//===- ExprEngine.h - Path-Sensitive Expression-Level Dataflow --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on CoreEngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPRENGINE_H #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPRENGINE_H #include "clang/AST/Expr.h" #include "clang/AST/Type.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Basic/LLVM.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/FunctionSummary.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h" #include "llvm/ADT/ArrayRef.h" #include #include #include namespace clang { class AnalysisDeclContextManager; class AnalyzerOptions; class ASTContext; class CFGBlock; class CFGElement; class ConstructionContext; class CXXBindTemporaryExpr; class CXXCatchStmt; class CXXConstructExpr; class CXXDeleteExpr; class CXXNewExpr; class CXXThisExpr; class Decl; class DeclStmt; class GCCAsmStmt; class LambdaExpr; class LocationContext; class MaterializeTemporaryExpr; class MSAsmStmt; class NamedDecl; class ObjCAtSynchronizedStmt; class ObjCForCollectionStmt; class ObjCIvarRefExpr; class ObjCMessageExpr; class ReturnStmt; class Stmt; namespace cross_tu { class CrossTranslationUnitContext; } // namespace cross_tu namespace ento { class AnalysisManager; class BasicValueFactory; class CallEvent; class CheckerManager; class ConstraintManager; class ExplodedNodeSet; class ExplodedNode; class IndirectGotoNodeBuilder; class MemRegion; struct NodeBuilderContext; class NodeBuilderWithSinks; class ProgramState; class ProgramStateManager; class RegionAndSymbolInvalidationTraits; class SymbolManager; class SwitchNodeBuilder; /// Hints for figuring out of a call should be inlined during evalCall(). struct EvalCallOptions { /// This call is a constructor or a destructor for which we do not currently /// compute the this-region correctly. bool IsCtorOrDtorWithImproperlyModeledTargetRegion = false; /// This call is a constructor or a destructor for a single element within /// an array, a part of array construction or destruction. bool IsArrayCtorOrDtor = false; /// This call is a constructor or a destructor of a temporary value. bool IsTemporaryCtorOrDtor = false; /// This call is a constructor for a temporary that is lifetime-extended /// by binding it to a reference-type field within an aggregate, /// for example 'A { const C &c; }; A a = { C() };' bool IsTemporaryLifetimeExtendedViaAggregate = false; /// This call is a pre-C++17 elidable constructor that we failed to elide /// because we failed to compute the target region into which /// this constructor would have been ultimately elided. Analysis that /// we perform in this case is still correct but it behaves differently, /// as if copy elision is disabled. bool IsElidableCtorThatHasNotBeenElided = false; EvalCallOptions() {} }; class ExprEngine { void anchor(); public: /// The modes of inlining, which override the default analysis-wide settings. enum InliningModes { /// Follow the default settings for inlining callees. Inline_Regular = 0, /// Do minimal inlining of callees. Inline_Minimal = 0x1 }; private: cross_tu::CrossTranslationUnitContext &CTU; bool IsCTUEnabled; AnalysisManager &AMgr; AnalysisDeclContextManager &AnalysisDeclContexts; CoreEngine Engine; /// G - the simulation graph. ExplodedGraph &G; /// StateMgr - Object that manages the data for all created states. ProgramStateManager StateMgr; /// SymMgr - Object that manages the symbol information. SymbolManager &SymMgr; /// MRMgr - MemRegionManager object that creates memory regions. MemRegionManager &MRMgr; /// svalBuilder - SValBuilder object that creates SVals from expressions. SValBuilder &svalBuilder; unsigned int currStmtIdx = 0; const NodeBuilderContext *currBldrCtx = nullptr; /// Helper object to determine if an Objective-C message expression /// implicitly never returns. ObjCNoReturn ObjCNoRet; /// The BugReporter associated with this engine. It is important that /// this object be placed at the very end of member variables so that its /// destructor is called before the rest of the ExprEngine is destroyed. PathSensitiveBugReporter BR; /// The functions which have been analyzed through inlining. This is owned by /// AnalysisConsumer. It can be null. SetOfConstDecls *VisitedCallees; /// The flag, which specifies the mode of inlining for the engine. InliningModes HowToInline; public: ExprEngine(cross_tu::CrossTranslationUnitContext &CTU, AnalysisManager &mgr, SetOfConstDecls *VisitedCalleesIn, FunctionSummariesTy *FS, InliningModes HowToInlineIn); virtual ~ExprEngine() = default; /// Returns true if there is still simulation state on the worklist. bool ExecuteWorkList(const LocationContext *L, unsigned Steps = 150000) { return Engine.ExecuteWorkList(L, Steps, nullptr); } /// Execute the work list with an initial state. Nodes that reaches the exit /// of the function are added into the Dst set, which represent the exit /// state of the function call. Returns true if there is still simulation /// state on the worklist. bool ExecuteWorkListWithInitialState(const LocationContext *L, unsigned Steps, ProgramStateRef InitState, ExplodedNodeSet &Dst) { return Engine.ExecuteWorkListWithInitialState(L, Steps, InitState, Dst); } /// getContext - Return the ASTContext associated with this analysis. ASTContext &getContext() const { return AMgr.getASTContext(); } AnalysisManager &getAnalysisManager() { return AMgr; } AnalysisDeclContextManager &getAnalysisDeclContextManager() { return AMgr.getAnalysisDeclContextManager(); } CheckerManager &getCheckerManager() const { return *AMgr.getCheckerManager(); } SValBuilder &getSValBuilder() { return svalBuilder; } BugReporter &getBugReporter() { return BR; } cross_tu::CrossTranslationUnitContext * getCrossTranslationUnitContext() { return &CTU; } const NodeBuilderContext &getBuilderContext() { assert(currBldrCtx); return *currBldrCtx; } const Stmt *getStmt() const; const LocationContext *getRootLocationContext() const { assert(G.roots_begin() != G.roots_end()); return (*G.roots_begin())->getLocation().getLocationContext(); } CFGBlock::ConstCFGElementRef getCFGElementRef() const { const CFGBlock *blockPtr = currBldrCtx ? currBldrCtx->getBlock() : nullptr; return {blockPtr, currStmtIdx}; } /// Dump graph to the specified filename. /// If filename is empty, generate a temporary one. /// \return The filename the graph is written into. std::string DumpGraph(bool trim = false, StringRef Filename=""); /// Dump the graph consisting of the given nodes to a specified filename. /// Generate a temporary filename if it's not provided. /// \return The filename the graph is written into. std::string DumpGraph(ArrayRef Nodes, StringRef Filename = ""); /// Visualize the ExplodedGraph created by executing the simulation. void ViewGraph(bool trim = false); /// Visualize a trimmed ExplodedGraph that only contains paths to the given /// nodes. void ViewGraph(ArrayRef Nodes); /// getInitialState - Return the initial state used for the root vertex /// in the ExplodedGraph. ProgramStateRef getInitialState(const LocationContext *InitLoc); ExplodedGraph &getGraph() { return G; } const ExplodedGraph &getGraph() const { return G; } /// Run the analyzer's garbage collection - remove dead symbols and /// bindings from the state. /// /// Checkers can participate in this process with two callbacks: /// \c checkLiveSymbols and \c checkDeadSymbols. See the CheckerDocumentation /// class for more information. /// /// \param Node The predecessor node, from which the processing should start. /// \param Out The returned set of output nodes. /// \param ReferenceStmt The statement which is about to be processed. /// Everything needed for this statement should be considered live. /// A null statement means that everything in child LocationContexts /// is dead. /// \param LC The location context of the \p ReferenceStmt. A null location /// context means that we have reached the end of analysis and that /// all statements and local variables should be considered dead. /// \param DiagnosticStmt Used as a location for any warnings that should /// occur while removing the dead (e.g. leaks). By default, the /// \p ReferenceStmt is used. /// \param K Denotes whether this is a pre- or post-statement purge. This /// must only be ProgramPoint::PostStmtPurgeDeadSymbolsKind if an /// entire location context is being cleared, in which case the /// \p ReferenceStmt must either be a ReturnStmt or \c NULL. Otherwise, /// it must be ProgramPoint::PreStmtPurgeDeadSymbolsKind (the default) /// and \p ReferenceStmt must be valid (non-null). void removeDead(ExplodedNode *Node, ExplodedNodeSet &Out, const Stmt *ReferenceStmt, const LocationContext *LC, const Stmt *DiagnosticStmt = nullptr, ProgramPoint::Kind K = ProgramPoint::PreStmtPurgeDeadSymbolsKind); /// processCFGElement - Called by CoreEngine. Used to generate new successor /// nodes by processing the 'effects' of a CFG element. void processCFGElement(const CFGElement