//===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This coordinates the per-function state used while generating code. // //===----------------------------------------------------------------------===// #include "CodeGenFunction.h" #include "CGBlocks.h" #include "CGCUDARuntime.h" #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGDebugInfo.h" #include "CGHLSLRuntime.h" #include "CGOpenMPRuntime.h" #include "CodeGenModule.h" #include "CodeGenPGO.h" #include "TargetInfo.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/Expr.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/CodeGenOptions.h" #include "clang/Basic/TargetInfo.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/FPEnv.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CRC.h" #include "llvm/Support/xxhash.h" #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include using namespace clang; using namespace CodeGen; /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time /// markers. static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, const LangOptions &LangOpts) { if (CGOpts.DisableLifetimeMarkers) return false; // Sanitizers may use markers. if (CGOpts.SanitizeAddressUseAfterScope || LangOpts.Sanitize.has(SanitizerKind::HWAddress) || LangOpts.Sanitize.has(SanitizerKind::Memory)) return true; // For now, only in optimized builds. return CGOpts.OptimizationLevel != 0; } CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), CGBuilderInserterTy(this)), SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), ShouldEmitLifetimeMarkers( shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { if (!suppressNewContext) CGM.getCXXABI().getMangleContext().startNewFunction(); EHStack.setCGF(this); SetFastMathFlags(CurFPFeatures); } CodeGenFunction::~CodeGenFunction() { assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); if (getLangOpts().OpenMP && CurFn) CGM.getOpenMPRuntime().functionFinished(*this); // If we have an OpenMPIRBuilder we want to finalize functions (incl. // outlining etc) at some point. Doing it once the function codegen is done // seems to be a reasonable spot. We do it here, as opposed to the deletion // time of the CodeGenModule, because we have to ensure the IR has not yet // been "emitted" to the outside, thus, modifications are still sensible. if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); } // Map the LangOption for exception behavior into // the corresponding enum in the IR. llvm::fp::ExceptionBehavior clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { switch (Kind) { case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; case LangOptions::FPE_Strict: return llvm::fp::ebStrict; default: llvm_unreachable("Unsupported FP Exception Behavior"); } } void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { llvm::FastMathFlags FMF; FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); FMF.setNoInfs(FPFeatures.getNoHonorInfs()); FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); Builder.setFastMathFlags(FMF); } CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); } CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures) : CGF(CGF) { ConstructorHelper(FPFeatures); } void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { OldFPFeatures = CGF.CurFPFeatures; CGF.CurFPFeatures = FPFeatures; OldExcept = CGF.Builder.getDefaultConstrainedExcept(); OldRounding = CGF.Builder.getDefaultConstrainedRounding(); if (OldFPFeatures == FPFeatures) return; FMFGuard.emplace(CGF.Builder); llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); auto NewExceptionBehavior = ToConstrainedExceptMD(static_cast( FPFeatures.getExceptionMode())); CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); CGF.SetFastMathFlags(FPFeatures); assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || isa(CGF.CurFuncDecl) || isa(CGF.CurFuncDecl) || (NewExceptionBehavior == llvm::fp::ebIgnore && NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && "FPConstrained should be enabled on entire function"); auto mergeFnAttrValue = [&](StringRef Name, bool Value) { auto OldValue = CGF.CurFn->getFnAttribute(Name).getValueAsBool(); auto NewValue = OldValue & Value; if (OldValue != NewValue) CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); }; mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); mergeFnAttrValue( "unsafe-fp-math", FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && FPFeatures.allowFPContractAcrossStatement()); } CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { CGF.CurFPFeatures = OldFPFeatures; CGF.Builder.setDefaultConstrainedExcept(OldExcept); CGF.Builder.setDefaultConstrainedRounding(OldRounding); } LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { LValueBaseInfo BaseInfo; TBAAAccessInfo TBAAInfo; CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); Address Addr(V, ConvertTypeForMem(T), Alignment); return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); } /// Given a value of type T* that may not be to a complete object, /// construct an l-value with the natural pointee alignment of T. LValue CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { LValueBaseInfo BaseInfo; TBAAAccessInfo TBAAInfo; CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, /* forPointeeType= */ true); Address Addr(V, ConvertTypeForMem(T), Align); return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); } llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { return CGM.getTypes().ConvertTypeForMem(T); } llvm::Type *CodeGenFunction::ConvertType(QualType T) { return CGM.getTypes().ConvertType(T); } TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { type = type.getCanonicalType(); while (true) { switch (type->getTypeClass()) { #define TYPE(name, parent) #define ABSTRACT_TYPE(name, parent) #define NON_CANONICAL_TYPE(name, parent) case Type::name: #define DEPENDENT_TYPE(name, parent) case Type::name: #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: #include "clang/AST/TypeNodes.inc" llvm_unreachable("non-canonical or dependent type in IR-generation"); case Type::Auto: case Type::DeducedTemplateSpecialization: llvm_unreachable("undeduced type in IR-generation"); // Various scalar types. case Type::Builtin: case Type::Pointer: case Type::BlockPointer: case Type::LValueReference: case Type::RValueReference: case Type::MemberPointer: case Type::Vector: case Type::ExtVector: case Type::ConstantMatrix: case Type::FunctionProto: case Type::FunctionNoProto: case Type::Enum: case Type::ObjCObjectPointer: case Type::Pipe: case Type::BitInt: return TEK_Scalar; // Complexes. case Type::Complex: return TEK_Complex; // Arrays, records, and Objective-C objects. case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: case Type::Record: case Type::ObjCObject: case Type::ObjCInterface: return TEK_Aggregate; // We operate on atomic values according to their underlying type. case Type::Atomic: type = cast(type)->getValueType(); continue; } llvm_unreachable("unknown type kind!"); } } llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { // For cleanliness, we try to avoid emitting the return block for // simple cases. llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); if (CurBB) { assert(!CurBB->getTerminator() && "Unexpected terminated block."); // We have a valid insert point, reuse it if it is empty or there are no // explicit jumps to the return block. if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); delete ReturnBlock.getBlock(); ReturnBlock = JumpDest(); } else EmitBlock(ReturnBlock.getBlock()); return llvm::DebugLoc(); } // Otherwise, if the return block is the target of a single direct // branch then we can just put the code in that block instead. This // cleans up functions which started with a unified return block. if (ReturnBlock.getBlock()->hasOneUse()) { llvm::BranchInst *BI = dyn_cast(*ReturnBlock.getBlock()->user_begin()); if (BI && BI->isUnconditional() && BI->getSuccessor(0) == ReturnBlock.getBlock()) { // Record/return the DebugLoc of the simple 'return' expression to be used // later by the actual 'ret' instruction. llvm::DebugLoc Loc = BI->getDebugLoc(); Builder.SetInsertPoint(BI->getParent()); BI->eraseFromParent(); delete ReturnBlock.getBlock(); ReturnBlock = JumpDest(); return Loc; } } // FIXME: We are at an unreachable point, there is no reason to emit the block // unless it has uses. However, we still need a place to put the debug // region.end for now. EmitBlock(ReturnBlock.getBlock()); return llvm::DebugLoc(); } static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { if (!BB) return; if (!BB->use_empty()) { CGF.CurFn->insert(CGF.CurFn->end(), BB); return; } delete BB; } void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { assert(BreakContinueStack.empty() && "mismatched push/pop in break/continue stack!"); bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 && NumSimpleReturnExprs == NumReturnExprs && ReturnBlock.getBlock()->use_empty(); // Usually the return expression is evaluated before the cleanup // code. If the function contains only a simple return statement, // such as a constant, the location before the cleanup code becomes // the last useful breakpoint in the function, because the simple // return expression will be evaluated after the cleanup code. To be // safe, set the debug location for cleanup code to the location of // the return statement. Otherwise the cleanup code should be at the // end of the function's lexical scope. // // If there are multiple branches to the return block, the branch // instructions will get the location of the return statements and // all will be fine. if (CGDebugInfo *DI = getDebugInfo()) { if (OnlySimpleReturnStmts) DI->EmitLocation(Builder, LastStopPoint); else DI->EmitLocation(Builder, EndLoc); } // Pop any cleanups that might have been associated with the // parameters. Do this in whatever block we're currently in; it's // important to do this before we enter the return block or return // edges will be *really* confused. bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; bool HasOnlyLifetimeMarkers = HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; std::optional OAL; if (HasCleanups) { // Make sure the line table doesn't jump back into the body for // the ret after it's been at EndLoc. if (CGDebugInfo *DI = getDebugInfo()) { if (OnlySimpleReturnStmts) DI->EmitLocation(Builder, EndLoc); else // We may not have a valid end location. Try to apply it anyway, and // fall back to an artificial location if needed. OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); } PopCleanupBlocks(PrologueCleanupDepth); } // Emit function epilog (to return). llvm::DebugLoc Loc = EmitReturnBlock(); if (ShouldInstrumentFunction()) { if (CGM.getCodeGenOpts().InstrumentFunctions) CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) CurFn->addFnAttr("instrument-function-exit-inlined", "__cyg_profile_func_exit"); } // Emit debug descriptor for function end. if (CGDebugInfo *DI = getDebugInfo()) DI->EmitFunctionEnd(Builder, CurFn); // Reset the debug location to that of the simple 'return' expression, if any // rather than that of the end of the function's scope '}'. ApplyDebugLocation AL(*this, Loc); EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); EmitEndEHSpec(CurCodeDecl); assert(EHStack.empty() && "did not remove all scopes from cleanup stack!"); // If someone did an indirect goto, emit the indirect goto block at the end of // the