//===- ConcatOutputSection.cpp --------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ConcatOutputSection.h" #include "Config.h" #include "OutputSegment.h" #include "SymbolTable.h" #include "Symbols.h" #include "SyntheticSections.h" #include "Target.h" #include "lld/Common/CommonLinkerContext.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/TimeProfiler.h" using namespace llvm; using namespace llvm::MachO; using namespace lld; using namespace lld::macho; MapVector macho::concatOutputSections; void ConcatOutputSection::addInput(ConcatInputSection *input) { assert(input->parent == this); if (inputs.empty()) { align = input->align; flags = input->getFlags(); } else { align = std::max(align, input->align); finalizeFlags(input); } inputs.push_back(input); } // Branch-range extension can be implemented in two ways, either through ... // // (1) Branch islands: Single branch instructions (also of limited range), // that might be chained in multiple hops to reach the desired // destination. On ARM64, as 16 branch islands are needed to hop between // opposite ends of a 2 GiB program. LD64 uses branch islands exclusively, // even when it needs excessive hops. // // (2) Thunks: Instruction(s) to load the destination address into a scratch // register, followed by a register-indirect branch. Thunks are // constructed to reach any arbitrary address, so need not be // chained. Although thunks need not be chained, a program might need // multiple thunks to the same destination distributed throughout a large // program so that all call sites can have one within range. // // The optimal approach is to mix islands for destinations within two hops, // and use thunks for destinations at greater distance. For now, we only // implement thunks. TODO: Adding support for branch islands! // // Internally -- as expressed in LLD's data structures -- a // branch-range-extension thunk consists of: // // (1) new Defined symbol for the thunk named // .thunk., which references ... // (2) new InputSection, which contains ... // (3.1) new data for the instructions to load & branch to the far address + // (3.2) new Relocs on instructions to load the far address, which reference ... // (4.1) existing Defined symbol for the real function in __text, or // (4.2) existing DylibSymbol for the real function in a dylib // // Nearly-optimal thunk-placement algorithm features: // // * Single pass: O(n) on the number of call sites. // // * Accounts for the exact space overhead of thunks - no heuristics // // * Exploits the full range of call instructions - forward & backward // // Data: // // * DenseMap thunkMap: Maps the function symbol // to its thunk bookkeeper. // // * struct ThunkInfo (bookkeeper): Call instructions have limited range, and // distant call sites might be unable to reach the same thunk, so multiple // thunks are necessary to serve all call sites in a very large program. A // thunkInfo stores state for all thunks associated with a particular // function: // (a) thunk symbol // (b) input section containing stub code, and // (c) sequence number for the active thunk incarnation. // When an old thunk goes out of range, we increment the sequence number and // create a new thunk named .thunk.. // // * A thunk consists of // (a) a Defined symbol pointing to // (b) an InputSection holding machine code (similar to a MachO stub), and // (c) relocs referencing the real function for fixing up the stub code. // // * std::vector MergedInputSection::thunks: A vector parallel // to the inputs vector. We store new thunks via cheap vector append, rather // than costly insertion into the inputs vector. // // Control Flow: // // * During address assignment, MergedInputSection::finalize() examines call // sites by ascending address and creates thunks. When a function is beyond // the range of a call site, we need a thunk. Place it at the largest // available forward address from the call site. Call sites increase // monotonically and thunks