/* * Copyright (c) 2018 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "inner.h" #if BR_INT128 || BR_UMUL128 #if BR_UMUL128 #include #endif static const unsigned char GEN[] = { 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static const unsigned char ORDER[] = { 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; static const unsigned char * api_generator(int curve, size_t *len) { (void)curve; *len = 32; return GEN; } static const unsigned char * api_order(int curve, size_t *len) { (void)curve; *len = 32; return ORDER; } static size_t api_xoff(int curve, size_t *len) { (void)curve; *len = 32; return 0; } /* * A field element is encoded as four 64-bit integers, in basis 2^63. * Operations return partially reduced values, which may range up to * 2^255+37. */ #define MASK63 (((uint64_t)1 << 63) - (uint64_t)1) /* * Swap two field elements, conditionally on a flag. */ static inline void f255_cswap(uint64_t *a, uint64_t *b, uint32_t ctl) { uint64_t m, w; m = -(uint64_t)ctl; w = m & (a[0] ^ b[0]); a[0] ^= w; b[0] ^= w; w = m & (a[1] ^ b[1]); a[1] ^= w; b[1] ^= w; w = m & (a[2] ^ b[2]); a[2] ^= w; b[2] ^= w; w = m & (a[3] ^ b[3]); a[3] ^= w; b[3] ^= w; } /* * Addition in the field. */ static inline void f255_add(uint64_t *d, const uint64_t *a, const uint64_t *b) { #if BR_INT128 uint64_t t0, t1, t2, t3, cc; unsigned __int128 z; z = (unsigned __int128)a[0] + (unsigned __int128)b[0]; t0 = (uint64_t)z; z = (unsigned __int128)a[1] + (unsigned __int128)b[1] + (z >> 64); t1 = (uint64_t)z; z = (unsigned __int128)a[2] + (unsigned __int128)b[2] + (z >> 64); t2 = (uint64_t)z; z = (unsigned __int128)a[3] + (unsigned __int128)b[3] + (z >> 64); t3 = (uint64_t)z & MASK63; cc = (uint64_t)(z >> 63); /* * Since operands are at most 2^255+37, the sum is at most * 2^256+74; thus, the carry cc is equal to 0, 1 or 2. * * We use: 2^255 = 19 mod p. * Since we add 0, 19 or 38 to a value that fits on 255 bits, * the result is at most 2^255+37. */ z = (unsigned __int128)t0 + (unsigned __int128)(19 * cc); d[0] = (uint64_t)z; z = (unsigned __int128)t1 + (z >> 64); d[1] = (uint64_t)z; z = (unsigned __int128)t2 + (z >> 64); d[2] = (uint64_t)z; d[3] = t3 + (uint64_t)(z >> 64); #elif BR_UMUL128 uint64_t t0, t1, t2, t3, cc; unsigned char k; k = _addcarry_u64(0, a[0], b[0], &t0); k = _addcarry_u64(k, a[1], b[1], &t1); k = _addcarry_u64(k, a[2], b[2], &t2); k = _addcarry_u64(k, a[3], b[3], &t3); cc = (k << 1) + (t3 >> 63); t3 &= MASK63; /* * Since operands are at most 2^255+37, the sum is at most * 2^256+74; thus, the carry cc is equal to 0, 1 or 2. * * We use: 2^255 = 19 mod p. * Since we add 0, 19 or 38 to a value that fits on 255 bits, * the result is at most 2^255+37. */ k = _addcarry_u64(0, t0, 