function. if (IndirectBranch) { EmitBlock(IndirectBranch->getParent()); Builder.ClearInsertionPoint(); } // If some of our locals escaped, insert a call to llvm.localescape in the // entry block. if (!EscapedLocals.empty()) { // Invert the map from local to index into a simple vector. There should be // no holes. SmallVector EscapeArgs; EscapeArgs.resize(EscapedLocals.size()); for (auto &Pair : EscapedLocals) EscapeArgs[Pair.second] = Pair.first; llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( &CGM.getModule(), llvm::Intrinsic::localescape); CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); } // Remove the AllocaInsertPt instruction, which is just a convenience for us. llvm::Instruction *Ptr = AllocaInsertPt; AllocaInsertPt = nullptr; Ptr->eraseFromParent(); // PostAllocaInsertPt, if created, was lazily created when it was required, // remove it now since it was just created for our own convenience. if (PostAllocaInsertPt) { llvm::Instruction *PostPtr = PostAllocaInsertPt; PostAllocaInsertPt = nullptr; PostPtr->eraseFromParent(); } // If someone took the address of a label but never did an indirect goto, we // made a zero entry PHI node, which is illegal, zap it now. if (IndirectBranch) { llvm::PHINode *PN = cast(IndirectBranch->getAddress()); if (PN->getNumIncomingValues() == 0) { PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); PN->eraseFromParent(); } } EmitIfUsed(*this, EHResumeBlock); EmitIfUsed(*this, TerminateLandingPad); EmitIfUsed(*this, TerminateHandler); EmitIfUsed(*this, UnreachableBlock); for (const auto &FuncletAndParent : TerminateFunclets) EmitIfUsed(*this, FuncletAndParent.second); if (CGM.getCodeGenOpts().EmitDeclMetadata) EmitDeclMetadata(); for (const auto &R : DeferredReplacements) { if (llvm::Value *Old = R.first) { Old->replaceAllUsesWith(R.second); cast(Old)->eraseFromParent(); } } DeferredReplacements.clear(); // Eliminate CleanupDestSlot alloca by replacing it with SSA values and // PHIs if the current function is a coroutine. We don't do it for all // functions as it may result in slight increase in numbers of instructions // if compiled with no optimizations. We do it for coroutine as the lifetime // of CleanupDestSlot alloca make correct coroutine frame building very // difficult. if (NormalCleanupDest.isValid() && isCoroutine()) { llvm::DominatorTree DT(*CurFn); llvm::PromoteMemToReg( cast(NormalCleanupDest.getPointer()), DT); NormalCleanupDest = Address::invalid(); } // Scan function arguments for vector width. for (llvm::Argument &A : CurFn->args()) if (auto *VT = dyn_cast(A.getType())) LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinValue()); // Update vector width based on return type. if (auto *VT = dyn_cast(CurFn->getReturnType())) LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinValue()); if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); // Add the min-legal-vector-width attribute. This contains the max width from: // 1. min-vector-width attribute used in the source program. // 2. Any builtins used that have a vector width specified. // 3. Values passed in and out of inline assembly. // 4. Width of vector arguments and return types for this function. // 5. Width of vector arguments and return types for functions called by this // function. if (getContext().getTargetInfo().getTriple().isX86()) CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); // Add vscale_range attribute if appropriate. std::optional> VScaleRange = getContext().getTargetInfo().getVScaleRange(getLangOpts()); if (VScaleRange) { CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( getLLVMContext(), VScaleRange->first, VScaleRange->second)); } // If we generated an unreachable return block, delete it now. if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { Builder.ClearInsertionPoint(); ReturnBlock.getBlock()->eraseFromParent(); } if (ReturnValue.isValid()) { auto *RetAlloca = dyn_cast(ReturnValue.getPointer()); if (RetAlloca && RetAlloca->use_empty()) { RetAlloca->eraseFromParent(); ReturnValue = Address::invalid(); } } } /// ShouldInstrumentFunction - Return true if the current function should be /// instrumented with __cyg_profile_func_* calls bool CodeGenFunction::ShouldInstrumentFunction() { if (!CGM.getCodeGenOpts().InstrumentFunctions && !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) return false; if (!CurFuncDecl || CurFuncDecl->hasAttr()) return false; return true; } bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { if (!CurFuncDecl) return false; return CurFuncDecl->hasAttr(); } /// ShouldXRayInstrument - Return true if the current function should be /// instrumented with XRay nop sleds. bool CodeGenFunction::ShouldXRayInstrumentFunction() const { return CGM.getCodeGenOpts().XRayInstrumentFunctions; } /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { return CGM.getCodeGenOpts().XRayInstrumentFunctions && (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == XRayInstrKind::Custom); } bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { return CGM.getCodeGenOpts().XRayInstrumentFunctions && (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == XRayInstrKind::Typed); } llvm::ConstantInt * CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { // Remove any (C++17) exception specifications, to allow calling e.g. a // noexcept function through a non-noexcept pointer. if (!Ty->isFunctionNoProtoType()) Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); std::string Mangled; llvm::raw_string_ostream Out(Mangled); CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); return llvm::ConstantInt::get( CGM.Int32Ty, static_cast(llvm::xxh3_64bits(Mangled))); } void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn) { if (!FD->hasAttr() && !FD->hasAttr()) return; llvm::LLVMContext &Context = getLLVMContext(); CGM.GenKernelArgMetadata(Fn, FD, this); if (!getLangOpts().OpenCL) return; if (const VecTypeHintAttr *A = FD->getAttr()) { QualType HintQTy = A->getTypeHint(); const ExtVectorType *HintEltQTy = HintQTy->getAs(); bool IsSignedInteger = HintQTy->isSignedIntegerType() || (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); llvm::Metadata *AttrMDArgs[] = { llvm::ConstantAsMetadata::get(llvm::UndefValue::get( CGM.getTypes().ConvertType(A->getTypeHint()))), llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( llvm::IntegerType::get(Context, 32), llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); } if (const WorkGroupSizeHintAttr *A = FD->getAttr()) { llvm::Metadata *AttrMDArgs[] = { llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); } if (const ReqdWorkGroupSizeAttr *A = FD->getAttr()) { llvm::Metadata *AttrMDArgs[] = { llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); } if (const OpenCLIntelReqdSubGroupSizeAttr *A = FD->getAttr()) { llvm::Metadata *AttrMDArgs[] = { llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; Fn->setMetadata("intel_reqd_sub_group_size", llvm::MDNode::get(Context, AttrMDArgs)); } } /// Determine whether the function F ends with a return stmt. static bool endsWithReturn(const Decl* F) { const Stmt *Body = nullptr; if (auto *FD = dyn_cast_or_null(F)) Body = FD->getBody(); else if (auto *OMD = dyn_cast_or_null(F)) Body = OMD->getBody(); if (auto *CS = dyn_cast_or_null(Body)) { auto LastStmt = CS->body_rbegin(); if (LastStmt != CS->body_rend()) return isa(*LastStmt); } return false; } void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { if (SanOpts.has(SanitizerKind::Thread)) { Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); Fn->removeFnAttr(llvm::Attribute::SanitizeThread); } } /// Check if the return value of this function requires sanitization. bool CodeGenFunction::requiresReturnValueCheck() const { return requiresReturnValueNullabilityCheck() || (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && CurCodeDecl->getAttr()); } static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { auto *MD = dyn_cast_or_null(D); if (!MD || !MD->getDeclName().getAsIdentifierInfo() || !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || (MD->getNumParams() != 1 && MD->getNumParams() != 2)) return false; if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) return false; if (MD->getNumParams() == 2) { auto *PT = MD->parameters()[1]->getType()->getAs(); if (!PT || !PT->isVoidPointerType() || !PT->getPointeeType().isConstQualified()) return false; } return true; } bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; } bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { return getTarget().getTriple().getArch() == llvm::Triple::x86 && getTarget().getCXXABI().isMicrosoft() && llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { return isInAllocaArgument(CGM.getCXXABI(), P->getType()); }); } /// Return the UBSan prologue signature for \p FD if one is available. static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, const FunctionDecl *FD) { if (const auto *MD = dyn_cast(FD)) if (!MD->isStatic()) return nullptr; return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); } void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, llvm::Function *Fn, const CGFunctionInfo &FnInfo, const FunctionArgList &Args, SourceLocation Loc, SourceLocation StartLoc) { assert(!CurFn && "Do not use a CodeGenFunction object for more than one function"); const Decl *D = GD.getDecl(); DidCallStackSave = false; CurCodeDecl = D; const FunctionDecl *FD = dyn_cast_or_null(D); if (FD && FD->usesSEHTry()) CurSEHParent = GD; CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); FnRetTy = RetTy; CurFn = Fn; CurFnInfo = &FnInfo; assert(CurFn->isDeclaration() && "Function already has body?"); // If this function is ignored for any of the enabled sanitizers, // disable the sanitizer for the function. do { #define SANITIZER(NAME, ID) \ if (SanOpts.empty()) \ break; \ if (SanOpts.has(SanitizerKind::ID)) \ if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ SanOpts.set(SanitizerKind::ID, false); #include "clang/Basic/Sanitizers.def" #undef SANITIZER } while (false); if (D) { const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); SanitizerMask no_sanitize_mask; bool NoSanitizeCoverage = false; for (auto *Attr : D->specific_attrs()) { no_sanitize_mask |= Attr->getMask(); // SanitizeCoverage is not handled by SanOpts. if (Attr->hasCoverage()) NoSanitizeCoverage = true; } // Apply the no_sanitize* attributes to SanOpts. SanOpts.Mask &= ~no_sanitize_mask; if (no_sanitize_mask & SanitizerKind::Address) SanOpts.set(SanitizerKind::KernelAddress, false); if (no_sanitize_mask & SanitizerKind::KernelAddress) SanOpts.set(SanitizerKind::Address, false); if (no_sanitize_mask & SanitizerKind::HWAddress) SanOpts.set(SanitizerKind::KernelHWAddress, false); if (no_sanitize_mask & SanitizerKind::KernelHWAddress) SanOpts.set(SanitizerKind::HWAddress, false); if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); // Some passes need the non-negated no_sanitize attribute. Pass them on. if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { if (no_sanitize_mask & SanitizerKind::Thread) Fn->addFnAttr("no_sanitize_thread"); } } if (ShouldSkipSanitizerInstrumentation()) { CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); } else { // Apply sanitizer attributes to the function. if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) Fn->addFnAttr(llvm::Attribute::SanitizeAddress); if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); if (SanOpts.has(SanitizerKind::MemtagStack)) Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); if (SanOpts.has(SanitizerKind::Thread)) Fn->addFnAttr(llvm::Attribute::SanitizeThread); if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) Fn->addFnAttr(llvm::Attribute::SanitizeMemory); } if (SanOpts.has(SanitizerKind::SafeStack)) Fn->addFnAttr(llvm::Attribute::SafeStack); if (SanOpts.has(SanitizerKind::ShadowCallStack)) Fn->addFnAttr(llvm::Attribute::ShadowCallStack); // Apply fuzzing attribute to the function. if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) Fn->addFnAttr(llvm::Attribute::OptForFuzzing); // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. if (SanOpts.has(SanitizerKind::Thread)) { if (const auto *OMD = dyn_cast_or_null(D)) { IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); if (OMD->getMethodFamily() == OMF_dealloc || OMD->getMethodFamily() == OMF_initialize || (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { markAsIgnoreThreadCheckingAtRuntime(Fn); } } } // Ignore unrelated casts in STL allocate() since the allocator must cast // from void* to T* before object initialization completes. Don't match on the // namespace because not all allocators are in std:: if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { if (matchesStlAllocatorFn(D, getContext())) SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; } // Ignore null checks in coroutine functions since the coroutines passes // are not aware of how to move the extra UBSan instructions across the split // coroutine boundaries. if (D && SanOpts.has(SanitizerKind::Null)) if (FD && FD->getBody() && FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) SanOpts.Mask &= ~SanitizerKind::Null; // Apply xray attributes to the function (as a string, for now) bool AlwaysXRayAttr = false; if (const auto *XRayAttr = D ? D->getAttr() : nullptr) { if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( XRayInstrKind::FunctionEntry) || CGM.getCodeGenOpts().XRayInstrumentationBundle.has( XRayInstrKind::FunctionExit)) { if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { Fn->addFnAttr("function-instrument", "xray-always"); AlwaysXRayAttr = true; } if (XRayAttr->neverXRayInstrument()) Fn->addFnAttr("function-instrument", "xray-never"); if (const auto *LogArgs = D->getAttr()) if (ShouldXRayInstrumentFunction()) Fn->addFnAttr("xray-log-args", llvm::utostr(LogArgs->getArgumentCount())); } } else { if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) Fn->addFnAttr( "xray-instruction-threshold", llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); } if (ShouldXRayInstrumentFunction()) { if (CGM.getCodeGenOpts().XRayIgnoreLoops) Fn->addFnAttr("xray-ignore-loops"); if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( XRayInstrKind::FunctionExit)) Fn->addFnAttr("xray-skip-exit"); if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( XRayInstrKind::FunctionEntry)) Fn->addFnAttr("xray-skip-entry"); auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; if (FuncGroups > 1) { auto FuncName = llvm::ArrayRef(CurFn->getName().bytes_begin(), CurFn->getName().bytes_end()); auto Group = crc32(FuncName) % FuncGroups; if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && !AlwaysXRayAttr) Fn->addFnAttr("function-instrument", "xray-never"); } } if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { case ProfileList::Skip: Fn->addFnAttr(llvm::Attribute::SkipProfile); break; case ProfileList::Forbid: Fn->addFnAttr(llvm::Attribute::NoProfile); break; case ProfileList::Allow: break; } } unsigned Count, Offset; if (const auto *Attr = D ? D->getAttr() : nullptr) { Count = Attr->getCount(); Offset = Attr->getOffset(); } else { Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; } if (Count && Offset <= Count) { Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); if (Offset) Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); } // Instruct that functions for COFF/CodeView targets should start with a // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 // backends as they don't need it -- instructions on these architectures are // always atomically patchable at runtime. if (CGM.getCodeGenOpts().HotPatch && getContext().getTargetInfo().getTriple().isX86() && getContext().getTargetInfo().getTriple().getEnvironment() != llvm::Triple::CODE16) Fn->addFnAttr("patchable-function", "prologue-short-redirect"); // Add no-jump-tables value. if (CGM.getCodeGenOpts().NoUseJumpTables) Fn->addFnAttr("no-jump-tables", "true"); // Add no-inline-line-tables value. if (CGM.getCodeGenOpts().NoInlineLineTables) Fn->addFnAttr("no-inline-line-tables"); // Add profile-sample-accurate value. if (CGM.getCodeGenOpts().ProfileSampleAccurate) Fn->addFnAttr("profile-sample-accurate"); if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) Fn->addFnAttr("use-sample-profile"); if (D && D->hasAttr()) Fn->addFnAttr("cfi-canonical-jump-table"); if (D && D->hasAttr()) Fn->addFnAttr(llvm::Attribute::NoProfile); if (D) { // Function attributes take precedence over command line flags. if (auto *A = D->getAttr()) { switch (A->getThunkType()) { case FunctionReturnThunksAttr::Kind::Keep: break; case FunctionReturnThunksAttr::Kind::Extern: Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); break; } } else if (CGM.getCodeGenOpts().FunctionReturnThunks) Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); } if (FD && (getLangOpts().OpenCL || (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { // Add metadata for a kernel function. EmitKernelMetadata(FD, Fn); } // If we are checking function types, emit a function type signature as // prologue data. if (FD && SanOpts.has(SanitizerKind::Function)) { if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { llvm::LLVMContext &Ctx = Fn->getContext(); llvm::MDBuilder MDB(Ctx); Fn->setMetadata( llvm::LLVMContext::MD_func_sanitize, MDB.createRTTIPointerPrologue( PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); } } // If we're checking nullability, we need to know whether we can check the // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. if (SanOpts.has(SanitizerKind::NullabilityReturn)) { auto Nullability = FnRetTy->getNullability(); if (Nullability && *Nullability == NullabilityKind::NonNull) { if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && CurCodeDecl->getAttr())) RetValNullabilityPrecondition = llvm::ConstantInt::getTrue(getLLVMContext()); } } // If we're in C++ mode and the function name is "main", it is guaranteed // to be norecurse by the standard (3.6.1.3 "The function main shall not be // used within a program"). // // OpenCL C 2.0 v2.2-11 s6.9.i: // Recursion is not supported. // // SYCL v1.2.1 s3.10: // kernels cannot include RTTI information, exception classes, // recursive code, virtual functions or make use of C++ libraries that // are not compiled for the device. if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || (getLangOpts().CUDA && FD->hasAttr()))) Fn->addFnAttr(llvm::Attribute::NoRecurse); llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); llvm::fp::ExceptionBehavior FPExceptionBehavior = ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); Builder.setDefaultConstrainedRounding(RM); Builder.setDefaultConstrainedExcept(FPExceptionBehavior); if ((FD && (FD->UsesFPIntrin() || FD->hasAttr())) || (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || RM != llvm::RoundingMode::NearestTiesToEven))) { Builder.setIsFPConstrained(true); Fn->addFnAttr(llvm::Attribute::StrictFP); } // If a custom alignment is used, force realigning to this alignment on // any main function which certainly will need it. if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && CGM.getCodeGenOpts().StackAlignment)) Fn->addFnAttr("stackrealign"); // "main" doesn't need to zero out call-used registers. if (FD && FD->isMain()) Fn->removeFnAttr("zero-call-used-regs"); llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); // Create a marker to make it easy to insert allocas into the entryblock // later. Don't create this with the builder, because we don't want it // folded. llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); ReturnBlock = getJumpDestInCurrentScope("return"); Builder.SetInsertPoint(EntryBB); // If we're checking the return value, allocate space for a pointer to a // precise source location of the checked return statement. if (requiresReturnValueCheck()) { ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), ReturnLocation); } // Emit subprogram debug descriptor. if (CGDebugInfo *DI = getDebugInfo()) { // Reconstruct the type from the argument list so that implicit parameters, // such as 'this' and 'vtt', show up in the debug info. Preserve the calling // convention. DI->emitFunctionStart(GD, Loc, StartLoc, DI->getFunctionType(FD, RetTy, Args), CurFn, CurFuncIsThunk); } if (ShouldInstrumentFunction()) { if (CGM.getCodeGenOpts().InstrumentFunctions) CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) CurFn->addFnAttr("instrument-function-entry-inlined", "__cyg_profile_func_enter"); if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) CurFn->addFnAttr("instrument-function-entry-inlined", "__cyg_profile_func_enter_bare"); } // Since emitting the mcount call here impacts optimizations such as function // inlining, we just add an attribute to insert a mcount call in backend. // The attribute "counting-function" is set to mcount function name which is // architecture dependent. if (CGM.getCodeGenOpts().InstrumentForProfiling) { // Calls to fentry/mcount should not be generated if function has // the no_instrument_function attribute. if (!CurFuncDecl || !CurFuncDecl->hasAttr()) { if (CGM.getCodeGenOpts().CallFEntry) Fn->addFnAttr("fentry-call", "true"); else { Fn->addFnAttr("instrument-function-entry-inlined", getTarget().getMCountName()); } if (CGM.getCodeGenOpts().MNopMCount) { if (!CGM.getCodeGenOpts().CallFEntry) CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) << "-mnop-mcount" << "-mfentry"; Fn->addFnAttr("mnop-mcount"); } if (CGM.getCodeGenOpts().RecordMCount) { if (!CGM.getCodeGenOpts().CallFEntry) CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) << "-mrecord-mcount" << "-mfentry"; Fn->addFnAttr("mrecord-mcount"); } } } if (CGM.getCodeGenOpts().PackedStack) { if (getContext().getTargetInfo().getTriple().getArch() != llvm::Triple::systemz) CGM.getDiags().Report(diag::err_opt_not_valid_on_target) << "-mpacked-stack"; Fn->addFnAttr("packed-stack"); } if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) Fn->addFnAttr("warn-stack-size", std::to_string(CGM.getCodeGenOpts().WarnStackSize)); if (RetTy->isVoidType()) { // Void type; nothing to return. ReturnValue = Address::invalid(); // Count the implicit return. if (!endsWithReturn(D)) ++NumReturnExprs; } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { // Indirect return; emit returned value directly into sret slot. // This reduces code size, and affects correctness in C++. auto AI = CurFn->arg_begin(); if (CurFnInfo->getReturnInfo().isSRetAfterThis()) ++AI; ReturnValue = Address(&*AI, ConvertType(RetTy), CurFnInfo->getReturnInfo().getIndirectAlign(), KnownNonNull); if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { ReturnValuePointer = CreateDefaultAlignTempAlloca( ReturnValue.getPointer()->getType(), "result.ptr"); Builder.CreateStore(ReturnValue.getPointer(), ReturnValuePointer); } } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { // Load the sret pointer from the argument struct and return into that. unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); llvm::Function::arg_iterator EI = CurFn->arg_end(); --EI; llvm::Value *Addr = Builder.CreateStructGEP( CurFnInfo->getArgStruct(), &*EI, Idx); llvm::Type *Ty = cast(Addr)->getResultElementType(); ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); ReturnValue = Address(Addr, ConvertType(RetTy), CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); } else { ReturnValue = CreateIRTemp(RetTy, "retval"); // Tell the epilog emitter to autorelease the result. We do this // now so that various specialized functions can suppress it // during their IR-generation. if (getLangOpts().ObjCAutoRefCount && !CurFnInfo->isReturnsRetained() && RetTy->isObjCRetainableType()) AutoreleaseResult = true; } EmitStartEHSpec(CurCodeDecl); PrologueCleanupDepth = EHStack.stable_begin(); // Emit OpenMP specific initialization of the device functions. if (getLangOpts().OpenMP && CurCodeDecl) CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); // Handle emitting HLSL entry functions. if (D && D->hasAttr()) CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); EmitFunctionProlog(*CurFnInfo, CurFn, Args); if (const CXXMethodDecl *MD = dyn_cast_if_present(D); MD && !MD->isStatic()) { bool IsInLambda = MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; if (MD->isImplicitObjectMemberFunction()) CGM.getCXXABI().EmitInstanceFunctionProlog(*this); if (IsInLambda) { // We're in a lambda; figure out the captures. MD->getParent()->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField); if (LambdaThisCaptureField) { // If the lambda captures the object referred to by '*this' - either by // value or by reference, make sure CXXThisValue points to the correct // object. // Get the lvalue for the field (which is a copy of the enclosing object // or contains the address of the enclosing object). LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); if (!LambdaThisCaptureField->getType()->isPointerType()) { // If the enclosing object was captured by value, just use its address. CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); } else { // Load the lvalue pointed to by the field, since '*this' was captured // by reference. CXXThisValue = EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); } } for (auto *FD : MD->getParent()->fields()) { if (FD->hasCapturedVLAType()) { auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), SourceLocation()).getScalarVal(); auto VAT = FD->getCapturedVLAType(); VLASizeMap[VAT->getSizeExpr()] = ExprArg; } } } else if (MD->isImplicitObjectMemberFunction()) { // Not in a lambda; just use 'this' from the method. // FIXME: Should we generate a new load for each use of 'this'? The // fast register allocator would be happier... CXXThisValue = CXXABIThisValue; } // Check the 'this' pointer once per function, if it's available. if (CXXABIThisValue) { SanitizerSet SkippedChecks; SkippedChecks.set(SanitizerKind::ObjectSize, true); QualType ThisTy = MD->getThisType(); // If this is the call operator of a lambda with no captures, it // may have a static invoker function, which may call this operator with // a null 'this' pointer. if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) SkippedChecks.set(SanitizerKind::Null, true); EmitTypeCheck( isa(MD) ? TCK_ConstructorCall : TCK_MemberCall, Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); } } // If any of the arguments have a variably modified type, make sure to // emit the type size, but only if the function is not naked. Naked functions // have no prolog to run this evaluation. if (!FD || !FD->hasAttr()) { for (const VarDecl *VD : Args) { // Dig out the type as written from ParmVarDecls; it's unclear whether // the standard (C99 6.9.1p10) requires this, but we're following the // precedent set by gcc. QualType Ty; if (const ParmVarDecl *PVD = dyn_cast(VD)) Ty = PVD->getOriginalType(); else Ty = VD->getType(); if (Ty->isVariablyModifiedType()) EmitVariablyModifiedType(Ty); } } // Emit a location at the end of the prologue. if (CGDebugInfo *DI = getDebugInfo()) DI->EmitLocation(Builder, StartLoc); // TODO: Do we need to handle this in two places like we do with // target-features/target-cpu? if (CurFuncDecl) if (const auto *VecWidth = CurFuncDecl->getAttr()) LargestVectorWidth = VecWidth->getVectorWidth(); } void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { incrementProfileCounter(Body); maybeCreateMCDCCondBitmap(); if (const CompoundStmt *S = dyn_cast(Body)) EmitCompoundStmtWithoutScope(*S); else EmitStmt(Body); } /// When instrumenting to collect profile data, the counts for some blocks /// such as switch cases need to not include the fall-through counts, so /// emit a branch around the instrumentation code. When not instrumenting, /// this just calls EmitBlock(). void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S) { llvm::BasicBlock *SkipCountBB = nullptr; if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { // When instrumenting for profiling, the fallthrough to certain // statements needs to skip over the instrumentation code so that we // get an accurate count. SkipCountBB = createBasicBlock("skipcount"); EmitBranch(SkipCountBB); } EmitBlock(BB); uint64_t CurrentCount = getCurrentProfileCount(); incrementProfileCounter(S); setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); if (SkipCountBB) EmitBlock(SkipCountBB); } /// Tries to mark the given function nounwind based on the /// non-existence of any throwing calls within it. We believe this is /// lightweight enough to do at -O0. static void TryMarkNoThrow(llvm::Function *F) { // LLVM treats 'nounwind' on a function as part of the type, so we // can't do this on functions that can be overwritten. if (F->isInterposable()) return; for (llvm::BasicBlock &BB : *F) for (llvm::Instruction &I : BB) if (I.mayThrow()) return; F->setDoesNotThrow(); } QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args) { const FunctionDecl *FD = cast(GD.getDecl()); QualType ResTy = FD->getReturnType(); const CXXMethodDecl *MD = dyn_cast(FD); if (MD && MD->isImplicitObjectMemberFunction()) { if (CGM.getCXXABI().HasThisReturn(GD)) ResTy = MD->getThisType(); else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) ResTy = CGM.getContext().VoidPtrTy; CGM.getCXXABI().buildThisParam(*this, Args); } // The base version of an inheriting constructor whose constructed base is a // virtual base is not passed any arguments (because it doesn't actually call // the inherited constructor). bool PassedParams = true; if (const CXXConstructorDecl *CD = dyn_cast(FD)) if (auto Inherited = CD->getInheritedConstructor()) PassedParams = getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); if (PassedParams) { for (auto *Param : FD->parameters()) { Args.push_back(Param); if (!Param->hasAttr()) continue; auto *Implicit = ImplicitParamDecl::Create( getContext(), Param->getDeclContext(), Param->getLocation(), /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); SizeArguments[Param] = Implicit; Args.push_back(Implicit); } } if (MD && (isa(MD) || isa(MD))) CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); return ResTy; } void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, const CGFunctionInfo &FnInfo) { assert(Fn && "generating code for null Function"); const FunctionDecl *FD = cast(GD.getDecl()); CurGD = GD; FunctionArgList Args; QualType ResTy = BuildFunctionArgList(GD, Args); if (FD->isInlineBuiltinDeclaration()) { // When generating code for a builtin with an inline declaration, use a // mangled name to hold the actual body, while keeping an external // definition in case the function pointer is referenced somewhere. std::string FDInlineName = (Fn->getName() + ".inline").str(); llvm::Module *M = Fn->getParent(); llvm::Function *Clone = M->getFunction(FDInlineName); if (!Clone) { Clone = llvm::Function::Create(Fn->getFunctionType(), llvm::GlobalValue::InternalLinkage, Fn->getAddressSpace(), FDInlineName, M); Clone->addFnAttr(llvm::Attribute::AlwaysInline); } Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); Fn = Clone; } else { // Detect the unusual situation where an inline version is shadowed by a // non-inline version. In that case we should pick the external one // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way // to detect that situation before we reach codegen, so do some late // replacement. for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; PD = PD->getPreviousDecl()) { if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { std::string FDInlineName = (Fn->getName() + ".inline").str(); llvm::Module *M = Fn->getParent(); if (llvm::Function *Clone = M->getFunction(FDInlineName)) { Clone->replaceAllUsesWith(Fn); Clone->eraseFromParent(); } break; } } } // Check if we should generate debug info for this function. if (FD->hasAttr()) { // Clear non-distinct debug info that was possibly attached to the function // due to an earlier declaration without the nodebug attribute Fn->setSubprogram(nullptr); // Disable debug info indefinitely for this function DebugInfo = nullptr; } // The function might not have a body if we're generating thunks for a // function declaration. SourceRange BodyRange; if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); else BodyRange = FD->getLocation(); CurEHLocation = BodyRange.getEnd(); // Use the location of the start of the function to determine where // the function definition is located. By default use the location // of the declaration as the location for the subprogram. A function // may lack a declaration in the source code if it is created by code // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). SourceLocation Loc = FD->getLocation(); // If this is a function specialization then use the pattern body // as the location for the function. if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) if (SpecDecl->hasBody(SpecDecl)) Loc = SpecDecl->getLocation(); Stmt *Body = FD->getBody(); if (Body) { // Coroutines always emit lifetime markers. if (isa(Body)) ShouldEmitLifetimeMarkers = true; // Initialize helper which will detect jumps which can cause invalid // lifetime markers. if (ShouldEmitLifetimeMarkers) Bypasses.Init(Body); } // Emit the standard function prologue. StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); // Save parameters for coroutine function. if (Body && isa_and_nonnull(Body)) llvm::append_range(FnArgs, FD->parameters()); // Ensure that the function adheres to the forward progress guarantee, which // is required by certain optimizations. if (checkIfFunctionMustProgress()) CurFn->addFnAttr(llvm::Attribute::MustProgress); // Generate the body of the function. PGO.assignRegionCounters(GD, CurFn); if (isa(FD)) EmitDestructorBody(Args); else if (isa(FD)) EmitConstructorBody(Args); else if (getLangOpts().CUDA && !getLangOpts().CUDAIsDevice && FD->hasAttr()) CGM.getCUDARuntime().emitDeviceStub(*this, Args); else if (isa(FD) && cast(FD)->isLambdaStaticInvoker()) { // The lambda static invoker function is special, because it forwards or // clones the body of the function call operator (but is actually static). EmitLambdaStaticInvokeBody(cast(FD)); } else if (isa(FD) && isLambdaCallOperator(cast(FD)) && !FnInfo.isDelegateCall() && cast(FD)->getParent()->getLambdaStaticInvoker() && hasInAllocaArg(cast(FD))) { // If emitting a lambda with static invoker on X86 Windows, change // the call operator body. // Make sure that this is a call operator with an inalloca arg and check // for delegate call to make sure this is the original call op and not the // new forwarding function for the static invoker. EmitLambdaInAllocaCallOpBody(cast(FD)); } else if (FD->isDefaulted() && isa(FD) && (cast(FD)->isCopyAssignmentOperator() || cast(FD)->isMoveAssignmentOperator())) { // Implicit copy-assignment gets the same special treatment as implicit // copy-constructors. emitImplicitAssignmentOperatorBody(Args); } else if (Body) { EmitFunctionBody(Body); } else llvm_unreachable("no definition for emitted function"); // C++11 [stmt.return]p2: // Flowing off the end of a function [...] results in undefined behavior in // a value-returning function. // C11 6.9.1p12: // If the '}' that terminates a function is reached, and the value of the // function call is used by the caller, the behavior is undefined. if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { bool ShouldEmitUnreachable = CGM.getCodeGenOpts().StrictReturn || !