xB3, 0xAF, 0x7A, 0x73, 0xF1, 0xCE, 0x38, 0xBF, 0x5D, 0x6F, 0x45, 0xE1, 0xFD, 0x4E, 0xB1, 0x98, 0xC6, 0x60, 0x83, 0x26, 0xD2, 0x17, 0xD1, 0xC5, 0xB7, 0x9A, 0xA3, 0xC1, 0xDE, 0x63, 0x39, 0x97, 0x9C, 0xF0, 0x5E, 0x5C, 0xC8, 0x1C, 0x17, 0xB9, 0x88, 0x19, 0x6D, 0xF0, 0xB6, 0x2E, 0x30, 0x50, 0xA1, 0x54, 0x6E, 0x93, 0xC0, 0xDB, 0xCF, 0x30, 0xCB, 0x9F, 0x1E, 0x27, 0x79, 0xF1, 0xC3, 0x99, 0x52, 0x35, 0xAA, 0x3D, 0xB6, 0xDF, 0xB0, 0xAD, 0x7C, 0xCB, 0x49, 0xCD, 0xC0, 0xED, 0xE7, 0x66, 0x10, 0x2A, 0xE9, 0xCE, 0x28, 0x1F, 0x21, 0x50, 0xFA, 0x77, 0x4C, 0x2D, 0xDA, 0xEF, 0x3C, 0x58, 0xEB, 0x4E, 0xBF, 0xCE, 0xE9, 0xFB, 0x1A, 0xDA, 0xA3, 0x83, 0xA3, 0xCD, 0xA3, 0xCA, 0x93, 0x80, 0xDC, 0xDA, 0xF3, 0x17, 0xCC, 0x7A, 0xAB, 0x33, 0x80, 0x9C, 0xB2, 0xD4, 0x7F, 0x46, 0x3F, 0xC5, 0x3C, 0xDC, 0x61, 0x94, 0xB7, 0x27, 0x29, 0x6E, 0x2A, 0xBC, 0x5B, 0x09, 0x36, 0xD4, 0xC6, 0x3B, 0x0D, 0xEB, 0xBE, 0xCE, 0xDB, 0x1D, 0x1C, 0xBC, 0x10, 0x6A, 0x71, 0x71, 0xB3, 0xF2, 0xCA, 0x28, 0x9A, 0x77, 0xF2, 0x8A, 0xEC, 0x42, 0xEF, 0xB1, 0x4A, 0x8E, 0xE2, 0xF2, 0x1A, 0x32, 0x2A, 0xCD, 0xC0, 0xA6, 0x46, 0x2C, 0x9A, 0xC2, 0x85, 0x37, 0x91, 0x7F, 0x46, 0xA1, 0x93, 0x81, 0xA1, 0x74, 0x66, 0xDF, 0xBA, 0xB3, 0x39, 0x20, 0x91, 0x93, 0xFA, 0x1D, 0xA1, 0xA8, 0x85, 0xE7, 0xE4, 0xF9, 0x07, 0xF6, 0x10, 0xF6, 0xA8, 0x27, 0x01, 0xB6, 0x7F, 0x12, 0xC3, 0x40, 0xC3, 0xC9, 0xE2, 0xB0, 0xAB, 0x49, 0x18, 0x3A, 0x64, 0xB6, 0x59, 0xB7, 0x95, 0xB5, 0x96, 0x36, 0xDF, 0x22, 0x69, 0xAA, 0x72, 0x6A, 0x54, 0x4E, 0x27, 0x29, 0xA3, 0x0E, 0x97, 0x15 }; static const unsigned char TA0_RSA_E[] = { 0x01, 0x00, 0x01 }; static const unsigned char TA1_DN[] = { 0x30, 0x1C, 0x31, 0x0B, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x43, 0x41, 0x31, 0x0D, 0x30, 0x0B, 0x06, 0x03, 0x55, 0x04, 0x03, 0x13, 0x04, 0x52, 0x6F, 0x6F, 0x74 }; static const unsigned char TA1_EC_Q[] = { 0x04, 0x71, 0x74, 0xBA, 0xAB, 0xB9, 0x30, 0x2E, 0x81, 0xD5, 0xE5, 0x57, 0xF9, 0xF3, 0x20, 0x68, 0x0C, 0x9C, 0xF9, 0x64, 0xDB, 0xB4, 0x20, 0x0D, 0x6D, 0xEA, 0x40, 0xD0, 0x4A, 0x6E, 0x42, 0xFD, 0xB6, 0x9A, 0x68, 0x25, 0x44, 0xF6, 0xDF, 0x7B, 0xC4, 0xFC, 0xDE, 0xDD, 0x7B, 0xBB, 0xC5, 0xDB, 0x7C, 0x76, 0x3F, 0x41, 0x66, 0x40, 0x6E, 0xDB, 0xA7, 0x87, 0xC2, 0xE5, 0xD8, 0xC5, 0xF3, 0x7F, 0x8D }; static const br_x509_trust_anchor TAs[2] = { { { (unsigned char *)TA0_DN, sizeof TA0_DN }, BR_X509_TA_CA, { BR_KEYTYPE_RSA, { .rsa = { (unsigned char *)TA0_RSA_N, sizeof TA0_RSA_N, (unsigned char *)TA0_RSA_E, sizeof TA0_RSA_E, } } } }, { { (unsigned char *)TA1_DN, sizeof TA1_DN }, BR_X509_TA_CA, { BR_KEYTYPE_EC, { .ec = { BR_EC_secp256r1, (unsigned char *)TA1_EC_Q, sizeof TA1_EC_Q, } } } } }; #define TAs_NUM 2 /* * Main program: this is a simple program that expects 2 or 3 arguments. * The first two arguments are a hostname and a port; the program will * open a SSL connection with that server and port. It will then send * a simple HTTP GET request, using the third argument as target path * ("/" is used as path if no third argument was provided). The HTTP * response, complete with header and contents, is received and written * on stdout. */ int main(int argc, char *argv[]) { const char *host, *port, *path; int fd; br_ssl_client_context sc; br_x509_minimal_context xc; unsigned char iobuf[BR_SSL_BUFSIZE_BIDI]; br_sslio_context ioc; /* * Parse command-line argument: host, port, and path. The path * is optional; if absent, "/" is used. */ if (argc < 3 || argc > 4) { return EXIT_FAILURE; } host = argv[1]; port = argv[2]; if (argc == 4) { path = argv[3]; } else { path = "/"; } /* * Ignore SIGPIPE to avoid crashing in case of abrupt socket close. */ signal(SIGPIPE, SIG_IGN); /* * Open the socket to the target server. */ fd = host_connect(host, port); if (fd < 0) { return EXIT_FAILURE; } /* * Initialise the client context: * -- Use the "full" profile (all supported algorithms). * -- The provided X.509 validation engine is initialised, with * the hardcoded trust anchor. */ br_ssl_client_init_full(&sc, &xc, TAs, TAs_NUM); /* * Set the I/O buffer to the provided array. We allocated a * buffer large enough for full-duplex behaviour with all * allowed sizes of SSL records, hence we set the last argument * to 1 (which means "split the buffer into separate input and * output areas"). */ br_ssl_engine_set_buffer(&sc.eng, iobuf, sizeof iobuf, 1); /* * Reset the client context, for a new handshake. We provide the * target host name: it will be used for the SNI extension. The * last parameter is 0: we are not trying to resume a session. */ br_ssl_client_reset(&sc, host, 0); /* * Initialise the simplified I/O wrapper context, to use our * SSL client context, and the two callbacks for socket I/O. */ br_sslio_init(&ioc, &sc.eng, sock_read, &fd, sock_write, &fd); /* * Note that while the context has, at that point, already * assembled the ClientHello to send, nothing happened on the * network yet. Real I/O will occur only with the next call. * * We write our simple HTTP request. We could test each call * for an error (-1), but this is not strictly necessary, since * the error state "sticks": if the context fails for any reason * (e.g. bad server certificate), then it will remain in failed * state and all subsequent calls will return -1 as well. */ br_sslio_write_all(&ioc, "GET ", 4); br_sslio_write_all(&ioc, path, strlen(path)); br_sslio_write_all(&ioc, " HTTP/1.0\r\nHost: ", 17); br_sslio_write_all(&ioc, host, strlen(host)); br_sslio_write_all(&ioc, "\r\n\r\n", 4); /* * SSL is a buffered protocol: we make sure that all our request * bytes are sent onto the wire. */ br_sslio_flush(&ioc); /* * Read the server's response. We use here a small 512-byte buffer, * but most of the buffering occurs in the client context: the * server will send full records (up to 16384 bytes worth of data * each), and the client context buffers one full record at a time. */ for (;;) { int rlen; unsigned char tmp[512]; rlen = br_sslio_read(&ioc, tmp, sizeof tmp); if (rlen < 0) { break; } fwrite(tmp, 1, rlen, stdout); } /* * Close the socket. */ close(fd); /* * Check whether we closed properly or not. If the engine is * closed, then its error status allows to distinguish between * a normal closure and a SSL error. * * If the engine is NOT closed, then this means that the * underlying network socket was closed or failed in some way. * Note that many Web servers out there do not properly close * their SSL connections (they don't send a close_notify alert), * which will be reported here as "socket closed without proper * SSL termination". */ if (br_ssl_engine_current_state(&sc.eng) == BR_SSL_CLOSED) { int err; err = br_ssl_engine_last_error(&sc.eng); if (err == 0) { fprintf(stderr, "closed.\n"); return EXIT_SUCCESS; } else { fprintf(stderr, "SSL error %d\n", err); return EXIT_FAILURE; } } else { fprintf(stderr, "socket closed without proper SSL termination\n"); return EXIT_FAILURE; } }