19 * cc, &d[0]); k = _addcarry_u64(k, t1, 0, &d[1]); k = _addcarry_u64(k, t2, 0, &d[2]); (void)_addcarry_u64(k, t3, 0, &d[3]); #endif } /* * Subtraction. */ static inline void f255_sub(uint64_t *d, const uint64_t *a, const uint64_t *b) { #if BR_INT128 /* * We compute t = 2^256 - 38 + a - b, which is necessarily * positive but lower than 2^256 + 2^255, since a <= 2^255 + 37 * and b <= 2^255 + 37. We then subtract 0, p or 2*p, depending * on the two upper bits of t (bits 255 and 256). */ uint64_t t0, t1, t2, t3, t4, cc; unsigned __int128 z; z = (unsigned __int128)a[0] - (unsigned __int128)b[0] - 38; t0 = (uint64_t)z; cc = -(uint64_t)(z >> 64); z = (unsigned __int128)a[1] - (unsigned __int128)b[1] - (unsigned __int128)cc; t1 = (uint64_t)z; cc = -(uint64_t)(z >> 64); z = (unsigned __int128)a[2] - (unsigned __int128)b[2] - (unsigned __int128)cc; t2 = (uint64_t)z; cc = -(uint64_t)(z >> 64); z = (unsigned __int128)a[3] - (unsigned __int128)b[3] - (unsigned __int128)cc; t3 = (uint64_t)z; t4 = 1 + (uint64_t)(z >> 64); /* * We have a 257-bit result. The two top bits can be 00, 01 or 10, * but not 11 (value t <= 2^256 - 38 + 2^255 + 37 = 2^256 + 2^255 - 1). * Therefore, we can truncate to 255 bits, and add 0, 19 or 38. * This guarantees that the result is at most 2^255+37. */ cc = (38 & -t4) + (19 & -(t3 >> 63)); t3 &= MASK63; z = (unsigned __int128)t0 + (unsigned __int128)cc; d[0] = (uint64_t)z; z = (unsigned __int128)t1 + (z >> 64); d[1] = (uint64_t)z; z = (unsigned __int128)t2 + (z >> 64); d[2] = (uint64_t)z; d[3] = t3 + (uint64_t)(z >> 64); #elif BR_UMUL128 /* * We compute t = 2^256 - 38 + a - b, which is necessarily * positive but lower than 2^256 + 2^255, since a <= 2^255 + 37 * and b <= 2^255 + 37. We then subtract 0, p or 2*p, depending * on the two upper bits of t (bits 255 and 256). */ uint64_t t0, t1, t2, t3, t4; unsigned char k; k = _subborrow_u64(0, a[0], b[0], &t0); k = _subborrow_u64(k, a[1], b[1], &t1); k = _subborrow_u64(k, a[2], b[2], &t2); k = _subborrow_u64(k, a[3], b[3], &t3); (void)_subborrow_u64(k, 1, 0, &t4); k = _subborrow_u64(0, t0, 38, &t0); k = _subborrow_u64(k, t1, 0, &t1); k = _subborrow_u64(k, t2, 0, &t2); k = _subborrow_u64(k, t3, 0, &t3); (void)_subborrow_u64(k, t4, 0, &t4); /* * We have a 257-bit result. The two top bits can be 00, 01 or 10, * but not 11 (value t <= 2^256 - 38 + 2^255 + 37 = 2^256 + 2^255 - 1). * Therefore, we can truncate to 255 bits, and add 0, 19 or 38. * This guarantees that the result is at most 2^255+37. */ t4 = (38 & -t4) + (19 & -(t3 >> 63)); t3 &= MASK63; k = _addcarry_u64(0, t0, t4, &d[0]); k = _addcarry_u64(k, t1, 0, &d[1]); k = _addcarry_u64(k, t2, 0, &d[2]); (void)_addcarry_u64(k, t3, 0, &d[3]); #endif } /* * Multiplication. */ static inline void f255_mul(uint64_t *d, uint64_t *a, uint64_t *b) { #if BR_INT128 unsigned __int128 z; uint64_t t0, t1, t2, t3, t4, t5, t6, t7, th; /* * Compute the product a*b over plain integers. */ z = (unsigned __int128)a[0] * (unsigned __int128)b[0]; t0 = (uint64_t)z; z = (unsigned __int128)a[0] * (unsigned __int128)b[1] + (z >> 64); t1 = (uint64_t)z; z = (unsigned __int128)a[0] * (unsigned __int128)b[2] + (z >> 64); t2 = (uint64_t)z; z = (unsigned __int128)a[0] * (unsigned __int128)b[3] + (z >> 64); t3 = (uint64_t)z; t4 = (uint64_t)(z >> 64); z = (unsigned __int128)a[1] * (unsigned __int128)b[0] + (unsigned __int128)t1; t1 = (uint64_t)z; z = (unsigned __int128)a[1] * (unsigned __int128)b[1] + (unsigned __int128)t2 + (z >> 64); t2 = (uint64_t)z; z = (unsigned __int128)a[1] * (unsigned __int128)b[2] + (unsigned __int128)t3 + (z >> 64); t3 = (uint64_t)z; z = (unsigned __int128)a[1] * (unsigned __int128)b[3] + (unsigned __int128)t4 + (z >> 64); t4 = (uint64_t)z; t5 = (uint64_t)(z >> 64); z = (unsigned __int128)a[2] * (unsigned __int128)b[0] + (unsigned __int128)t2; t2 = (uint64_t)z; z = (unsigned __int128)a[2] * (unsigned __int128)b[1] + (unsigned __int128)t3 + (z >> 64); t3 = (uint64_t)z; z = (unsigned __int128)a[2] * (unsigned __int128)b[2] + (unsigned __int128)t4 + (z >> 64); t4 = (uint64_t)z; z = (unsigned __int128)a[2] * (unsigned __int128)b[3] + (unsigned __int128)t5 + (z >> 64); t5 = (uint64_t)z; t6 = (uint64_t)(z >> 64); z = (unsigned __int128)a[3] * (unsigned __int128)b[0] + (unsigned __int128)t3; t3 = (uint64_t)z; z = (unsigned __int128)a[3] * (unsigned __int128)b[1] + (unsigned __int128)t4 + (z >> 64); t4 = (uint64_t)z; z = (unsigned __int128)a[3] * (unsigned __int128)b[2] + (unsigned __int128)t5 + (z >> 64); t5 = (uint64_t)z; z = (unsigned __int128)a[3] * (unsigned __int128)b[3] + (unsigned __int128)t6 + (z >> 64); t6 = (uint64_t)z; t7 = (uint64_t)(z >> 64); /* * Modulo p, we have: * * 2^255 = 19 * 2^510 = 19*19 = 361 * * We split the intermediate t into three parts, in basis * 2^255. The low one will be in t0..t3; the middle one in t4..t7. * The upper one can only be a single bit (th), since the * multiplication operands are at most 2^255+37 each. */ th = t7 >> 62; t7 = ((t7 << 1) | (t6 >> 63)) & MASK63; t6 = (t6 << 1) | (t5 >> 63); t5 = (t5 << 1) | (t4 >> 63); t4 = (t4 << 1) | (t3 >> 63); t3 &= MASK63; /* * Multiply the middle part (t4..t7) by 19. We truncate it to * 255 bits; the extra bits will go along with th. */ z = (unsigned __int128)t4 * 19; t4 = (uint64_t)z; z = (unsigned __int128)t5 * 19 + (z >> 64); t5 = (uint64_t)z; z = (unsigned __int128)t6 * 19 + (z >> 64); t6 = (uint64_t)z; z = (unsigned __int128)t7 * 19 + (z >> 64); t7 = (uint64_t)z & MASK63; th = (361 & -th) + (19 * (uint64_t)(z >> 63)); /* * Add elements together. * At this point: * t0..t3 fits on 255 bits. * t4..t7 fits on 255 bits. * th <= 361 + 342 = 703. */ z = (unsigned __int128)t0 + (unsigned __int128)t4 + (unsigned __int128)th; t0 = (uint64_t)z; z = (unsigned __int128)t1 + (unsigned __int128)t5 + (z >> 64); t1 = (uint64_t)z; z = (unsigned __int128)t2 + (unsigned __int128)t6 + (z >> 64); t2 = (uint64_t)z; z = (unsigned __int128)t3 + (unsigned __int128)t7 + (z >> 64); t3 = (uint64_t)z & MASK63; th = (uint64_t)(z >> 63); /* * Since the sum is at most 2^256 + 703, the two upper bits, in th, * can only have value 0, 1 or 2. We just add th*19, which * guarantees a result of at most 2^255+37. */ z = (unsigned __int128)t0 + (19 * th); d[0] = (uint64_t)z; z = (unsigned __int128)t1 + (z >> 64); d[1] = (uint64_t)z; z = (unsigned __int128)t2 + (z >> 64); d[2] = (uint64_t)z; d[3] = t3 + (uint64_t)(z >> 64); #elif BR_UMUL128 uint64_t t0, t1, t2, t3, t4, t5, t6, t7, th; uint64_t h0, h1, h2, h3; unsigned char k; /* * Compute the product a*b over plain integers. */ t0 = _umul128(a[0], b[0], &h0); t1 = _umul128(a[0], b[1], &h1); k = _addcarry_u64(0, t1, h0, &t1); t2 = _umul128(a[0], b[2], &h2); k = _addcarry_u64(k, t2, h1, &t2); t3 = _umul128(a[0], b[3], &h3); k = _addcarry_u64(k, t3, h2, &t3); (void)_addcarry_u64(k, h3, 0, &t4); k = _addcarry_u64(0, _umul128(a[1], b[0], &h0), t1, &t1); k = _addcarry_u64(k, _umul128(a[1], b[1], &h1), t2, &t2); k = _addcarry_u64(k, _umul128(a[1], b[2], &h2), t3, &t3); k = _addcarry_u64(k, _umul128(a[1], b[3], &h3), t4, &t4); t5 = k; k = _addcarry_u64(0, t2, h0, &t2); k = _addcarry_u64(k, t3, h1, &t3); k = _addcarry_u64(k, t4, h2, &t4); (void)_addcarry_u64(k, t5, h3, &t5); k = _addcarry_u64(0, _umul128(a[2], b[0], &h0), t2, &t2); k = _addcarry_u64(k, _umul128(a[2], b[1], &h1), t3, &t3); k = _addcarry_u64(k, _umul128(a[2], b[2], &h2), t4, &t4); k = _addcarry_u64(k, _umul128(a[2], b[3], &h3), t5, &t5); t6 = k; k = _addcarry_u64(0, t3, h0, &t3); k = _addcarry_u64(k, t4, h1, &t4); k = _addcarry_u64(k, t5, h2, &t5); (void)_addcarry_u64(k, t6, h3, &t6); k = _addcarry_u64(0, _umul128(a[3], b[0], &h0), t3, &t3); k = _addcarry_u64(k, _umul128(a[3], b[1], &h1), t4, &t4); k = _addcarry_u64(k, _umul128(a[3], b[2], &h2), t5, &t5); k = _addcarry_u64(k, _umul128(a[3], b[3], &h3), t6, &t6); t7 = k; k = _addcarry_u64(0, t4, h0, &t4); k = _addcarry_u64(k, t5, h1, &t5); k = _addcarry_u64(k, t6, h2, &t6); (void)_addcarry_u64(k, t7, h3, &t7); /* * Modulo p, we have: * * 2^255 = 19 * 2^510 = 19*19 = 361 * * We split the intermediate t into three parts, in basis * 2^255. The low one will be in t0..t3; the middle one in t4..t7. * The