//===- Symbols.h ------------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines various types of Symbols. // //===----------------------------------------------------------------------===// #ifndef LLD_ELF_SYMBOLS_H #define LLD_ELF_SYMBOLS_H #include "Config.h" #include "lld/Common/LLVM.h" #include "lld/Common/Memory.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Object/ELF.h" #include "llvm/Support/Compiler.h" #include namespace lld { namespace elf { class Symbol; } // Returns a string representation for a symbol for diagnostics. std::string toString(const elf::Symbol &); namespace elf { class CommonSymbol; class Defined; class OutputSection; class SectionBase; class InputSectionBase; class SharedSymbol; class Symbol; class Undefined; class LazySymbol; class InputFile; void printTraceSymbol(const Symbol &sym, StringRef name); enum { NEEDS_GOT = 1 << 0, NEEDS_PLT = 1 << 1, HAS_DIRECT_RELOC = 1 << 2, // True if this symbol needs a canonical PLT entry, or (during // postScanRelocations) a copy relocation. NEEDS_COPY = 1 << 3, NEEDS_TLSDESC = 1 << 4, NEEDS_TLSGD = 1 << 5, NEEDS_TLSGD_TO_IE = 1 << 6, NEEDS_GOT_DTPREL = 1 << 7, NEEDS_TLSIE = 1 << 8, }; // Some index properties of a symbol are stored separately in this auxiliary // struct to decrease sizeof(SymbolUnion) in the majority of cases. struct SymbolAux { uint32_t gotIdx = -1; uint32_t pltIdx = -1; uint32_t tlsDescIdx = -1; uint32_t tlsGdIdx = -1; }; LLVM_LIBRARY_VISIBILITY extern SmallVector symAux; // The base class for real symbol classes. class Symbol { public: enum Kind { PlaceholderKind, DefinedKind, CommonKind, SharedKind, UndefinedKind, LazyKind, }; Kind kind() const { return static_cast(symbolKind); } // The file from which this symbol was created. InputFile *file; // The default copy constructor is deleted due to atomic flags. Define one for // places where no atomic is needed. Symbol(const Symbol &o) { memcpy(this, &o, sizeof(o)); } protected: const char *nameData; // 32-bit size saves space. uint32_t nameSize; public: // The next three fields have the same meaning as the ELF symbol attributes. // type and binding are placed in this order to optimize generating st_info, // which is defined as (binding << 4) + (type & 0xf), on a little-endian // system. uint8_t type : 4; // symbol type // Symbol binding. This is not overwritten by replace() to track // changes during resolution. In particular: // - An undefined weak is still weak when it resolves to a shared library. // - An undefined weak will not extract archive members, but we have to // remember it is weak. uint8_t binding : 4; uint8_t stOther; // st_other field value uint8_t symbolKind; // The partition whose dynamic symbol table contains this symbol's definition. uint8_t partition; // True if this symbol is preemptible at load time. uint8_t isPreemptible : 1; // True if the symbol was used for linking and thus need to be added to the // output file's symbol table. This is true for all symbols except for // unreferenced DSO symbols, lazy (archive) symbols, and bitcode symbols that // are unreferenced except by other bitcode objects. uint8_t isUsedInRegularObj : 1; // True if an undefined or shared symbol is used from a live section. // // NOTE: In Writer.cpp the field is used to mark local defined symbols // which are referenced by relocations when -r or --emit-relocs is given. uint8_t used : 1; // Used by a Defined symbol with protected or default visibility, to record // whether it is required to be exported into .dynsym. This is set when any of // the following conditions hold: // // - If there is an interposable symbol from a DSO. Note: We also do this for // STV_PROTECTED symbols which can't be interposed (to match BFD behavior). // - If -shared or --export-dynamic is specified, any symbol in an object // file/bitcode sets this property, unless suppressed by LTO // canBeOmittedFromSymbolTable(). uint8_t exportDynamic : 1; // True if the symbol is in the --dynamic-list file. A Defined symbol with // protected or default visibility with this property is required to be // exported into .dynsym. uint8_t inDynamicList : 1; // Used to track if there has been at least one undefined reference to the // symbol. For Undefined and SharedSymbol, the binding may change to STB_WEAK // if the first undefined reference from a non-shared object is weak. uint8_t referenced : 1; // Used to track if this symbol will be referenced after wrapping is performed // (i.e. this will be true for foo if __real_foo is referenced, and will be // true for __wrap_foo if foo is referenced). uint8_t referencedAfterWrap : 1; // True if this symbol is specified by --trace-symbol option. uint8_t traced : 1; // True if the name contains '@'. uint8_t hasVersionSuffix : 1; // Symbol visibility. This is the computed minimum visibility of all // observed non-DSO symbols. uint8_t visibility() const { return stOther & 3; } void setVisibility(uint8_t visibility) { stOther = (stOther & ~3) | visibility; } bool includeInDynsym() const; uint8_t computeBinding() const; bool isGlobal() const { return binding == llvm::ELF::STB_GLOBAL; } bool isWeak() const { return binding == llvm::ELF::STB_WEAK; } bool isUndefined() const { return symbolKind == UndefinedKind; } bool isCommon() const { return symbolKind == CommonKind; } bool isDefined() const { return symbolKind == DefinedKind; } bool isShared() const { return symbolKind == SharedKind; } bool isPlaceholder() const { return symbolKind == PlaceholderKind; } bool isLocal() const { return binding == llvm::ELF::STB_LOCAL; } bool isLazy() const { return symbolKind == LazyKind; } // True if this is an undefined weak symbol. This only works once // all input files have been added. bool isUndefWeak() const { return isWeak() && isUndefined(); } StringRef getName() const { return {nameData, nameSize}; } void setName(StringRef s) { nameData = s.data(); nameSize = s.size(); } void parseSymbolVersion(); // Get the NUL-terminated version suffix ("", "@...", or "@@..."). // // For @@, the name has been truncated by insert(). For @, the name has been // truncated by Symbol::parseSymbolVersion(). const char *getVersionSuffix() const { return nameData + nameSize; } uint32_t getGotIdx() const { return symAux[auxIdx].gotIdx; } uint32_t getPltIdx() const { return symAux[auxIdx].pltIdx; } uint32_t getTlsDescIdx() const { return symAux[auxIdx].tlsDescIdx; } uint32_t getTlsGdIdx() const { return symAux[auxIdx].tlsGdIdx; } bool isInGot() const { return getGotIdx() != uint32_t(-1); } bool isInPlt() const { return getPltIdx() != uint32_t(-1); } uint64_t getVA(int64_t addend = 0) const; uint64_t getGotOffset() const; uint64_t getGotVA() const; uint64_t getGotPltOffset() const; uint64_t getGotPltVA() const; uint64_t getPltVA() const; uint64_t getSize() const; OutputSection *getOutputSection() const; // The following two functions are used for symbol resolution. // // You are expected to call mergeProperties for all symbols in input // files so that attributes that are attached to names rather than // indivisual symbol (such as visibility) are merged together. // // Every time you read a new symbol from an input, you are supposed // to call resolve() with the new symbol. That function replaces // "this" object as a result of name resolution if the new symbol is // more appropriate to be included in the output. // // For example, if "this" is an undefined symbol and a new symbol is // a defined symbol, "this" is replaced with the new symbol. void mergeProperties(const Symbol &other); void resolve(const Undefined &other); void resolve(const CommonSymbol &other); void resolve(const Defined &other); void resolve(const LazySymbol &other); void resolve(const SharedSymbol &other); // If this is a lazy symbol, extract an input file and add the symbol // in the file to the symbol table. Calling this function on // non-lazy object causes a runtime error. void extract() const; void checkDuplicate(const Defined &other) const; private: bool shouldReplace(const Defined &other) const; protected: Symbol(Kind k, InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, uint8_t type) : file(file), nameData(name.data()), nameSize(name.size()), type(type), binding(binding), stOther(stOther), symbolKind(k), exportDynamic(false), archSpecificBit(false) {} void overwrite(Symbol &sym, Kind k) const { if (sym.traced) printTraceSymbol(*this, sym.getName()); sym.file = file; sym.type = type; sym.binding = binding; sym.stOther = (stOther & ~3) | sym.visibility(); sym.symbolKind = k; } public: // True if this symbol is in the Iplt sub-section of the Plt and the Igot // sub-section of the .got.plt or .got. uint8_t isInIplt : 1; // True if this symbol needs a GOT entry and its GOT entry is actually in // Igot. This will be true only for certain non-preemptible ifuncs. uint8_t gotInIgot : 1; // True if defined relative to a section discarded by ICF. uint8_t folded : 1; // Allow reuse of a bit between architecture-exclusive symbol flags. // - needsTocRestore(): On PPC64, true if a call to this symbol needs to be // followed by a restore of the toc pointer. // - isTagged(): On AArch64, true if the symbol needs special relocation and // metadata semantics because it's tagged, under the AArch64 MemtagABI. uint8_t archSpecificBit : 1; bool needsTocRestore() const { return archSpecificBit; } bool isTagged() const { return archSpecificBit; } void setNeedsTocRestore(bool v) { archSpecificBit = v; } void