are always placed as far forward as possible; // thus, we place thunks at monotonically increasing addresses. Once a thunk // is placed, it and all previous input-section addresses are final. // // * ConcatInputSection::finalize() and ConcatInputSection::writeTo() merge // the inputs and thunks vectors (both ordered by ascending address), which // is simple and cheap. DenseMap lld::macho::thunkMap; // Determine whether we need thunks, which depends on the target arch -- RISC // (i.e., ARM) generally does because it has limited-range branch/call // instructions, whereas CISC (i.e., x86) generally doesn't. RISC only needs // thunks for programs so large that branch source & destination addresses // might differ more than the range of branch instruction(s). bool TextOutputSection::needsThunks() const { if (!target->usesThunks()) return false; uint64_t isecAddr = addr; for (ConcatInputSection *isec : inputs) isecAddr = alignToPowerOf2(isecAddr, isec->align) + isec->getSize(); if (isecAddr - addr + in.stubs->getSize() <= std::min(target->backwardBranchRange, target->forwardBranchRange)) return false; // Yes, this program is large enough to need thunks. for (ConcatInputSection *isec : inputs) { for (Reloc &r : isec->relocs) { if (!target->hasAttr(r.type, RelocAttrBits::BRANCH)) continue; auto *sym = r.referent.get(); // Pre-populate the thunkMap and memoize call site counts for every // InputSection and ThunkInfo. We do this for the benefit of // estimateStubsInRangeVA(). ThunkInfo &thunkInfo = thunkMap[sym]; // Knowing ThunkInfo call site count will help us know whether or not we // might need to create more for this referent at the time we are // estimating distance to __stubs in estimateStubsInRangeVA(). ++thunkInfo.callSiteCount; // We can avoid work on InputSections that have no BRANCH relocs. isec->hasCallSites = true; } } return true; } // Since __stubs is placed after __text, we must estimate the address // beyond which stubs are within range of a simple forward branch. // This is called exactly once, when the last input section has been finalized. uint64_t TextOutputSection::estimateStubsInRangeVA(size_t callIdx) const { // Tally the functions which still have call sites remaining to process, // which yields the maximum number of thunks we might yet place. size_t maxPotentialThunks = 0; for (auto &tp : thunkMap) { ThunkInfo &ti = tp.second; // This overcounts: Only sections that are in forward jump range from the // currently-active section get finalized, and all input sections are // finalized when estimateStubsInRangeVA() is called. So only backward // jumps will need thunks, but we count all jumps. if (ti.callSitesUsed < ti.callSiteCount) maxPotentialThunks += 1; } // Tally the total size of input sections remaining to process. uint64_t isecVA = inputs[callIdx]->getVA(); uint64_t isecEnd = isecVA; for (size_t i = callIdx; i < inputs.size(); i++) { InputSection *isec = inputs[i]; isecEnd = alignToPowerOf2(isecEnd, isec->align) + isec->getSize(); } // Estimate the address after which call sites can safely call stubs // directly rather than through intermediary thunks. uint64_t forwardBranchRange = target->forwardBranchRange; assert(isecEnd > forwardBranchRange && "should not run thunk insertion if all code fits in jump range"); assert(isecEnd - isecVA <= forwardBranchRange && "should only finalize sections in jump range"); uint64_t stubsInRangeVA = isecEnd + maxPotentialThunks * target->thunkSize + in.stubs->getSize() - forwardBranchRange; log("thunks = " + std::to_string(thunkMap.size()) + ", potential = " + std::to_string(maxPotentialThunks) + ", stubs = " + std::to_string(in.stubs->getSize()) + ", isecVA = " + utohexstr(isecVA) + ", threshold = " + utohexstr(stubsInRangeVA) + ", isecEnd = " + utohexstr(isecEnd) + ", tail = " + utohexstr(isecEnd - isecVA) + ", slop = " + utohexstr(forwardBranchRange - (isecEnd - isecVA))); return stubsInRangeVA; } void ConcatOutputSection::finalizeOne(ConcatInputSection *isec) { size = alignToPowerOf2(size, isec->align); fileSize = alignToPowerOf2(fileSize, isec->align); isec->outSecOff = size; isec->isFinal = true; size += isec->getSize(); fileSize += isec->getFileSize(); } void ConcatOutputSection::finalizeContents() { for (ConcatInputSection *isec : inputs) finalizeOne(isec); } void TextOutputSection::finalize() { if (!needsThunks()) { for (ConcatInputSection *isec : inputs) finalizeOne(isec); return; } uint64_t forwardBranchRange = target->forwardBranchRange; uint64_t backwardBranchRange = target->backwardBranchRange; uint64_t stubsInRangeVA = TargetInfo::outOfRangeVA; size_t thunkSize = target->thunkSize; size_t relocCount = 0; size_t callSiteCount = 0; size_t thunkCallCount = 0; size_t thunkCount = 0; // Walk all sections in order. Finalize all sections that are less than // forwardBranchRange in front of it. // isecVA is the address of the current section. // addr + size is the start address of the first non-finalized section. // inputs[finalIdx] is for finalization (address-assignment) size_t finalIdx = 0; // Kick-off by ensuring that the first input section has an address for (size_t callIdx = 0, endIdx = inputs.size(); callIdx < endIdx; ++callIdx) { if (finalIdx == callIdx) finalizeOne(inputs[finalIdx++]); ConcatInputSection *isec = inputs[callIdx]; assert(isec->isFinal); uint64_t isecVA = isec->getVA(); // Assign addresses up-to the forward branch-range limit. // Every call instruction needs a small number of bytes (on Arm64: 4), // and each inserted thunk needs a slightly larger number of bytes // (on Arm64: 12). If a section starts with a branch instruction and // contains several branch instructions in succession, then the distance // from the current position to the position where the thunks are inserted // grows. So leave room for a bunch of thunks. unsigned slop = 256 * thunkSize; while (finalIdx < endIdx) { uint64_t expectedNewSize = alignToPowerOf2(addr + size, inputs[finalIdx]->align) + inputs[finalIdx]->getSize(); if (expectedNewSize >= isecVA + forwardBranchRange - slop) break; finalizeOne(inputs[finalIdx++]); } if (!isec->hasCallSites) continue; if (finalIdx == endIdx && stubsInRangeVA == TargetInfo::outOfRangeVA) { // When we have finalized all input sections, __stubs (destined // to follow __text) comes within range of forward branches and // we can estimate the threshold address after which we can // reach any stub with a forward branch. Note that although it // sits in the middle of a loop, this code executes only once. // It is in the loop because we need to call it at the proper // time: the earliest call site from which the end of __text // (and start of __stubs) comes within range of a forward branch. stubsInRangeVA = estimateStubsInRangeVA(callIdx); } // Process relocs by ascending address, i.e., ascending offset within isec std::vector &relocs = isec->relocs; // FIXME: This property does not hold for object files produced by ld64's // `-r` mode. assert(is_sorted(relocs, [](Reloc &a, Reloc &b) { return a.offset > b.offset; })); for (Reloc &r : reverse(relocs)) { ++relocCount; if (!target->hasAttr(r.type, RelocAttrBits::BRANCH)) continue; ++callSiteCount; // Calculate branch reachability boundaries uint64_t callVA = isecVA + r.offset; uint64_t lowVA = backwardBranchRange < callVA ? callVA - backwardBranchRange : 0; uint64_t highVA = callVA + forwardBranchRange; // Calculate our call referent address auto *funcSym = r.referent.get(); ThunkInfo &thunkInfo = thunkMap[funcSym]; // The referent is not reachable, so we need to use a thunk ... if (funcSym->isInStubs() && callVA >= stubsInRangeVA) { assert(callVA != TargetInfo::outOfRangeVA); // ... Oh, wait! We are close enough to the end that __stubs // are now within range of a simple forward branch. continue; } uint64_t funcVA = funcSym->resolveBranchVA(); ++thunkInfo.callSitesUsed; if (lowVA <= funcVA && funcVA <= highVA) { // The referent is reachable with a simple call