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); if (SanOpts.has(SanitizerKind::Return)) { SanitizerScope SanScope(this); llvm::Value *IsFalse = Builder.getFalse(); EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), SanitizerHandler::MissingReturn, EmitCheckSourceLocation(FD->getLocation()), std::nullopt); } else if (ShouldEmitUnreachable) { if (CGM.getCodeGenOpts().OptimizationLevel == 0) EmitTrapCall(llvm::Intrinsic::trap); } if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { Builder.CreateUnreachable(); Builder.ClearInsertionPoint(); } } // Emit the standard function epilogue. FinishFunction(BodyRange.getEnd()); // If we haven't marked the function nothrow through other means, do // a quick pass now to see if we can. if (!CurFn->doesNotThrow()) TryMarkNoThrow(CurFn); } /// ContainsLabel - Return true if the statement contains a label in it. If /// this statement is not executed normally, it not containing a label means /// that we can just remove the code. bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { // Null statement, not a label! if (!S) return false; // If this is a label, we have to emit the code, consider something like: // if (0) { ... foo: bar(); } goto foo; // // TODO: If anyone cared, we could track __label__'s, since we know that you // can't jump to one from outside their declared region. if (isa(S)) return true; // If this is a case/default statement, and we haven't seen a switch, we have // to emit the code. if (isa(S) && !IgnoreCaseStmts) return true; // If this is a switch statement, we want to ignore cases below it. if (isa(S)) IgnoreCaseStmts = true; // Scan subexpressions for verboten labels. for (const Stmt *SubStmt : S->children()) if (ContainsLabel(SubStmt, IgnoreCaseStmts)) return true; return false; } /// containsBreak - Return true if the statement contains a break out of it. /// If the statement (recursively) contains a switch or loop with a break /// inside of it, this is fine. bool CodeGenFunction::containsBreak(const Stmt *S) { // Null statement, not a label! if (!S) return false; // If this is a switch or loop that defines its own break scope, then we can // include it and anything inside of it. if (isa(S) || isa(S) || isa(S) || isa(S)) return false; if (isa(S)) return true; // Scan subexpressions for verboten breaks. for (const Stmt *SubStmt : S->children()) if (containsBreak(SubStmt)) return true; return false; } bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { if (!S) return false; // Some statement kinds add a scope and thus never add a decl to the current // scope. Note, this list is longer than the list of statements that might // have an unscoped decl nested within them, but this way is conservatively // correct even if more statement kinds are added. if (isa(S) || isa(S) || isa(S) || isa(S) || isa(S) || isa(S) || isa(S) || isa(S) || isa(S) || isa(S)) return false; if (isa(S)) return true; for (const Stmt *SubStmt : S->children()) if (mightAddDeclToScope(SubStmt)) return true; return false; } /// ConstantFoldsToSimpleInteger - If the specified expression does not fold /// to a constant, or if it does but contains a label, return false. If it /// constant folds return true and set the boolean result in Result. bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, bool &ResultBool, bool AllowLabels) { // If MC/DC is enabled, disable folding so that we can instrument all // conditions to yield complete test vectors. We still keep track of // folded conditions during region mapping and visualization. if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && CGM.getCodeGenOpts().MCDCCoverage) return false; llvm::APSInt ResultInt; if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) return false; ResultBool = ResultInt.getBoolValue(); return true; } /// ConstantFoldsToSimpleInteger - If the specified expression does not fold /// to a constant, or if it does but contains a label, return false. If it /// constant folds return true and set the folded value. bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt, bool AllowLabels) { // FIXME: Rename and handle conversion of other evaluatable things // to bool. Expr::EvalResult Result; if (!Cond->EvaluateAsInt(Result, getContext())) return false; // Not foldable, not integer or not fully evaluatable. llvm::APSInt Int = Result.Val.getInt(); if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) return false; // Contains a label. ResultInt = Int; return true; } /// Strip parentheses and simplistic logical-NOT operators. const Expr *CodeGenFunction::stripCond(const Expr *C) { while (const UnaryOperator *Op = dyn_cast(C->IgnoreParens())) { if (Op->getOpcode() != UO_LNot) break; C = Op->getSubExpr(); } return C->IgnoreParens(); } /// Determine whether the given condition is an instrumentable condition /// (i.e. no "&&" or "||"). bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { const BinaryOperator *BOp = dyn_cast(stripCond(C)); return (!BOp || !BOp->isLogicalOp()); } /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that /// increments a profile counter based on the semantics of the given logical /// operator opcode. This is used to instrument branch condition coverage for /// logical operators. void CodeGenFunction::EmitBranchToCounterBlock( const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { // If not instrumenting, just emit a branch. bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); if (!InstrumentRegions || !isInstrumentedCondition(Cond)) return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); llvm::BasicBlock *ThenBlock = nullptr; llvm::BasicBlock *ElseBlock = nullptr; llvm::BasicBlock *NextBlock = nullptr; // Create the block we'll use to increment the appropriate counter. llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); // Set block pointers according to Logical-AND (BO_LAnd) semantics. This // means we need to evaluate the condition and increment the counter on TRUE: // // if (Cond) // goto CounterIncrBlock; // else // goto FalseBlock; // // CounterIncrBlock: // Counter++; // goto TrueBlock; if (LOp == BO_LAnd) { ThenBlock = CounterIncrBlock; ElseBlock = FalseBlock; NextBlock = TrueBlock; } // Set block pointers according to Logical-OR (BO_LOr) semantics. This means // we need to evaluate the condition and increment the counter on FALSE: // // if (Cond) // goto TrueBlock; // else // goto CounterIncrBlock; // // CounterIncrBlock: // Counter++; // goto FalseBlock; else if (LOp == BO_LOr) { ThenBlock = TrueBlock; ElseBlock = CounterIncrBlock; NextBlock = FalseBlock; } else { llvm_unreachable("Expected Opcode must be that of a Logical Operator"); } // Emit Branch based on condition. EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); // Emit the block containing the counter increment(s). EmitBlock(CounterIncrBlock); // Increment corresponding counter; if index not provided, use Cond as index. incrementProfileCounter(CntrIdx ? CntrIdx : Cond); // Go to the next block. EmitBranch(NextBlock); } /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if /// statement) to the specified blocks. Based on the condition, this might try /// to simplify the codegen of the conditional based on the branch. /// \param LH The value of the likelihood attribute on the True branch. /// \param ConditionalOp Used by MC/DC code coverage to track the result of the /// ConditionalOperator (ternary) through a recursive call for the operator's /// LHS and RHS nodes. void CodeGenFunction::EmitBranchOnBoolExpr( const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { Cond = Cond->IgnoreParens(); if (const BinaryOperator *CondBOp = dyn_cast(Cond)) { // Handle X && Y in a condition. if (CondBOp->getOpcode() == BO_LAnd) { MCDCLogOpStack.push_back(CondBOp); // If we have "1 && X", simplify the code. "0 && X" would have constant // folded if the case was simple enough. bool ConstantBool = false; if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && ConstantBool) { // br(1 && X) -> br(X). incrementProfileCounter(CondBOp); EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, FalseBlock, TrueCount, LH); MCDCLogOpStack.pop_back(); return; } // If we have "X && 1", simplify the code to use an uncond branch. // "X && 0" would have been constant folded to 0. if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && ConstantBool) { // br(X && 1) -> br(X). EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, FalseBlock, TrueCount, LH, CondBOp); MCDCLogOpStack.pop_back(); return; } // Emit the LHS as a conditional. If the LHS conditional is false, we // want to jump to the FalseBlock. llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); // The counter tells us how often we evaluate RHS, and all of TrueCount // can be propagated to that branch. uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); ConditionalEvaluation eval(*this); { ApplyDebugLocation DL(*this, Cond); // Propagate the likelihood attribute like __builtin_expect // __builtin_expect(X && Y, 1) -> X and Y are likely // __builtin_expect(X && Y, 0) -> only Y is unlikely EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); EmitBlock(LHSTrue); } incrementProfileCounter(CondBOp); setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); // Any temporaries created here are conditional. eval.begin(*this); EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, FalseBlock, TrueCount, LH); eval.end(*this); MCDCLogOpStack.pop_back(); return; } if (CondBOp->getOpcode() == BO_LOr) { MCDCLogOpStack.push_back(CondBOp); // If we have "0 || X", simplify the code. "1 || X" would have constant // folded if the case was simple enough. bool ConstantBool = false; if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && !ConstantBool) { // br(0 || X) -> br(X). incrementProfileCounter(CondBOp); EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, TrueCount, LH); MCDCLogOpStack.pop_back(); return; } // If we have "X || 0", simplify the code to use an uncond branch. // "X || 1" would have been constant folded to 1. if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && !ConstantBool) { // br(X || 0) -> br(X). EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, FalseBlock, TrueCount, LH, CondBOp); MCDCLogOpStack.pop_back(); return; } // Emit the LHS as a conditional. If the LHS conditional is true, we // want to jump to