upper one can only be a single bit (th), since the * multiplication operands are at most 2^255+37 each. */ th = t7 >> 62; t7 = ((t7 << 1) | (t6 >> 63)) & MASK63; t6 = (t6 << 1) | (t5 >> 63); t5 = (t5 << 1) | (t4 >> 63); t4 = (t4 << 1) | (t3 >> 63); t3 &= MASK63; /* * Multiply the middle part (t4..t7) by 19. We truncate it to * 255 bits; the extra bits will go along with th. */ t4 = _umul128(t4, 19, &h0); t5 = _umul128(t5, 19, &h1); t6 = _umul128(t6, 19, &h2); t7 = _umul128(t7, 19, &h3); k = _addcarry_u64(0, t5, h0, &t5); k = _addcarry_u64(k, t6, h1, &t6); k = _addcarry_u64(k, t7, h2, &t7); (void)_addcarry_u64(k, h3, 0, &h3); th = (361 & -th) + (19 * ((h3 << 1) + (t7 >> 63))); t7 &= MASK63; /* * Add elements together. * At this point: * t0..t3 fits on 255 bits. * t4..t7 fits on 255 bits. * th <= 361 + 342 = 703. */ k = _addcarry_u64(0, t0, t4, &t0); k = _addcarry_u64(k, t1, t5, &t1); k = _addcarry_u64(k, t2, t6, &t2); k = _addcarry_u64(k, t3, t7, &t3); t4 = k; k = _addcarry_u64(0, t0, th, &t0); k = _addcarry_u64(k, t1, 0, &t1); k = _addcarry_u64(k, t2, 0, &t2); k = _addcarry_u64(k, t3, 0, &t3); (void)_addcarry_u64(k, t4, 0, &t4); th = (t4 << 1) + (t3 >> 63); t3 &= MASK63; /* * Since the sum is at most 2^256 + 703, the two upper bits, in th, * can only have value 0, 1 or 2. We just add th*19, which * guarantees a result of at most 2^255+37. */ k = _addcarry_u64(0, t0, 19 * th, &d[0]); k = _addcarry_u64(k, t1, 0, &d[1]); k = _addcarry_u64(k, t2, 0, &d[2]); (void)_addcarry_u64(k, t3, 0, &d[3]); #endif } /* * Multiplication by A24 = 121665. */ static inline void f255_mul_a24(uint64_t *d, const uint64_t *a) { #if BR_INT128 uint64_t t0, t1, t2, t3; unsigned __int128 z; z = (unsigned __int128)a[0] * 121665; t0 = (uint64_t)z; z = (unsigned __int128)a[1] * 121665 + (z >> 64); t1 = (uint64_t)z; z = (unsigned __int128)a[2] * 121665 + (z >> 64); t2 = (uint64_t)z; z = (unsigned __int128)a[3] * 121665 + (z >> 64); t3 = (uint64_t)z & MASK63; z = (unsigned __int128)t0 + (19 * (uint64_t)(z >> 63)); t0 = (uint64_t)z; z = (unsigned __int128)t1 + (z >> 64); t1 = (uint64_t)z; z = (unsigned __int128)t2 + (z >> 64); t2 = (uint64_t)z; t3 = t3 + (uint64_t)(z >> 64); z = (unsigned __int128)t0 + (19 & -(t3 >> 63)); d[0] = (uint64_t)z; z = (unsigned __int128)t1 + (z >> 64); d[1] = (uint64_t)z; z = (unsigned __int128)t2 + (z >> 64); d[2] = (uint64_t)z; d[3] = (t3 & MASK63) + (uint64_t)(z >> 64); #elif BR_UMUL128 uint64_t t0, t1, t2, t3, t4, h0, h1, h2, h3; unsigned char k; t0 = _umul128(a[0], 121665, &h0); t1 = _umul128(a[1], 121665, &h1); k = _addcarry_u64(0, t1, h0, &t1); t2 = _umul128(a[2], 121665, &h2); k = _addcarry_u64(k, t2, h1, &t2); t3 = _umul128(a[3], 121665, &h3); k = _addcarry_u64(k, t3, h2, &t3); (void)_addcarry_u64(k, h3, 0, &t4); t4 = (t4 << 1) + (t3 >> 63); t3 &= MASK63; k = _addcarry_u64(0, t0, 19 * t4, &t0); k = _addcarry_u64(k, t1, 0, &t1); k = _addcarry_u64(k, t2, 0, &t2); (void)_addcarry_u64(k, t3, 0, &t3); t4 = 19 & -(t3 >> 63); t3 &= MASK63; k = _addcarry_u64(0, t0, t4, &d[0]); k = _addcarry_u64(k, t1, 0, &d[1]); k = _addcarry_u64(k, t2, 0, &d[2]); (void)_addcarry_u64(k, t3, 0, &d[3]); #endif } /* * Finalize reduction. */ static inline void f255_final_reduce(uint64_t *a) { #if BR_INT128 uint64_t t0, t1, t2, t3, m; unsigned __int128 z; /* * We add 19. If the result (in t) is below 2^255, then a[] * is already less than 2^255-19, thus already reduced. * Otherwise, we subtract 2^255 from t[], in which case we * have t = a - (2^255-19), and that's our result. */ z = (unsigned __int128)a[0] + 19; t0 = (uint64_t)z; z = (unsigned __int128)a[1] + (z >> 64); t1 = (uint64_t)z; z = (unsigned __int128)a[2] + (z >> 64); t2 = (uint64_t)z; t3 = a[3] + (uint64_t)(z >> 64); m = -(t3 >> 63); t3 &= MASK63; a[0] ^= m & (a[0] ^ t0); a[1] ^= m & (a[1] ^ t1); a[2] ^= m & (a[2] ^ t2); a[3] ^= m & (a[3] ^ t3); #elif BR_UMUL128 uint64_t t0, t1, t2, t3, m; unsigned char k; /* * We add 19. If the result (in t) is below 2^255, then a[] * is already less than 2^255-19, thus already reduced. * Otherwise, we subtract 2^255 from t[], in which case we * have t = a - (2^255-19), and that's our result. */ k = _addcarry_u64(0, a[0], 19, &t0); k = _addcarry_u64(k, a[1], 0, &t1); k = _addcarry_u64(k, a[2], 0, &t2); (void)_addcarry_u64(k, a[3], 0, &t3); m = -(t3 >> 63); t3 &= MASK63; a[0] ^= m & (a[0] ^ t0); a[1] ^= m & (a[1] ^ t1); a[2] ^= m & (a[2] ^ t2); a[3] ^= m & (a[3] ^ t3); #endif } static uint32_t api_mul(unsigned char *G, size_t Glen, const unsigned char *kb, size_t kblen, int curve) { unsigned char k[32]; uint64_t x1[4], x2[4], z2[4], x3[4], z3[4]; uint32_t swap; int i; (void)curve; /* * Points are encoded over exactly 32 bytes. Multipliers must fit * in 32 bytes as well. */ if (Glen != 32 || kblen > 32) { return 0; } /* * RFC 7748 mandates that the high bit of the last point byte must * be ignored/cleared. */ x1[0] = br_dec64le(&G[ 0]); x1[1] = br_dec64le(&G[ 8]); x1[2] = br_dec64le(&G[16]); x1[3] = br_dec64le(&G[24]) & MASK63; /* * We can use memset() to clear values, because exact-width types * like uint64_t are guaranteed to have no padding bits or * trap representations. */ memset(x2, 0, sizeof x2); x2[0] = 1; memset(z2, 0, sizeof z2); memcpy(x3, x1, sizeof x1); memcpy(z3, x2, sizeof x2); /* * The multiplier is provided in big-endian notation, and * possibly shorter than 32 bytes. */ memset(k, 0, (sizeof k) - kblen); memcpy(k + (sizeof k) - kblen, kb, kblen); k[31] &= 