E, ExplodedNode *Pred, unsigned StmtIdx, NodeBuilderContext *Ctx); void ProcessStmt(const Stmt *S, ExplodedNode *Pred); void ProcessLoopExit(const Stmt* S, ExplodedNode *Pred); void ProcessInitializer(const CFGInitializer I, ExplodedNode *Pred); void ProcessImplicitDtor(const CFGImplicitDtor D, ExplodedNode *Pred); void ProcessNewAllocator(const CXXNewExpr *NE, ExplodedNode *Pred); void ProcessAutomaticObjDtor(const CFGAutomaticObjDtor D, ExplodedNode *Pred, ExplodedNodeSet &Dst); void ProcessDeleteDtor(const CFGDeleteDtor D, ExplodedNode *Pred, ExplodedNodeSet &Dst); void ProcessBaseDtor(const CFGBaseDtor D, ExplodedNode *Pred, ExplodedNodeSet &Dst); void ProcessMemberDtor(const CFGMemberDtor D, ExplodedNode *Pred, ExplodedNodeSet &Dst); void ProcessTemporaryDtor(const CFGTemporaryDtor D, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// Called by CoreEngine when processing the entrance of a CFGBlock. void processCFGBlockEntrance(const BlockEdge &L, NodeBuilderWithSinks &nodeBuilder, ExplodedNode *Pred); /// ProcessBranch - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a branch condition. void processBranch(const Stmt *Condition, NodeBuilderContext& BuilderCtx, ExplodedNode *Pred, ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF); /// Called by CoreEngine. /// Used to generate successor nodes for temporary destructors depending /// on whether the corresponding constructor was visited. void processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE, NodeBuilderContext &BldCtx, ExplodedNode *Pred, ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF); /// Called by CoreEngine. Used to processing branching behavior /// at static initializers. void processStaticInitializer(const DeclStmt *DS, NodeBuilderContext& BuilderCtx, ExplodedNode *Pred, ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF); /// processIndirectGoto - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void processIndirectGoto(IndirectGotoNodeBuilder& builder); /// ProcessSwitch - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void processSwitch(SwitchNodeBuilder& builder); /// Called by CoreEngine. Used to notify checkers that processing a /// function has begun. Called for both inlined and top-level functions. void processBeginOfFunction(NodeBuilderContext &BC, ExplodedNode *Pred, ExplodedNodeSet &Dst, const BlockEdge &L); /// Called by CoreEngine. Used to notify checkers that processing a /// function has ended. Called for both inlined and top-level functions. void processEndOfFunction(NodeBuilderContext& BC, ExplodedNode *Pred, const ReturnStmt *RS = nullptr); /// Remove dead bindings/symbols before exiting a function. void removeDeadOnEndOfFunction(NodeBuilderContext& BC, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// Generate the entry node of the callee. void processCallEnter(NodeBuilderContext& BC, CallEnter CE, ExplodedNode *Pred); /// Generate the sequence of nodes that simulate the call exit and the post /// visit for CallExpr. void processCallExit(ExplodedNode *Pred); /// Called by CoreEngine when the analysis worklist has terminated. void processEndWorklist(); /// evalAssume - Callback function invoked by the ConstraintManager when /// making assumptions about state values. ProgramStateRef processAssume(ProgramStateRef state, SVal cond, bool assumption); /// processRegionChanges - Called by ProgramStateManager whenever a change is made /// to the store. Used to update checkers that track region values. ProgramStateRef processRegionChanges(ProgramStateRef state, const InvalidatedSymbols *invalidated, ArrayRef ExplicitRegions, ArrayRef Regions, const LocationContext *LCtx, const CallEvent *Call); inline ProgramStateRef processRegionChange(ProgramStateRef state, const MemRegion* MR, const LocationContext *LCtx) { return processRegionChanges(state, nullptr, MR, MR, LCtx, nullptr); } /// printJson - Called by ProgramStateManager to print checker-specific data. void printJson(raw_ostream &Out, ProgramStateRef State, const LocationContext *LCtx, const char *NL, unsigned int Space, bool IsDot) const; ProgramStateManager &getStateManager() { return StateMgr; } StoreManager &getStoreManager() { return StateMgr.getStoreManager(); } ConstraintManager &getConstraintManager() { return StateMgr.getConstraintManager(); } // FIXME: Remove when we migrate over to just using SValBuilder. BasicValueFactory &getBasicVals() { return StateMgr.getBasicVals(); } SymbolManager &getSymbolManager() { return