instruction. continue; } ++thunkInfo.thunkCallCount; ++thunkCallCount; // If an existing thunk is reachable, use it ... if (thunkInfo.sym) { uint64_t thunkVA = thunkInfo.isec->getVA(); if (lowVA <= thunkVA && thunkVA <= highVA) { r.referent = thunkInfo.sym; continue; } } // ... otherwise, create a new thunk. if (addr + size > highVA) { // There were too many consecutive branch instructions for `slop` // above. If you hit this: For the current algorithm, just bumping up // slop above and trying again is probably simplest. (See also PR51578 // comment 5). fatal(Twine(__FUNCTION__) + ": FIXME: thunk range overrun"); } thunkInfo.isec = makeSyntheticInputSection(isec->getSegName(), isec->getName()); thunkInfo.isec->parent = this; // This code runs after dead code removal. Need to set the `live` bit // on the thunk isec so that asserts that check that only live sections // get written are happy. thunkInfo.isec->live = true; StringRef thunkName = saver().save(funcSym->getName() + ".thunk." + std::to_string(thunkInfo.sequence++)); if (!isa(funcSym) || cast(funcSym)->isExternal()) { r.referent = thunkInfo.sym = symtab->addDefined( thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize, /*isWeakDef=*/false, /*isPrivateExtern=*/true, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false); } else { r.referent = thunkInfo.sym = make( thunkName, /*file=*/nullptr, thunkInfo.isec, /*value=*/0, thunkSize, /*isWeakDef=*/false, /*isExternal=*/false, /*isPrivateExtern=*/true, /*includeInSymtab=*/true, /*isReferencedDynamically=*/false, /*noDeadStrip=*/false, /*isWeakDefCanBeHidden=*/false); } thunkInfo.sym->used = true; target->populateThunk(thunkInfo.isec, funcSym); finalizeOne(thunkInfo.isec); thunks.push_back(thunkInfo.isec); ++thunkCount; } } log("thunks for " + parent->name + "," + name + ": funcs = " + std::to_string(thunkMap.size()) + ", relocs = " + std::to_string(relocCount) + ", all calls = " + std::to_string(callSiteCount) + ", thunk calls = " + std::to_string(thunkCallCount) + ", thunks = " + std::to_string(thunkCount)); } void ConcatOutputSection::writeTo(uint8_t *buf) const { for (ConcatInputSection *isec : inputs) isec->writeTo(buf + isec->outSecOff); } void TextOutputSection::writeTo(uint8_t *buf) const { // Merge input sections from thunk & ordinary vectors size_t i = 0, ie = inputs.size(); size_t t = 0, te = thunks.size(); while (i < ie || t < te) { while (i < ie && (t == te || inputs[i]->empty() || inputs[i]->outSecOff < thunks[t]->outSecOff)) { inputs[i]->writeTo(buf + inputs[i]->outSecOff); ++i; } while (t < te && (i == ie || thunks[t]->outSecOff < inputs[i]->outSecOff)) { thunks[t]->writeTo(buf + thunks[t]->outSecOff); ++t; } } } void ConcatOutputSection::finalizeFlags(InputSection *input) { switch (sectionType(input->getFlags())) { default /*type-unspec'ed*/: // FIXME: Add additional logic here when supporting emitting obj files. break; case S_4BYTE_LITERALS: case S_8BYTE_LITERALS: case S_16BYTE_LITERALS: case S_CSTRING_LITERALS: case S_ZEROFILL: case S_LAZY_SYMBOL_POINTERS: case S_MOD_TERM_FUNC_POINTERS: case S_THREAD_LOCAL_REGULAR: case S_THREAD_LOCAL_ZEROFILL: case S_THREAD_LOCAL_VARIABLES: case S_THREAD_LOCAL_INIT_FUNCTION_POINTERS: case S_THREAD_LOCAL_VARIABLE_POINTERS: case S_NON_LAZY_SYMBOL_POINTERS: case S_SYMBOL_STUBS: flags |= input->getFlags(); break; } } ConcatOutputSection * ConcatOutputSection::getOrCreateForInput(const InputSection *isec) { NamePair names = maybeRenameSection({isec->getSegName(), isec->getName()}); ConcatOutputSection *&osec = concatOutputSections[names]; if (!osec) { if (isec->getSegName() == segment_names::text && isec->getName() != section_names::gccExceptTab && isec->getName() != section_names::ehFrame) osec = make(names.second); else osec = make(names.second); } return osec; } NamePair macho::maybeRenameSection(NamePair key) { auto newNames = config->sectionRenameMap.find(key); if (newNames != config->sectionRenameMap.end()) return newNames->second; return key; }