//===-- Memory.cpp --------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "lldb/Target/Memory.h" #include "lldb/Target/Process.h" #include "lldb/Utility/DataBufferHeap.h" #include "lldb/Utility/LLDBLog.h" #include "lldb/Utility/Log.h" #include "lldb/Utility/RangeMap.h" #include "lldb/Utility/State.h" #include #include using namespace lldb; using namespace lldb_private; // MemoryCache constructor MemoryCache::MemoryCache(Process &process) : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), m_process(process), m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} // Destructor MemoryCache::~MemoryCache() = default; void MemoryCache::Clear(bool clear_invalid_ranges) { std::lock_guard guard(m_mutex); m_L1_cache.clear(); m_L2_cache.clear(); if (clear_invalid_ranges) m_invalid_ranges.Clear(); m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); } void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, size_t src_len) { AddL1CacheData( addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); } void MemoryCache::AddL1CacheData(lldb::addr_t addr, const DataBufferSP &data_buffer_sp) { std::lock_guard guard(m_mutex); m_L1_cache[addr] = data_buffer_sp; } void MemoryCache::Flush(addr_t addr, size_t size) { if (size == 0) return; std::lock_guard guard(m_mutex); // Erase any blocks from the L1 cache that intersect with the flush range if (!m_L1_cache.empty()) { AddrRange flush_range(addr, size); BlockMap::iterator pos = m_L1_cache.upper_bound(addr); if (pos != m_L1_cache.begin()) { --pos; } while (pos != m_L1_cache.end()) { AddrRange chunk_range(pos->first, pos->second->GetByteSize()); if (!chunk_range.DoesIntersect(flush_range)) break; pos = m_L1_cache.erase(pos); } } if (!m_L2_cache.empty()) { const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; const addr_t end_addr = (addr + size - 1); const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); const addr_t last_cache_line_addr = end_addr - (end_addr % cache_line_byte_size); // Watch for overflow where size will cause us to go off the end of the // 64 bit address space uint32_t num_cache_lines; if (last_cache_line_addr >= first_cache_line_addr) num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / cache_line_byte_size) + 1; else num_cache_lines = (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; uint32_t cache_idx = 0; for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; curr_addr += cache_line_byte_size, ++cache_idx) { BlockMap::iterator pos = m_L2_cache.find(curr_addr); if (pos != m_L2_cache.end()) m_L2_cache.erase(pos); } } } void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, lldb::addr_t byte_size) { if (byte_size > 0) { std::lock_guard guard(m_mutex); InvalidRanges::Entry range(base_addr, byte_size); m_invalid_ranges.Append(range); m_invalid_ranges.Sort(); } } bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, lldb::addr_t byte_size) { if (byte_size > 0) { std::lock_guard guard(m_mutex); const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); if (idx != UINT32_MAX) { const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx); if (entry->GetRangeBase() == base_addr && entry->GetByteSize() == byte_size) return m_invalid_ranges.RemoveEntryAtIndex(idx); } } return false; } lldb::DataBufferSP MemoryCache::GetL2CacheLine(lldb::addr_t line_base_addr, Status &error) { // This function assumes that the address given is aligned correctly. assert((line_base_addr % m_L2_cache_line_byte_size) == 0); std::lock_guard guard(m_mutex); auto pos = m_L2_cache.find(line_base_addr); if (pos != m_L2_cache.end()) return pos->second; auto data_buffer_heap_sp = std::make_shared(m_L2_cache_line_byte_size, 0); size_t process_bytes_read = m_process.ReadMemoryFromInferior( line_base_addr, data_buffer_heap_sp->GetBytes(), data_buffer_heap_sp->GetByteSize(), error); // If we failed a read, not much we can do. if (process_bytes_read == 0) return lldb::DataBufferSP(); // If we didn't get a complete read, we can still cache what we did get. if (process_bytes_read < m_L2_cache_line_byte_size) data_buffer_heap_sp->SetByteSize(process_bytes_read); m_L2_cache[line_base_addr] = data_buffer_heap_sp; return data_buffer_heap_sp; } size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, Status &error) { if (!dst || dst_len == 0) return 0; std::lock_guard