the TrueBlock. llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); // We have the count for entry to the RHS and for the whole expression // being true, so we can divy up True count between the short circuit and // the RHS. uint64_t LHSCount = getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); uint64_t RHSCount = TrueCount - LHSCount; ConditionalEvaluation eval(*this); { // Propagate the likelihood attribute like __builtin_expect // __builtin_expect(X || Y, 1) -> only Y is likely // __builtin_expect(X || Y, 0) -> both X and Y are unlikely ApplyDebugLocation DL(*this, Cond); EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, LH == Stmt::LH_Likely ? Stmt::LH_None : LH); EmitBlock(LHSFalse); } incrementProfileCounter(CondBOp); setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); // Any temporaries created here are conditional. eval.begin(*this); EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, RHSCount, LH); eval.end(*this); MCDCLogOpStack.pop_back(); return; } } if (const UnaryOperator *CondUOp = dyn_cast(Cond)) { // br(!x, t, f) -> br(x, f, t) // Avoid doing this optimization when instrumenting a condition for MC/DC. // LNot is taken as part of the condition for simplicity, and changing its // sense negatively impacts test vector tracking. bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && CGM.getCodeGenOpts().MCDCCoverage && isInstrumentedCondition(Cond); if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { // Negate the count. uint64_t FalseCount = getCurrentProfileCount() - TrueCount; // The values of the enum are chosen to make this negation possible. LH = static_cast(-LH); // Negate the condition and swap the destination blocks. return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, FalseCount, LH); } } if (const ConditionalOperator *CondOp = dyn_cast(Cond)) { // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); // The ConditionalOperator itself has no likelihood information for its // true and false branches. This matches the behavior of __builtin_expect. ConditionalEvaluation cond(*this); EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, getProfileCount(CondOp), Stmt::LH_None); // When computing PGO branch weights, we only know the overall count for // the true block. This code is essentially doing tail duplication of the // naive code-gen, introducing new edges for which counts are not // available. Divide the counts proportionally between the LHS and RHS of // the conditional operator. uint64_t LHSScaledTrueCount = 0; if (TrueCount) { double LHSRatio = getProfileCount(CondOp) / (double)getCurrentProfileCount(); LHSScaledTrueCount = TrueCount * LHSRatio; } cond.begin(*this); EmitBlock(LHSBlock); incrementProfileCounter(CondOp); { ApplyDebugLocation DL(*this, Cond); EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, LHSScaledTrueCount, LH, CondOp); } cond.end(*this); cond.begin(*this); EmitBlock(RHSBlock); EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, TrueCount - LHSScaledTrueCount, LH, CondOp); cond.end(*this); return; } if (const CXXThrowExpr *Throw = dyn_cast(Cond)) { // Conditional operator handling can give us a throw expression as a // condition for a case like: // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) // Fold this to: // br(c, throw x, br(y, t, f)) EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); return; } // Emit the code with the fully general case. llvm::Value *CondV; { ApplyDebugLocation DL(*this, Cond); CondV = EvaluateExprAsBool(Cond); } // If not at the top of the logical operator nest, update MCDC temp with the // boolean result of the evaluated condition. if (!MCDCLogOpStack.empty()) { const Expr *MCDCBaseExpr = Cond; // When a nested ConditionalOperator (ternary) is encountered in a boolean // expression, MC/DC tracks the result of the ternary, and this is tied to // the ConditionalOperator expression and not the ternary's LHS or RHS. If // this is the case, the ConditionalOperator expression is passed through // the ConditionalOp parameter and then used as the MCDC base expression. if (ConditionalOp) MCDCBaseExpr = ConditionalOp; maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); } llvm::MDNode *Weights = nullptr; llvm::MDNode *Unpredictable = nullptr; // If the branch has a condition wrapped by __builtin_unpredictable, // create metadata that specifies that the branch is unpredictable. // Don't bother if not optimizing because that metadata would not be used. auto *Call = dyn_cast(Cond->IgnoreImpCasts()); if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { auto *FD = dyn_cast_or_null(Call->getCalleeDecl()); if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { llvm::MDBuilder MDHelper(getLLVMContext()); Unpredictable = MDHelper.createUnpredictable(); } } // If there is a Likelihood knowledge for the cond, lower it. // Note that if not optimizing this won't emit anything. llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); if (CondV != NewCondV) CondV = NewCondV; else { // Otherwise, lower profile counts. Note that we do this even at -O0. uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); } Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified stmt yet. void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { CGM.ErrorUnsupported(S, Type); } /// emitNonZeroVLAInit - Emit the "zero" initialization of a /// variable-length array whose elements have a non-zero bit-pattern. /// /// \param baseType the inner-most element type of the array /// \param src - a char* pointing to the bit-pattern for a single /// base element of the array /// \param sizeInChars - the total size of the VLA, in chars static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, Address dest, Address src, llvm::Value *sizeInChars) { CGBuilderTy &Builder = CGF.Builder; CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); llvm::Value *baseSizeInChars = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); Address begin = dest.withElementType(CGF.Int8Ty); llvm::Value *end = Builder.CreateInBoundsGEP( begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); // Make a loop over the VLA. C99 guarantees that the VLA element // count must be nonzero. CGF.EmitBlock(loopBB); llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); cur->addIncoming(begin.getPointer(), originBB); CharUnits curAlign = dest.getAlignment().alignmentOfArrayElement(baseSize); // memcpy the individual element bit-pattern. Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, /*volatile*/ false); // Go to the next element. llvm::Value *next = Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); // Leave if that's the end of the VLA. llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); Builder.CreateCondBr(done, contBB, loopBB); cur->addIncoming(next, loopBB); CGF.EmitBlock(contBB); } void CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { // Ignore empty classes in C++. if (getLangOpts().CPlusPlus) { if (const RecordType *RT = Ty->getAs()) { if (cast(RT->getDecl())->isEmpty()) return; } } if (DestPtr.getElementType() != Int8Ty) DestPtr = DestPtr.withElementType(Int8Ty); // Get size and alignment info for this aggregate. CharUnits size = getContext().getTypeSizeInChars(Ty); llvm::Value *SizeVal; const VariableArrayType *vla; // Don't bother emitting a zero-byte memset. if (size.isZero()) { // But note that getTypeInfo returns 0 for a VLA. if (const VariableArrayType *vlaType = dyn_cast_or_null( getContext().getAsArrayType(Ty))) { auto VlaSize = getVLASize(vlaType); SizeVal = VlaSize.NumElts; CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); if (!eltSize.isOne()) SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); vla = vlaType; } else { return; } } else { SizeVal = CGM.getSize(size); vla = nullptr; } // If the type contains a pointer to data member we can't memset it to zero. // Instead, create a null constant and copy it to the destination. // TODO: there are other patterns besides zero that we can usefully memset, // like -1, which happens to be the pattern used by member-pointers. if (!CGM.getTypes().isZeroInitializable(Ty)) { // For a VLA, emit a single element, then splat that over the VLA. if (vla) Ty = getContext().getBaseElementType(vla); llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, NullConstant, Twine()); CharUnits NullAlign = DestPtr.getAlignment(); NullVariable->setAlignment(NullAlign.getAsAlign()); Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); // Get and call the appropriate llvm.memcpy overload. Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); return; } // Otherwise, just memset the whole thing to zero. This is legal // because in LLVM, all default initializers (other than the ones we just // handled above) are guaranteed to have a bit pattern of all zeros. Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); } llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { // Make sure that there is a block for the indirect goto. if (!IndirectBranch) GetIndirectGotoBlock(); llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); // Make sure the indirect branch includes all of the address-taken blocks. IndirectBranch->addDestination(BB); return llvm::BlockAddress::get(CurFn, BB); } llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { // If we already made the indirect branch for indirect goto, return its block. if (IndirectBranch) return IndirectBranch->getParent(); CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); // Create the PHI node that indirect gotos will add entries to. llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, "indirect.goto.dest"); // Create the indirect branch instruction. IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); return IndirectBranch->getParent(); } /// Computes the length of an array in elements, as well as the base /// element type and a properly-typed first element pointer. llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, QualType &baseType, Address &addr) { const ArrayType *arrayType = origArrayType; // If it's a VLA, we have to load the stored size. Note that // this is the size of the VLA in bytes, not its size in elements. llvm::Value *numVLAElements = nullptr; if (isa(arrayType)) { numVLAElements = getVLASize(cast(arrayType)).NumElts; // Walk into all VLAs. This doesn't require changes to addr, // which has type T* where T is the first non-VLA element type. do { QualType elementType = arrayType->getElementType(); arrayType = getContext().getAsArrayType(elementType); // If we only have VLA components, 'addr' requires no adjustment. if (!arrayType) { baseType = elementType; return numVLAElements; } } while (isa(arrayType)); // We get out here only if we find a constant array type // inside the VLA. } // We have some number of constant-length arrays, so addr should // have LLVM type [M x [N x [...]]]