setIsTagged(bool v) { archSpecificBit = v; } // True if this symbol is defined by a symbol assignment or wrapped by --wrap. // // LTO shouldn't inline the symbol because it doesn't know the final content // of the symbol. uint8_t scriptDefined : 1; // True if defined in a DSO. There may also be a definition in a relocatable // object file. uint8_t dsoDefined : 1; // True if defined in a DSO as protected visibility. uint8_t dsoProtected : 1; // Temporary flags used to communicate which symbol entries need PLT and GOT // entries during postScanRelocations(); std::atomic flags; // A symAux index used to access GOT/PLT entry indexes. This is allocated in // postScanRelocations(). uint32_t auxIdx; uint32_t dynsymIndex; // If `file` is SharedFile (for SharedSymbol or copy-relocated Defined), this // represents the Verdef index within the input DSO, which will be converted // to a Verneed index in the output. Otherwise, this represents the Verdef // index (VER_NDX_LOCAL, VER_NDX_GLOBAL, or a named version). uint16_t versionId; uint8_t versionScriptAssigned : 1; // True if targeted by a range extension thunk. uint8_t thunkAccessed : 1; void setFlags(uint16_t bits) { flags.fetch_or(bits, std::memory_order_relaxed); } bool hasFlag(uint16_t bit) const { assert(bit && (bit & (bit - 1)) == 0 && "bit must be a power of 2"); return flags.load(std::memory_order_relaxed) & bit; } bool needsDynReloc() const { return flags.load(std::memory_order_relaxed) & (NEEDS_COPY | NEEDS_GOT | NEEDS_PLT | NEEDS_TLSDESC | NEEDS_TLSGD | NEEDS_TLSGD_TO_IE | NEEDS_GOT_DTPREL | NEEDS_TLSIE); } void allocateAux() { assert(auxIdx == 0); auxIdx = symAux.size(); symAux.emplace_back(); } bool isSection() const { return type == llvm::ELF::STT_SECTION; } bool isTls() const { return type == llvm::ELF::STT_TLS; } bool isFunc() const { return type == llvm::ELF::STT_FUNC; } bool isGnuIFunc() const { return type == llvm::ELF::STT_GNU_IFUNC; } bool isObject() const { return type == llvm::ELF::STT_OBJECT; } bool isFile() const { return type == llvm::ELF::STT_FILE; } }; // Represents a symbol that is defined in the current output file. class Defined : public Symbol { public: Defined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, SectionBase *section) : Symbol(DefinedKind, file, name, binding, stOther, type), value(value), size(size), section(section) { exportDynamic = config->exportDynamic; } void overwrite(Symbol &sym) const; static bool classof(const Symbol *s) { return s->isDefined(); } uint64_t value; uint64_t size; SectionBase *section; }; // Represents a common symbol. // // On Unix, it is traditionally allowed to write variable definitions // without initialization expressions (such as "int foo;") to header // files. Such definition is called "tentative definition". // // Using tentative definition is usually considered a bad practice // because you should write only declarations (such as "extern int // foo;") to header files. Nevertheless, the linker and the compiler // have to do something to support bad code by allowing duplicate // definitions for this particular case. // // Common symbols represent variable definitions without initializations. // The compiler creates common symbols when it sees variable definitions // without initialization (you can suppress this behavior and let the // compiler create a regular defined symbol by -fno-common). // // The linker allows common symbols to be replaced by regular defined // symbols. If there are remaining common symbols after name resolution is // complete, they are converted to regular defined symbols in a .bss // section. (Therefore, the later passes don't see any CommonSymbols.) class CommonSymbol : public Symbol { public: CommonSymbol(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, uint8_t type, uint64_t alignment, uint64_t size) : Symbol(CommonKind, file, name, binding, stOther, type), alignment(alignment), size(size) { exportDynamic = config->exportDynamic; } void overwrite(Symbol &sym) const { Symbol::overwrite(sym, CommonKind); auto &s = static_cast(sym); s.alignment = alignment; s.size = size; } static bool classof(const Symbol *s) { return s->isCommon(); } uint32_t alignment; uint64_t size; }; class Undefined : public Symbol { public: Undefined(InputFile *file, StringRef name, uint8_t binding, uint8_t stOther, uint8_t type, uint32_t discardedSecIdx = 0) : Symbol(UndefinedKind, file, name, binding, stOther, type), discardedSecIdx(discardedSecIdx) {} void overwrite(Symbol &sym) const { Symbol::overwrite(sym, UndefinedKind); auto &s = static_cast(sym); s.discardedSecIdx = discardedSecIdx; s.nonPrevailing = nonPrevailing; } static bool classof(const Symbol *s) { return s->kind() == UndefinedKind; } // The section