0xF8; k[0] &= 0x7F; k[0] |= 0x40; swap = 0; for (i = 254; i >= 0; i --) { uint64_t a[4], aa[4], b[4], bb[4], e[4]; uint64_t c[4], d[4], da[4], cb[4]; uint32_t kt; kt = (k[31 - (i >> 3)] >> (i & 7)) & 1; swap ^= kt; f255_cswap(x2, x3, swap); f255_cswap(z2, z3, swap); swap = kt; /* A = x_2 + z_2 */ f255_add(a, x2, z2); /* AA = A^2 */ f255_mul(aa, a, a); /* B = x_2 - z_2 */ f255_sub(b, x2, z2); /* BB = B^2 */ f255_mul(bb, b, b); /* E = AA - BB */ f255_sub(e, aa, bb); /* C = x_3 + z_3 */ f255_add(c, x3, z3); /* D = x_3 - z_3 */ f255_sub(d, x3, z3); /* DA = D * A */ f255_mul(da, d, a); /* CB = C * B */ f255_mul(cb, c, b); /* x_3 = (DA + CB)^2 */ f255_add(x3, da, cb); f255_mul(x3, x3, x3); /* z_3 = x_1 * (DA - CB)^2 */ f255_sub(z3, da, cb); f255_mul(z3, z3, z3); f255_mul(z3, x1, z3); /* x_2 = AA * BB */ f255_mul(x2, aa, bb); /* z_2 = E * (AA + a24 * E) */ f255_mul_a24(z2, e); f255_add(z2, aa, z2); f255_mul(z2, e, z2); } f255_cswap(x2, x3, swap); f255_cswap(z2, z3, swap); /* * Compute 1/z2 = z2^(p-2). Since p = 2^255-19, we can mutualize * most non-squarings. We use x1 and x3, now useless, as temporaries. */ memcpy(x1, z2, sizeof z2); for (i = 0; i < 15; i ++) { f255_mul(x1, x1, x1); f255_mul(x1, x1, z2); } memcpy(x3, x1, sizeof x1); for (i = 0; i < 14; i ++) { int j; for (j = 0; j < 16; j ++) { f255_mul(x3, x3, x3); } f255_mul(x3, x3, x1); } for (i = 14; i >= 0; i --) { f255_mul(x3, x3, x3); if ((0xFFEB >> i) & 1) { f255_mul(x3, z2, x3); } } /* * Compute x2/z2. We have 1/z2 in x3. */ f255_mul(x2, x2, x3); f255_final_reduce(x2); /* * Encode the final x2 value in little-endian. */ br_enc64le(G, x2[0]); br_enc64le(G + 8, x2[1]); br_enc64le(G + 16, x2[2]); br_enc64le(G + 24, x2[3]); return 1; } static size_t api_mulgen(unsigned char *R, const unsigned char *x, size_t xlen, int curve) { const unsigned char *G; size_t Glen; G = api_generator(curve, &Glen); memcpy(R, G, Glen); api_mul(R, Glen, x, xlen, curve); return Glen; } static uint32_t api_muladd(unsigned char *A, const unsigned char *B, size_t len, const unsigned char *x, size_t xlen, const unsigned char *y, size_t ylen, int curve) { /* * We don't implement this method, since it is used for ECDSA * only, and there is no ECDSA over Curve25519 (which instead * uses EdDSA). */ (void)A; (void)B; (void)len; (void)x; (void)xlen; (void)y; (void)ylen; (void)curve; return 0; } /* see bearssl_ec.h */ const br_ec_impl br_ec_c25519_m64 = { (uint32_t)0x20000000, &api_generator, &api_order, &api_xoff, &api_mul, &api_mulgen, &api_muladd }; /* see bearssl_ec.h */ const br_ec_impl * br_ec_c25519_m64_get(void) { return &br_ec_c25519_m64; } #else /* see bearssl_ec.h */ const br_ec_impl * br_ec_c25519_m64_get(void) { return 0; } #endif