guard(m_mutex); // FIXME: We should do a more thorough check to make sure that we're not // overlapping with any invalid ranges (e.g. Read 0x100 - 0x200 but there's an // invalid range 0x180 - 0x280). `FindEntryThatContains` has an implementation // that takes a range, but it only checks to see if the argument is contained // by an existing invalid range. It cannot check if the argument contains // invalid ranges and cannot check for overlaps. if (m_invalid_ranges.FindEntryThatContains(addr)) { error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, addr); return 0; } // Check the L1 cache for a range that contains the entire memory read. // L1 cache contains chunks of memory that are not required to be the size of // an L2 cache line. We avoid trying to do partial reads from the L1 cache to // simplify the implementation. if (!m_L1_cache.empty()) { AddrRange read_range(addr, dst_len); BlockMap::iterator pos = m_L1_cache.upper_bound(addr); if (pos != m_L1_cache.begin()) { --pos; } AddrRange chunk_range(pos->first, pos->second->GetByteSize()); if (chunk_range.Contains(read_range)) { memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()), dst_len); return dst_len; } } // If the size of the read is greater than the size of an L2 cache line, we'll // just read from the inferior. If that read is successful, we'll cache what // we read in the L1 cache for future use. if (dst_len > m_L2_cache_line_byte_size) { size_t bytes_read = m_process.ReadMemoryFromInferior(addr, dst, dst_len, error); if (bytes_read > 0) AddL1CacheData(addr, dst, bytes_read); return bytes_read; } // If the size of the read fits inside one L2 cache line, we'll try reading // from the L2 cache. Note that if the range of memory we're reading sits // between two contiguous cache lines, we'll touch two cache lines instead of // just one. // We're going to have all of our loads and reads be cache line aligned. addr_t cache_line_offset = addr % m_L2_cache_line_byte_size; addr_t cache_line_base_addr = addr - cache_line_offset; DataBufferSP first_cache_line = GetL2CacheLine(cache_line_base_addr, error); // If we get nothing, then the read to the inferior likely failed. Nothing to // do here. if (!first_cache_line) return 0; // If the cache line was not filled out completely and the offset is greater // than what we have available, we can't do anything further here. if (cache_line_offset >= first_cache_line->GetByteSize()) return 0; uint8_t *dst_buf = (uint8_t *)dst; size_t bytes_left = dst_len; size_t read_size = first_cache_line->GetByteSize() - cache_line_offset; if (read_size > bytes_left) read_size = bytes_left; memcpy(dst_buf + dst_len - bytes_left, first_cache_line->GetBytes() + cache_line_offset, read_size); bytes_left -= read_size; // If the cache line was not filled out completely and we still have data to // read, we can't do anything further. if (first_cache_line->GetByteSize() < m_L2_cache_line_byte_size && bytes_left > 0) return dst_len - bytes_left; // We'll hit this scenario if our read straddles two cache lines. if (bytes_left > 0) { cache_line_base_addr += m_L2_cache_line_byte_size; // FIXME: Until we are able to more thoroughly check for invalid ranges, we // will have to check the second line to see if it is in an invalid range as // well. See the check near the beginning of the function for more details. if (m_invalid_ranges.FindEntryThatContains(cache_line_base_addr)) { error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, cache_line_base_addr); return dst_len - bytes_left; } DataBufferSP second_cache_line = GetL2CacheLine(cache_line_base_addr, error); if (!second_cache_line) return dst_len - bytes_left; read_size = bytes_left; if (read_size > second_cache_line->GetByteSize()) read_size = second_cache_line->GetByteSize(); memcpy(dst_buf + dst_len - bytes_left, second_cache_line->GetBytes(), read_size); bytes_left -= read_size; return dst_len - bytes_left; } return dst_len; } AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, uint32_t permissions, uint32_t chunk_size) : m_range(addr, byte_size), m_permissions(permissions), m_chunk_size(chunk_size) { // The entire address range is free to start with. m_free_blocks.Append(m_range); assert(byte_size > chunk_size); } AllocatedBlock::~AllocatedBlock() = default; lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { // We must return something valid for zero bytes. if (size == 0) size = 1; Log *log = GetLog(LLDBLog::Process); const size_t free_count = m_free_blocks.GetSize(); for (size_t i=0; i= size) { // We found a free block that is big enough for our data. Figure out how // many chunks we will need and calculate the resulting block size we // will reserve. addr_t addr = free_block.GetRangeBase(); size_t num_chunks = CalculateChunksNeededForSize(size); lldb::addr_t block_size = num_chunks * m_chunk_size; lldb::addr_t bytes_left = range_size - block_size; if (bytes_left == 0) { // The newly allocated block will take all of the bytes in this // available block, so we can just add it to the allocated ranges and // remove the range from the free ranges. m_reserved_blocks.Insert(free_block, false); m_free_blocks.RemoveEntryAtIndex(i); } else { // Make the new allocated range and add it to the allocated ranges. Range reserved_block(free_block); reserved_block.SetByteSize(block_size); // Insert the reserved range and don't combine it with other blocks in // the reserved blocks list. m_reserved_blocks.Insert(reserved_block, false); // Adjust the free range in place since we won't change the sorted // ordering of the m_free_blocks list. free_block.SetRangeBase(reserved_block.GetRangeEnd()); free_block.SetByteSize(bytes_left); } LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr); return addr; } } LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, LLDB_INVALID_ADDRESS); return LLDB_INVALID_ADDRESS; } bool AllocatedBlock::FreeBlock(addr_t addr) { bool success = false; auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr); if (entry_idx != UINT32_MAX) { m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true); m_reserved_blocks.RemoveEntryAtIndex(entry_idx); success = true; } Log *log = GetLog(LLDBLog::Process); LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success); return success; } AllocatedMemoryCache::AllocatedMemoryCache(Process &process) : m_process(process), m_mutex(), m_memory_map() {} AllocatedMemoryCache::~AllocatedMemoryCache() = default; void AllocatedMemoryCache::Clear(bool deallocate_memory) { std::lock_guard guard(m_mutex); if (m_process.IsAlive() && deallocate_memory) { PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); for (pos = m_memory_map.begin(); pos != end; ++pos) m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); } m_memory_map.clear(); } AllocatedMemoryCache::AllocatedBlockSP AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, uint32_t chunk_size, Status &error) { AllocatedBlockSP block_sp; const size_t page_size = 4096; const size_t num_pages = (byte_size + page_size - 1) / page_size; const size_t page_byte_size = num_pages * page_size; addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); Log *log = GetLog(LLDBLog::Process); if (log) { LLDB_LOGF(log, "Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), (uint64_t)addr); } if (addr != LLDB_INVALID_ADDRESS) { block_sp = std::make_shared(addr, page_byte_size, permissions, chunk_size); m_memory_map.insert(std::make_pair(permissions, block_sp)); } return block_sp; } lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, uint32_t permissions, Status &error) { std::lock_guard guard(m_mutex); addr_t addr = LLDB_INVALID_ADDRESS; std::pair range = m_memory_map.equal_range(permissions); for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; ++pos) { addr = (*pos).second->ReserveBlock(byte_size); if (addr != LLDB_INVALID_ADDRESS) break; } if (addr == LLDB_INVALID_ADDRESS) { AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error)); if (block_sp) addr = block_sp->ReserveBlock(byte_size); } Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, (uint32_t)byte_size, GetPermissionsAsCString(permissions), (uint64_t)addr); return addr; } bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { std::lock_guard guard(m_mutex); PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); bool success = false; for (pos = m_memory_map.begin(); pos != end; ++pos) { if (pos->second->Contains(addr)) { success = pos->second->FreeBlock(addr); break; } } Log *log = GetLog(LLDBLog::Process); LLDB_LOGF(log, "AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 ") => %i", (uint64_t)addr, success); return success; }