index if in a discarded section, 0 otherwise. uint32_t discardedSecIdx; bool nonPrevailing = false; }; class SharedSymbol : public Symbol { public: static bool classof(const Symbol *s) { return s->kind() == SharedKind; } SharedSymbol(InputFile &file, StringRef name, uint8_t binding, uint8_t stOther, uint8_t type, uint64_t value, uint64_t size, uint32_t alignment) : Symbol(SharedKind, &file, name, binding, stOther, type), value(value), size(size), alignment(alignment) { exportDynamic = true; dsoProtected = visibility() == llvm::ELF::STV_PROTECTED; // GNU ifunc is a mechanism to allow user-supplied functions to // resolve PLT slot values at load-time. This is contrary to the // regular symbol resolution scheme in which symbols are resolved just // by name. Using this hook, you can program how symbols are solved // for you program. For example, you can make "memcpy" to be resolved // to a SSE-enabled version of memcpy only when a machine running the // program supports the SSE instruction set. // // Naturally, such symbols should always be called through their PLT // slots. What GNU ifunc symbols point to are resolver functions, and // calling them directly doesn't make sense (unless you are writing a // loader). // // For DSO symbols, we always call them through PLT slots anyway. // So there's no difference between GNU ifunc and regular function // symbols if they are in DSOs. So we can handle GNU_IFUNC as FUNC. if (this->type == llvm::ELF::STT_GNU_IFUNC) this->type = llvm::ELF::STT_FUNC; } void overwrite(Symbol &sym) const { Symbol::overwrite(sym, SharedKind); auto &s = static_cast(sym); s.dsoProtected = dsoProtected; s.value = value; s.size = size; s.alignment = alignment; } uint64_t value; // st_value uint64_t size; // st_size uint32_t alignment; }; // LazySymbol symbols represent symbols in object files between --start-lib and // --end-lib options. LLD also handles traditional archives as if all the files // in the archive are surrounded by --start-lib and --end-lib. // // A special complication is the handling of weak undefined symbols. They should // not load a file, but we have to remember we have seen both the weak undefined // and the lazy. We represent that with a lazy symbol with a weak binding. This // means that code looking for undefined symbols normally also has to take lazy // symbols into consideration. class LazySymbol : public Symbol { public: LazySymbol(InputFile &file) : Symbol(LazyKind, &file, {}, llvm::ELF::STB_GLOBAL, llvm::ELF::STV_DEFAULT, llvm::ELF::STT_NOTYPE) {} void overwrite(Symbol &sym) const { Symbol::overwrite(sym, LazyKind); } static bool classof(const Symbol *s) { return s->kind() == LazyKind; } }; // Some linker-generated symbols need to be created as // Defined symbols. struct ElfSym { // __bss_start static Defined *bss; // etext and _etext static Defined *etext1; static Defined *etext2; // edata and _edata static Defined *edata1; static Defined *edata2; // end and _end static Defined *end1; static Defined *end2; // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention to // be at some offset from the base of the .got section, usually 0 or // the end of the .got. static Defined *globalOffsetTable; // _gp, _gp_disp and __gnu_local_gp symbols. Only for MIPS. static Defined *mipsGp; static Defined *mipsGpDisp; static Defined *mipsLocalGp; // __global_pointer$ for RISC-V. static Defined *riscvGlobalPointer; // __rel{,a}_iplt_{start,end} symbols. static Defined *relaIpltStart; static Defined *relaIpltEnd; // _TLS_MODULE_BASE_ on targets that support TLSDESC. static Defined *tlsModuleBase; }; // A buffer class that is large enough to hold any Symbol-derived // object. We allocate memory using this class and instantiate a symbol // using the placement new. // It is important to keep the size of SymbolUnion small for performance and // memory usage reasons. 64 bytes is a soft limit based on the size of Defined // on a 64-bit system. This is enforced by a static_assert in Symbols.cpp. union SymbolUnion { alignas(Defined) char a[sizeof(Defined)]; alignas(CommonSymbol) char b[sizeof(CommonSymbol)]; alignas(Undefined) char c[sizeof(Undefined)]; alignas(SharedSymbol) char d[sizeof(SharedSymbol)]; alignas(LazySymbol) char e[sizeof(LazySymbol)]; }; template Defined *makeDefined(T &&...args) { auto *sym = getSpecificAllocSingleton().Allocate(); memset(sym, 0, sizeof(Symbol)); auto &s = *new (reinterpret_cast(sym)) Defined(std::forward(args)...); return &s; } void reportDuplicate(const Symbol &sym, const InputFile *newFile, InputSectionBase *errSec, uint64_t errOffset); void maybeWarnUnorderableSymbol(const Symbol *sym); bool computeIsPreemptible(const Symbol &sym); } // namespace elf } // namespace lld #endif