*. Build a GEP that walks // down to the first element of addr. SmallVector gepIndices; // GEP down to the array type. llvm::ConstantInt *zero = Builder.getInt32(0); gepIndices.push_back(zero); uint64_t countFromCLAs = 1; QualType eltType; llvm::ArrayType *llvmArrayType = dyn_cast(addr.getElementType()); while (llvmArrayType) { assert(isa(arrayType)); assert(cast(arrayType)->getSize().getZExtValue() == llvmArrayType->getNumElements()); gepIndices.push_back(zero); countFromCLAs *= llvmArrayType->getNumElements(); eltType = arrayType->getElementType(); llvmArrayType = dyn_cast(llvmArrayType->getElementType()); arrayType = getContext().getAsArrayType(arrayType->getElementType()); assert((!llvmArrayType || arrayType) && "LLVM and Clang types are out-of-synch"); } if (arrayType) { // From this point onwards, the Clang array type has been emitted // as some other type (probably a packed struct). Compute the array // size, and just emit the 'begin' expression as a bitcast. while (arrayType) { countFromCLAs *= cast(arrayType)->getSize().getZExtValue(); eltType = arrayType->getElementType(); arrayType = getContext().getAsArrayType(eltType); } llvm::Type *baseType = ConvertType(eltType); addr = addr.withElementType(baseType); } else { // Create the actual GEP. addr = Address(Builder.CreateInBoundsGEP( addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), ConvertTypeForMem(eltType), addr.getAlignment()); } baseType = eltType; llvm::Value *numElements = llvm::ConstantInt::get(SizeTy, countFromCLAs); // If we had any VLA dimensions, factor them in. if (numVLAElements) numElements = Builder.CreateNUWMul(numVLAElements, numElements); return numElements; } CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { const VariableArrayType *vla = getContext().getAsVariableArrayType(type); assert(vla && "type was not a variable array type!"); return getVLASize(vla); } CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(const VariableArrayType *type) { // The number of elements so far; always size_t. llvm::Value *numElements = nullptr; QualType elementType; do { elementType = type->getElementType(); llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; assert(vlaSize && "no size for VLA!"); assert(vlaSize->getType() == SizeTy); if (!numElements) { numElements = vlaSize; } else { // It's undefined behavior if this wraps around, so mark it that way. // FIXME: Teach -fsanitize=undefined to trap this. numElements = Builder.CreateNUWMul(numElements, vlaSize); } } while ((type = getContext().getAsVariableArrayType(elementType))); return { numElements, elementType }; } CodeGenFunction::VlaSizePair CodeGenFunction::getVLAElements1D(QualType type) { const VariableArrayType *vla = getContext().getAsVariableArrayType(type); assert(vla && "type was not a variable array type!"); return getVLAElements1D(vla); } CodeGenFunction::VlaSizePair CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; assert(VlaSize && "no size for VLA!"); assert(VlaSize->getType() == SizeTy); return { VlaSize, Vla->getElementType() }; } void CodeGenFunction::EmitVariablyModifiedType(QualType type) { assert(type->isVariablyModifiedType() && "Must pass variably modified type to EmitVLASizes!"); EnsureInsertPoint(); // We're going to walk down into the type and look for VLA // expressions. do { assert(type->isVariablyModifiedType()); const Type *ty = type.getTypePtr(); switch (ty->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) #define DEPENDENT_TYPE(Class, Base) case Type::Class: #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) #include "clang/AST/TypeNodes.inc" llvm_unreachable("unexpected dependent type!"); // These types are never variably-modified. case Type::Builtin: case Type::Complex: case Type::Vector: case Type::ExtVector: case Type::ConstantMatrix: case Type::Record: case Type::Enum: case Type::Using: case Type::TemplateSpecialization: case Type::ObjCTypeParam: case Type::ObjCObject: case Type::ObjCInterface: case Type::ObjCObjectPointer: case Type::BitInt: llvm_unreachable("type class is never variably-modified!"); case Type::Elaborated: type = cast(ty)->getNamedType(); break; case Type::Adjusted: type = cast(ty)->getAdjustedType(); break; case Type::Decayed: type = cast(ty)->getPointeeType(); break; case Type::Pointer: type = cast(ty)->getPointeeType(); break; case Type::BlockPointer: type = cast(ty)->getPointeeType(); break; case Type::LValueReference: case Type::RValueReference: type = cast(ty)->getPointeeType(); break; case Type::MemberPointer: type = cast(ty)->getPointeeType(); break; case Type::ConstantArray: case Type::IncompleteArray: // Losing element qualification here is fine. type = cast(ty)->getElementType(); break; case Type::VariableArray: { // Losing element qualification here is fine. const VariableArrayType *vat = cast(ty); // Unknown size indication requires no size computation. // Otherwise, evaluate and record it. if (const Expr *sizeExpr = vat->getSizeExpr()) { // It's possible that we might have emitted this already, // e.g. with a typedef and a pointer to it. llvm::Value *&entry = VLASizeMap[sizeExpr]; if (!entry) { llvm::Value *size = EmitScalarExpr(sizeExpr); // C11 6.7.6.2p5: // If the size is an expression that is not an integer constant // expression [...] each time it is evaluated it shall have a value // greater than zero. if (SanOpts.has(SanitizerKind::VLABound)) { SanitizerScope SanScope(this); llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); clang::QualType SEType = sizeExpr->getType(); llvm::Value *CheckCondition = SEType->isSignedIntegerType() ? Builder.CreateICmpSGT(size, Zero) : Builder.CreateICmpUGT(size, Zero); llvm::Constant *StaticArgs[] = { EmitCheckSourceLocation(sizeExpr->getBeginLoc()), EmitCheckTypeDescriptor(SEType)}; EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), SanitizerHandler::VLABoundNotPositive, StaticArgs, size); } // Always zexting here would be wrong if it weren't // undefined behavior to have a negative bound. // FIXME: What about when size's type is larger than size_t? entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); } } type = vat->getElementType(); break; } case Type::FunctionProto: case Type::FunctionNoProto: type = cast(ty)->getReturnType(); break; case Type::Paren: case Type::TypeOf: case Type::UnaryTransform: case Type::Attributed: case Type::BTFTagAttributed: case Type::SubstTemplateTypeParm: case Type::MacroQualified: // Keep walking after single level desugaring. type = type.getSingleStepDesugaredType(getContext()); break; case Type::Typedef: case Type::Decltype: case Type::Auto: case Type::DeducedTemplateSpecialization: // Stop walking: nothing to do. return; case Type::TypeOfExpr: // Stop walking: emit typeof expression. EmitIgnoredExpr(cast(ty)->getUnderlyingExpr()); return; case Type::Atomic: type = cast(ty)->getValueType(); break; case Type::Pipe: type = cast(ty)->getElementType(); break; } } while (type->isVariablyModifiedType()); } Address CodeGenFunction::EmitVAListRef(const Expr* E) { if (getContext().getBuiltinVaListType()->isArrayType()) return EmitPointerWithAlignment(E); return EmitLValue(E).getAddress(*this); } Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { return EmitLValue(E).getAddress(*this); } void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init) { assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); if (CGDebugInfo *Dbg = getDebugInfo()) if (CGM.getCodeGenOpts().hasReducedDebugInfo()) Dbg->EmitGlobalVariable(E->getDecl(), Init); } CodeGenFunction::PeepholeProtection CodeGenFunction::protectFromPeepholes(RValue rvalue) { // At the moment, the only aggressive peephole we do in IR gen // is trunc(zext) folding, but if we add more, we can easily // extend this protection. if (!rvalue.isScalar()) return PeepholeProtection(); llvm::Value *value = rvalue.getScalarVal(); if (!isa(value)) return PeepholeProtection(); // Just make an extra bitcast. assert(HaveInsertPoint()); llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", Builder.GetInsertBlock()); PeepholeProtection protection; protection.Inst = inst; return protection; } void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { if (!protection.Inst) return; // In theory, we could try to duplicate the peepholes now, but whatever. protection.Inst->eraseFromParent(); } void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty, SourceLocation Loc, SourceLocation AssumptionLoc, llvm::Value *Alignment, llvm::Value *OffsetValue) { if (Alignment->getType() != IntPtrTy) Alignment = Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); if (OffsetValue && OffsetValue->getType() != IntPtrTy) OffsetValue = Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); llvm::Value *TheCheck = nullptr; if (SanOpts.has(SanitizerKind::Alignment)) { llvm::Value *PtrIntValue = Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); if (OffsetValue) { bool IsOffsetZero = false; if (const auto *CI = dyn_cast(OffsetValue)) IsOffsetZero = CI->isZero(); if (!IsOffsetZero) PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); } llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); llvm::Value *Mask = Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); } llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); if (!SanOpts.has(SanitizerKind::Alignment)) return; emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, OffsetValue, TheCheck, Assumption); } void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E, SourceLocation AssumptionLoc, llvm::Value *Alignment, llvm::Value *OffsetValue) { QualType Ty = E->getType(); SourceLocation Loc = E->getExprLoc(); emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, OffsetValue); } llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, llvm::Value *AnnotatedVal, StringRef AnnotationStr, SourceLocation Location, const AnnotateAttr *Attr) { SmallVector Args = { AnnotatedVal, CGM.EmitAnnotationString(AnnotationStr), CGM.EmitAnnotationUnit(Location), CGM.EmitAnnotationLineNo(Location), }; if (Attr) Args.push_back(CGM.EmitAnnotationArgs(Attr)); return Builder.CreateCall(AnnotationFn, Args); } void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { assert(D->hasAttr() && "no annotate attribute"); for (const auto *I : D->specific_attrs()) EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, {V->getType(), CGM.ConstGlobalsPtrTy}), V, I->getAnnotation(), D->getLocation(), I); } Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, Address Addr) { assert(D->hasAttr() && "no annotate attribute"); llvm::Value *V = Addr.getPointer(); llvm::Type *VTy = V->getType(); auto *PTy = dyn_cast(VTy); unsigned AS = PTy ? PTy->getAddressSpace() : 0; llvm::PointerType *IntrinTy = llvm::PointerType::get(CGM.getLLVMContext(), AS); llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, {IntrinTy, CGM.ConstGlobalsPtrTy}); for (const auto *I : D->specific_attrs()) { // FIXME Always emit the cast inst so we can differentiate between // annotation on the first field of a struct and annotation on the struct // itself. if (VTy != IntrinTy) V = Builder.CreateBitCast(V, IntrinTy); V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); V = Builder.CreateBitCast(V, VTy); } return Address(V, Addr.getElementType(), Addr.getAlignment()); } CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) : CGF(CGF) { assert(!CGF->IsSanitizerScope); CGF->IsSanitizerScope = true; } CodeGenFunction::SanitizerScope::~SanitizerScope() { CGF->IsSanitizerScope = false; } void CodeGenFunction::InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, llvm::BasicBlock::iterator InsertPt) const { LoopStack.InsertHelper(I); if (IsSanitizerScope) I->setNoSanitizeMetadata(); } void CGBuilderInserter::InsertHelper( llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, llvm::BasicBlock::iterator InsertPt) const { llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); if (CGF) CGF->InsertHelper(I, Name, BB, InsertPt); } // Emits an error if we don't have a valid set of target features for the // called function. void CodeGenFunction::checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl) { return checkTargetFeatures(E->getBeginLoc(), TargetDecl); } // Emits an error if we don't have a valid set of target features for the // called function. void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl) { // Early exit if this is an indirect call. if (!TargetDecl) return; // Get the current enclosing function if it exists. If it doesn't // we can't check the target features anyhow. const FunctionDecl *FD = dyn_cast_or_null(CurCodeDecl); if (!FD) return; // Grab the required features for the call. For a builtin this is listed in // the td file with the default cpu, for an always_inline function this is any // listed cpu and any listed features. unsigned BuiltinID = TargetDecl->getBuiltinID(); std::string MissingFeature; llvm::StringMap CallerFeatureMap; CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); // When compiling in HipStdPar mode we have to be conservative in rejecting // target specific features in the FE, and defer the possible error to the // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is // referenced by an accelerator executable function, we emit an error. bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; if (BuiltinID) { StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); if (!Builtin::evaluateRequiredTargetFeatures( FeatureList, CallerFeatureMap) && !IsHipStdPar) { CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) << TargetDecl->getDeclName() << FeatureList; } } else if (!TargetDecl->isMultiVersion() && TargetDecl->hasAttr()) { // Get the required features for the callee. const TargetAttr *TD = TargetDecl->getAttr(); ParsedTargetAttr ParsedAttr = CGM.getContext().filterFunctionTargetAttrs(TD); SmallVector ReqFeatures; llvm::StringMap CalleeFeatureMap; CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); for (const auto &F : ParsedAttr.Features) { if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) ReqFeatures.push_back(StringRef(F).substr(1)); } for (const auto &F : CalleeFeatureMap) { // Only positive features are "required". if (F.getValue()) ReqFeatures.push_back(F.getKey()); } if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { if (!CallerFeatureMap.lookup(Feature)) { MissingFeature = Feature.str(); return false; } return true; }) && !IsHipStdPar) CGM.getDiags().Report(Loc, diag::err_function_needs_feature) << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; } else if (!FD->isMultiVersion() && FD->hasAttr()) { llvm::StringMap CalleeFeatureMap; CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); for (const auto &F : CalleeFeatureMap) { if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || !CallerFeatureMap.find(F.getKey())->getValue()) && !IsHipStdPar) CGM.getDiags().Report(Loc, diag::err_function_needs_feature) << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); } } } void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { if (!CGM.getCodeGenOpts().SanitizeStats) return; llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); CGM.getSanStats().create(IRB, SSK); } void CodeGenFunction::EmitKCFIOperandBundle( const CGCallee &Callee, SmallVectorImpl &Bundles) { const FunctionProtoType *FP = Callee.getAbstractInfo().getCalleeFunctionProtoType(); if (FP) Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); } llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( const MultiVersionResolverOption &RO) { llvm::SmallVector CondFeatures; for (const StringRef &Feature : RO.Conditions.Features) { // Form condition for features which are not yet enabled in target if (!getContext().getTargetInfo().hasFeature(Feature)) CondFeatures.push_back(Feature); } if (!CondFeatures.empty()) { return EmitAArch64CpuSupports(CondFeatures); } return nullptr; } llvm::Value *CodeGenFunction::FormX86ResolverCondition( const MultiVersionResolverOption &RO) { llvm::Value *Condition = nullptr; if (!RO.Conditions.Architecture.empty()) { StringRef Arch = RO.Conditions.Architecture; // If arch= specifies an x86-64 micro-architecture level, test the feature // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. if (Arch.starts_with("x86-64")) Condition = EmitX86CpuSupports({Arch}); else Condition = EmitX86CpuIs(Arch); } if (!RO.Conditions.Features.empty()) { llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); Condition = Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; } return Condition; } static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, llvm::Function *Resolver, CGBuilderTy &Builder, llvm::Function *FuncToReturn, bool SupportsIFunc) { if (SupportsIFunc) { Builder.CreateRet(FuncToReturn); return; } llvm::SmallVector Args( llvm::make_pointer_range(Resolver->args())); llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); Result->setTailCallKind(llvm::CallInst::TCK_MustTail); if (Resolver->getReturnType()->isVoidTy()) Builder.CreateRetVoid(); else Builder.CreateRet(Result); } void CodeGenFunction::EmitMultiVersionResolver( llvm::Function *Resolver, ArrayRef Options) { llvm::Triple::ArchType ArchType = getContext().getTargetInfo().getTriple().getArch(); switch (ArchType) { case llvm::Triple::x86: case llvm::Triple::x86_64: EmitX86MultiVersionResolver(Resolver, Options); return; case llvm::Triple::aarch64: EmitAArch64MultiVersionResolver(Resolver, Options); return; default: assert(false && "Only implemented for x86 and AArch64 targets"); } } void CodeGenFunction::EmitAArch64MultiVersionResolver( llvm::Function *Resolver, ArrayRef Options) { assert(!Options.empty() && "No multiversion resolver options found"); assert(Options.back().Conditions.Features.size() == 0 && "Default case must be last"); bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); assert(SupportsIFunc && "Multiversion resolver requires target IFUNC support"); bool AArch64CpuInitialized = false; llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); for (const MultiVersionResolverOption &RO : Options) { Builder.SetInsertPoint(CurBlock); llvm::Value *Condition = FormAArch64ResolverCondition(RO); // The 'default' or 'all features enabled' case. if (!Condition) { CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, SupportsIFunc); return; } if (!AArch64CpuInitialized) { Builder.SetInsertPoint(CurBlock, CurBlock->begin()); EmitAArch64CpuInit(); AArch64CpuInitialized = true; Builder.SetInsertPoint(CurBlock); } llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); CGBuilderTy RetBuilder(*this, RetBlock); CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, SupportsIFunc); CurBlock = createBasicBlock("resolver_else", Resolver); Builder.CreateCondBr(Condition, RetBlock, CurBlock); } // If no default, emit an unreachable. Builder.SetInsertPoint(CurBlock); llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); TrapCall->setDoesNotReturn(); TrapCall->setDoesNotThrow(); Builder.CreateUnreachable(); Builder.ClearInsertionPoint(); } void CodeGenFunction::EmitX86MultiVersionResolver( llvm::Function *Resolver, ArrayRef Options) { bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); // Main function's basic block. llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); Builder.SetInsertPoint(CurBlock); EmitX86CpuInit(); for (const MultiVersionResolverOption &RO : Options) { Builder.SetInsertPoint(CurBlock); llvm::Value *Condition = FormX86ResolverCondition(RO); // The 'default' or 'generic' case. if (!Condition) { assert(&RO == Options.end() - 1 && "Default or Generic case must be last"); CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, SupportsIFunc); return; } llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); CGBuilderTy RetBuilder(*this, RetBlock); CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, SupportsIFunc); CurBlock = createBasicBlock("resolver_else", Resolver); Builder.CreateCondBr(Condition, RetBlock, CurBlock); } // If no generic/default, emit an unreachable. Builder.SetInsertPoint(CurBlock); llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); TrapCall->setDoesNotReturn(); TrapCall->setDoesNotThrow(); Builder.CreateUnreachable(); Builder.ClearInsertionPoint(); } // Loc - where the diagnostic will point, where in the source code this // alignment has failed. // SecondaryLoc - if present (will be present if sufficiently different from // Loc), the diagnostic will additionally point a "Note:" to this location. // It should be the location where the __attribute__((assume_aligned)) // was written e.g. void CodeGenFunction::emitAlignmentAssumptionCheck( llvm::Value *Ptr, QualType Ty, SourceLocation Loc, SourceLocation SecondaryLoc, llvm::Value *Alignment, llvm::Value *OffsetValue, llvm::Value *TheCheck, llvm::Instruction *Assumption) { assert(Assumption && isa(Assumption) && cast(Assumption)->getCalledOperand() == llvm::Intrinsic::getDeclaration( Builder.GetInsertBlock()->getParent()->getParent(), llvm::Intrinsic::assume) && "Assumption should be a call to llvm.assume()."); assert(&(Builder.GetInsertBlock()->back()) == Assumption && "Assumption should be the last instruction of the basic block, " "since the basic block is still being generated."); if (!SanOpts.has(SanitizerKind::Alignment)) return; // Don't check pointers to volatile data. The behavior here is implementation- // defined. if (Ty->getPointeeType().isVolatileQualified()) return; // We need to temorairly remove the assumption so we can insert the // sanitizer check before it, else the check will be dropped by optimizations. Assumption->removeFromParent(); { SanitizerScope SanScope(this); if (!OffsetValue) OffsetValue = Builder.getInt1(false); // no offset. llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), EmitCheckSourceLocation(SecondaryLoc), EmitCheckTypeDescriptor(Ty)}; llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), EmitCheckValue(Alignment), EmitCheckValue(OffsetValue)}; EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); } // We are now in the (new, empty) "cont" basic block. // Reintroduce the assumption. Builder.Insert(Assumption); // FIXME: Assumption still has it's original basic block as it's Parent. } llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { if (CGDebugInfo *DI = getDebugInfo()) return DI->SourceLocToDebugLoc(Location); return llvm::DebugLoc(); } llvm::Value * CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, Stmt::Likelihood LH) { switch (LH) { case Stmt::LH_None: return Cond; case Stmt::LH_Likely: case Stmt::LH_Unlikely: // Don't generate llvm.expect on -O0 as the backend won't use it for // anything. if (CGM.getCodeGenOpts().OptimizationLevel == 0) return Cond; llvm::Type *CondTy = Cond->getType(); assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); llvm::Function *FnExpect = CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); llvm::Value *ExpectedValueOfCond = llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, Cond->getName() + ".expval"); } llvm_unreachable("Unknown Likelihood"); } llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, unsigned NumElementsDst, const llvm::Twine &Name) { auto *SrcTy = cast(SrcVec->getType()); unsigned NumElementsSrc = SrcTy->getNumElements(); if (NumElementsSrc == NumElementsDst) return SrcVec; std::vector ShuffleMask(NumElementsDst, -1); for (unsigned MaskIdx = 0; MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) ShuffleMask[MaskIdx] = MaskIdx; return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); }