SymMgr; } MemRegionManager &getRegionManager() { return MRMgr; } DataTag::Factory &getDataTags() { return Engine.getDataTags(); } // Functions for external checking of whether we have unfinished work bool wasBlocksExhausted() const { return Engine.wasBlocksExhausted(); } bool hasEmptyWorkList() const { return !Engine.getWorkList()->hasWork(); } bool hasWorkRemaining() const { return Engine.hasWorkRemaining(); } const CoreEngine &getCoreEngine() const { return Engine; } public: /// Visit - Transfer function logic for all statements. Dispatches to /// other functions that handle specific kinds of statements. void Visit(const Stmt *S, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitArrayInitLoopExpr - Transfer function for array init loop. void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitArraySubscriptExpr - Transfer function for array accesses. void VisitArraySubscriptExpr(const ArraySubscriptExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitGCCAsmStmt - Transfer function logic for inline asm. void VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitMSAsmStmt - Transfer function logic for MS inline asm. void VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitBlockExpr - Transfer function logic for BlockExprs. void VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitLambdaExpr - Transfer function logic for LambdaExprs. void VisitLambdaExpr(const LambdaExpr *LE, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitBinaryOperator - Transfer function logic for binary operators. void VisitBinaryOperator(const BinaryOperator* B, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitCall - Transfer function for function calls. void VisitCallExpr(const CallExpr *CE, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitCast - Transfer function logic for all casts (implicit and explicit). void VisitCast(const CastExpr *CastE, const Expr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitCompoundLiteralExpr - Transfer function logic for compound literals. void VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// Transfer function logic for DeclRefExprs and BlockDeclRefExprs. void VisitCommonDeclRefExpr(const Expr *DR, const NamedDecl *D, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitDeclStmt - Transfer function logic for DeclStmts. void VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitGuardedExpr - Transfer function logic for ?, __builtin_choose void VisitGuardedExpr(const Expr *Ex, const Expr *L, const Expr *R, ExplodedNode *Pred, ExplodedNodeSet &Dst); void VisitInitListExpr(const InitListExpr *E, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitLogicalExpr - Transfer function logic for '&&', '||' void VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitMemberExpr - Transfer function for member expressions. void VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitAtomicExpr - Transfer function for builtin atomic expressions void VisitAtomicExpr(const AtomicExpr *E, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// Transfer function logic for ObjCAtSynchronizedStmts. void VisitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt *S, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// Transfer function logic for computing the lvalue of an Objective-C ivar. void VisitLvalObjCIvarRefExpr(const ObjCIvarRefExpr *DR, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitObjCForCollectionStmt - Transfer function logic for /// ObjCForCollectionStmt. void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S, ExplodedNode *Pred, ExplodedNodeSet &Dst); void VisitObjCMessage(const ObjCMessageExpr *ME, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitReturnStmt - Transfer function logic for return statements. void VisitReturnStmt(const ReturnStmt *R, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitOffsetOfExpr - Transfer function for offsetof. void VisitOffsetOfExpr(const OffsetOfExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitUnaryExprOrTypeTraitExpr - Transfer function for sizeof. void VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// VisitUnaryOperator - Transfer function logic for unary operators. void VisitUnaryOperator(const UnaryOperator* B, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// Handle ++ and -- (both pre- and post-increment). void VisitIncrementDecrementOperator(const UnaryOperator* U, ExplodedNode *Pred, ExplodedNodeSet &Dst); void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE, ExplodedNodeSet &PreVisit, ExplodedNodeSet &Dst); void VisitCXXCatchStmt(const CXXCatchStmt *CS, ExplodedNode *Pred, ExplodedNodeSet &Dst); void VisitCXXThisExpr(const CXXThisExpr *TE, ExplodedNode *Pred, ExplodedNodeSet & Dst); void VisitCXXConstructExpr(const CXXConstructExpr *E, ExplodedNode *Pred, ExplodedNodeSet &Dst); void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E, ExplodedNode *Pred, ExplodedNodeSet &Dst); void VisitCXXDestructor(QualType ObjectType, const MemRegion *Dest, const Stmt *S, bool IsBaseDtor, ExplodedNode *Pred, ExplodedNodeSet &Dst, EvalCallOptions &Options); void VisitCXXNewAllocatorCall(const CXXNewExpr *CNE, ExplodedNode *Pred, ExplodedNodeSet &Dst); void VisitCXXNewExpr(const CXXNewExpr *CNE, ExplodedNode *Pred, ExplodedNodeSet &Dst); void VisitCXXDeleteExpr(const CXXDeleteExpr *CDE, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// Create a C++ temporary object for an rvalue. void CreateCXXTemporaryObject(const MaterializeTemporaryExpr *ME, ExplodedNode *Pred, ExplodedNodeSet &Dst); /// evalEagerlyAssumeBinOpBifurcation - Given the nodes in 'Src', eagerly assume symbolic /// expressions of the form 'x != 0' and generate new nodes (stored in Dst) /// with those assumptions. void evalEagerlyAssumeBinOpBifurcation(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, const Expr *Ex); static std::pair geteagerlyAssumeBinOpBifurcationTags(); ProgramStateRef handleLValueBitCast(ProgramStateRef state, const Expr *Ex, const LocationContext *LCtx, QualType T, QualType ExTy, const CastExpr *CastE, StmtNodeBuilder &Bldr, ExplodedNode *Pred); void handleUOExtension(ExplodedNode *N, const UnaryOperator *U, StmtNodeBuilder &Bldr); public: SVal evalBinOp(ProgramStateRef ST, BinaryOperator::Opcode Op, SVal LHS, SVal RHS, QualType T) { return svalBuilder.evalBinOp(ST, Op, LHS, RHS, T); } /// Retreives which element is being constructed in a non-POD type array. static std::optional getIndexOfElementToConstruct(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx); /// Retreives which element is being destructed in a non-POD type array. static std::optional getPendingArrayDestruction(ProgramStateRef State, const LocationContext *LCtx); /// Retreives the size of the array in the pending ArrayInitLoopExpr. static std::optional getPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx); /// By looking at a certain item that may be potentially part of an object's /// ConstructionContext, retrieve such object's location. A particular /// statement can be transparently passed as \p Item in most cases. static std::optional getObjectUnderConstruction(ProgramStateRef State, const ConstructionContextItem &Item, const LocationContext *LC); /// Call PointerEscape callback when a value escapes as a result of bind. ProgramStateRef processPointerEscapedOnBind( ProgramStateRef State, ArrayRef> LocAndVals, const LocationContext *LCtx, PointerEscapeKind Kind, const CallEvent *Call); /// Call PointerEscape callback when a value escapes as a result of /// region invalidation. /// \param[in] ITraits Specifies invalidation traits for regions/symbols. ProgramStateRef notifyCheckersOfPointerEscape( ProgramStateRef State, const InvalidatedSymbols *Invalidated, ArrayRef ExplicitRegions, const CallEvent *Call, RegionAndSymbolInvalidationTraits &ITraits); private: /// evalBind - Handle the semantics of binding a value to a specific location. /// This method is used by evalStore, VisitDeclStmt, and others. void evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE, ExplodedNode *Pred, SVal location, SVal Val, bool atDeclInit = false, const ProgramPoint *PP = nullptr); ProgramStateRef processPointerEscapedOnBind(ProgramStateRef State, SVal Loc, SVal Val, const LocationContext *LCtx); /// A simple wrapper when you only need to notify checkers of pointer-escape /// of some values. ProgramStateRef escapeValues(ProgramStateRef State, ArrayRef Vs, PointerEscapeKind K, const CallEvent *Call = nullptr) const; public: // FIXME: 'tag' should be removed, and a LocationContext should be used // instead. // FIXME: Comment on the meaning of the arguments, when 'St' may not // be the same as Pred->state, and when 'location' may not be the // same as state->getLValue(Ex). /// Simulate a read of the result of Ex. void evalLoad(ExplodedNodeSet &Dst, const Expr *NodeEx, /* Eventually will be a CFGStmt */ const Expr *BoundExpr, ExplodedNode *Pred, ProgramStateRef St, SVal location, const ProgramPointTag *tag = nullptr, QualType LoadTy = QualType()); // FIXME: 'tag' should be removed, and a LocationContext should be used // instead. void evalStore(ExplodedNodeSet &Dst, const Expr *AssignE, const Expr *StoreE, ExplodedNode *Pred, ProgramStateRef St, SVal TargetLV, SVal Val, const ProgramPointTag *tag = nullptr); /// Return the CFG element corresponding to the worklist element /// that is currently being processed by ExprEngine. CFGElement getCurrentCFGElement() { return (*currBldrCtx->getBlock())[currStmtIdx]; } /// Create a new state in which the call return value is binded to the /// call origin expression. ProgramStateRef bindReturnValue(const CallEvent &Call, const LocationContext *LCtx, ProgramStateRef State); /// Evaluate a call, running pre- and post-call checkers and allowing checkers /// to be responsible for handling the evaluation of the call itself. void evalCall(ExplodedNodeSet &Dst, ExplodedNode *Pred, const CallEvent &Call); /// Default implementation of call evaluation. void defaultEvalCall(NodeBuilder &B, ExplodedNode *Pred, const CallEvent &Call, const EvalCallOptions &CallOpts = {}); /// Find location of the object that is being constructed by a given /// constructor. This should ideally always succeed but due to not being /// fully implemented it sometimes indicates that it failed via its /// out-parameter CallOpts; in such cases a fake temporary region is /// returned, which is better than nothing but does not represent /// the actual behavior of the program. The Idx parameter is used if we /// construct an array of objects. In that case it points to the index /// of the continuous memory region. /// E.g.: /// For `int arr[4]` this index can be 0,1,2,3. /// For `int arr2[3][3]` this index can be 0,1,...,7,8. /// A multi-dimensional array is also a continuous memory location in a /// row major order, so for arr[0][0] Idx is 0 and for arr[2][2] Idx is 8. SVal computeObjectUnderConstruction(const Expr *E, ProgramStateRef State, const NodeBuilderContext *BldrCtx, const LocationContext *LCtx, const ConstructionContext *CC, EvalCallOptions &CallOpts, unsigned Idx = 0); /// Update the program state with all the path-sensitive information /// that's necessary to perform construction of an object with a given /// syntactic construction context. V and CallOpts have to be obtained from /// computeObjectUnderConstruction() invoked with the same set of /// the remaining arguments (E, State, LCtx, CC). ProgramStateRef updateObjectsUnderConstruction( SVal V, const Expr *E, ProgramStateRef State, const LocationContext *LCtx, const ConstructionContext *CC, const EvalCallOptions &CallOpts); /// A convenient wrapper around computeObjectUnderConstruction /// and updateObjectsUnderConstruction. std::pair handleConstructionContext( const Expr *E, ProgramStateRef State, const NodeBuilderContext *BldrCtx, const LocationContext *LCtx, const ConstructionContext *CC, EvalCallOptions &CallOpts, unsigned Idx = 0) { SVal V = computeObjectUnderConstruction(E, State, BldrCtx, LCtx, CC, CallOpts, Idx); State = updateObjectsUnderConstruction(V, E, State, LCtx, CC, CallOpts); return std::make_pair(State, V); } private: ProgramStateRef finishArgumentConstruction(ProgramStateRef State, const CallEvent &Call); void finishArgumentConstruction(ExplodedNodeSet &Dst, ExplodedNode *Pred, const CallEvent &Call); void evalLocation(ExplodedNodeSet &Dst, const Stmt *NodeEx, /* This will eventually be a CFGStmt */ const Stmt *BoundEx, ExplodedNode *Pred, ProgramStateRef St, SVal location, bool isLoad); /// Count the stack depth and determine if the call is recursive. void examineStackFrames(const Decl *D, const LocationContext *LCtx, bool &IsRecursive, unsigned &StackDepth); enum CallInlinePolicy { CIP_Allowed, CIP_DisallowedOnce, CIP_DisallowedAlways }; /// See if a particular call should be inlined, by only looking /// at the call event and the current state of analysis. CallInlinePolicy mayInlineCallKind(const CallEvent &Call, const ExplodedNode *Pred, AnalyzerOptions &Opts, const EvalCallOptions &CallOpts); /// See if the given AnalysisDeclContext is built for a function that we /// should always inline simply because it's small enough. /// Apart from "small" functions, we also have "large" functions /// (cf. isLarge()), some of which are huge (cf. isHuge()), and we classify /// the remaining functions as "medium". bool isSmall(AnalysisDeclContext *ADC) const; /// See if the given AnalysisDeclContext is built for a function that we /// should inline carefully because it looks pretty large. bool isLarge(AnalysisDeclContext *ADC) const; /// See if the given AnalysisDeclContext is built for a function that we /// should never inline because it's legit gigantic. bool isHuge(AnalysisDeclContext *ADC) const; /// See if the given AnalysisDeclContext is built for a function that we /// should inline, just by looking at the declaration of the function. bool mayInlineDecl(AnalysisDeclContext *ADC) const; /// Checks our policies and decides weither the given call should be inlined. bool shouldInlineCall(const CallEvent &Call, const Decl *D, const ExplodedNode *Pred, const EvalCallOptions &CallOpts = {}); /// Checks whether our policies allow us to inline a non-POD type array /// construction. bool shouldInlineArrayConstruction(const ProgramStateRef State, const CXXConstructExpr *CE, const LocationContext *LCtx); /// Checks whether our policies allow us to inline a non-POD type array /// destruction. /// \param Size The size of the array. bool shouldInlineArrayDestruction(uint64_t Size); /// Prepares the program state for array destruction. If no error happens /// the function binds a 'PendingArrayDestruction' entry to the state, which /// it returns along with the index. If any error happens (we fail to read /// the size, the index would be -1, etc.) the function will return the /// original state along with an index of 0. The actual element count of the /// array can be accessed by the optional 'ElementCountVal' parameter. \param /// State The program state. \param Region The memory region where the array /// is stored. \param ElementTy The type an element in the array. \param LCty /// The location context. \param ElementCountVal A pointer to an optional /// SVal. If specified, the size of the array will be returned in it. It can /// be Unknown. std::pair prepareStateForArrayDestruction( const ProgramStateRef State, const MemRegion *Region, const QualType &ElementTy, const LocationContext *LCtx, SVal *ElementCountVal = nullptr); /// Checks whether we construct an array of non-POD type, and decides if the /// constructor should be inkoved once again. bool shouldRepeatCtorCall(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx); void inlineCall(WorkList *WList, const CallEvent &Call, const Decl *D, NodeBuilder &Bldr, ExplodedNode *Pred, ProgramStateRef State); void ctuBifurcate(const CallEvent &Call, const Decl *D, NodeBuilder &Bldr, ExplodedNode *Pred, ProgramStateRef State); /// Returns true if the CTU analysis is running its second phase. bool isSecondPhaseCTU() { return IsCTUEnabled && !Engine.getCTUWorkList(); } /// Conservatively evaluate call by invalidating regions and binding /// a conjured return value. void conservativeEvalCall(const CallEvent &Call, NodeBuilder &Bldr, ExplodedNode *Pred, ProgramStateRef State); /// Either inline or process the call conservatively (or both), based /// on DynamicDispatchBifurcation data. void BifurcateCall(const MemRegion *BifurReg, const CallEvent &Call, const Decl *D, NodeBuilder &Bldr, ExplodedNode *Pred); bool replayWithoutInlining(ExplodedNode *P, const LocationContext *CalleeLC); /// Models a trivial copy or move constructor or trivial assignment operator /// call with a simple bind. void performTrivialCopy(NodeBuilder &Bldr, ExplodedNode *Pred, const CallEvent &Call); /// If the value of the given expression \p InitWithAdjustments is a NonLoc, /// copy it into a new temporary object region, and replace the value of the /// expression with that. /// /// If \p Result is provided, the new region will be bound to this expression /// instead of \p InitWithAdjustments. /// /// Returns the temporary region with adjustments into the optional /// OutRegionWithAdjustments out-parameter if a new region was indeed needed, /// otherwise sets it to nullptr. ProgramStateRef createTemporaryRegionIfNeeded( ProgramStateRef State, const LocationContext *LC, const Expr *InitWithAdjustments, const Expr *Result = nullptr, const SubRegion **OutRegionWithAdjustments = nullptr); /// Returns a region representing the `Idx`th element of a (possibly /// multi-dimensional) array, for the purposes of element construction or /// destruction. /// /// On return, \p Ty will be set to the base type of the array. /// /// If the type is not an array type at all, the original value is returned. /// Otherwise the "IsArray" flag is set. static SVal makeElementRegion(ProgramStateRef State, SVal LValue, QualType &Ty, bool &IsArray, unsigned Idx = 0); /// Common code that handles either a CXXConstructExpr or a /// CXXInheritedCtorInitExpr. void handleConstructor(const Expr *E, ExplodedNode *Pred, ExplodedNodeSet &Dst); public: /// Note whether this loop has any more iteratios to model. These methods are /// essentially an interface for a GDM trait. Further reading in /// ExprEngine::VisitObjCForCollectionStmt(). [[nodiscard]] static ProgramStateRef setWhetherHasMoreIteration(ProgramStateRef State, const ObjCForCollectionStmt *O, const LocationContext *LC, bool HasMoreIteraton); [[nodiscard]] static ProgramStateRef removeIterationState(ProgramStateRef State, const ObjCForCollectionStmt *O, const LocationContext *LC); [[nodiscard]] static bool hasMoreIteration(ProgramStateRef State, const ObjCForCollectionStmt *O, const LocationContext *LC); private: /// Assuming we construct an array of non-POD types, this method allows us /// to store which element is to be constructed next. static ProgramStateRef setIndexOfElementToConstruct(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx, unsigned Idx); static ProgramStateRef removeIndexOfElementToConstruct(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx); /// Assuming we destruct an array of non-POD types, this method allows us /// to store which element is to be destructed next. static ProgramStateRef setPendingArrayDestruction(ProgramStateRef State, const LocationContext *LCtx, unsigned Idx); static ProgramStateRef removePendingArrayDestruction(ProgramStateRef State, const LocationContext *LCtx); /// Sets the size of the array in a pending ArrayInitLoopExpr. static ProgramStateRef setPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx, unsigned Idx); static ProgramStateRef removePendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx); static ProgramStateRef removeStateTraitsUsedForArrayEvaluation(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx); /// Store the location of a C++ object corresponding to a statement /// until the statement is actually encountered. For example, if a DeclStmt /// has CXXConstructExpr as its initializer, the object would be considered /// to be "under construction" between CXXConstructExpr and DeclStmt. /// This allows, among other things, to keep bindings to variable's fields /// made within the constructor alive until its declaration actually /// goes into scope. static ProgramStateRef addObjectUnderConstruction(ProgramStateRef State, const ConstructionContextItem &Item, const LocationContext *LC, SVal V); /// Mark the object sa fully constructed, cleaning up the state trait /// that tracks objects under construction. static ProgramStateRef finishObjectConstruction(ProgramStateRef State, const ConstructionContextItem &Item, const LocationContext *LC); /// If the given expression corresponds to a temporary that was used for /// passing into an elidable copy/move constructor and that constructor /// was actually elided, track that we also need to elide the destructor. static ProgramStateRef elideDestructor(ProgramStateRef State, const CXXBindTemporaryExpr *BTE, const LocationContext *LC); /// Stop tracking the destructor that corresponds to an elided constructor. static ProgramStateRef cleanupElidedDestructor(ProgramStateRef State, const CXXBindTemporaryExpr *BTE, const LocationContext *LC); /// Returns true if the given expression corresponds to a temporary that /// was constructed for passing into an elidable copy/move constructor /// and that constructor was actually elided. static bool isDestructorElided(ProgramStateRef State, const CXXBindTemporaryExpr *BTE, const LocationContext *LC); /// Check if all objects under construction have been fully constructed /// for the given context range (including FromLC, not including ToLC). /// This is useful for assertions. Also checks if elided destructors /// were cleaned up. static bool areAllObjectsFullyConstructed(ProgramStateRef State, const LocationContext *FromLC, const LocationContext *ToLC); }; /// Traits for storing the call processing policy inside GDM. /// The GDM stores the corresponding CallExpr pointer. // FIXME: This does not use the nice trait macros because it must be accessible // from multiple translation units. struct ReplayWithoutInlining{}; template <> struct ProgramStateTrait : public ProgramStatePartialTrait { static void *GDMIndex(); }; } // namespace ento } // namespace clang #endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_EXPRENGINE_H