//===- LazyValueInfo.h - Value constraint analysis --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the interface for lazy computation of value constraint // information. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LAZYVALUEINFO_H #define LLVM_ANALYSIS_LAZYVALUEINFO_H #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" namespace llvm { class AssumptionCache; class Constant; class ConstantRange; class DataLayout; class DominatorTree; class Instruction; class TargetLibraryInfo; class Value; /// This pass computes, caches, and vends lazy value constraint information. class LazyValueInfo { friend class LazyValueInfoWrapperPass; AssumptionCache *AC = nullptr; const DataLayout *DL = nullptr; class TargetLibraryInfo *TLI = nullptr; void *PImpl = nullptr; LazyValueInfo(const LazyValueInfo&) = delete; void operator=(const LazyValueInfo&) = delete; public: ~LazyValueInfo(); LazyValueInfo() = default; LazyValueInfo(AssumptionCache *AC_, const DataLayout *DL_, TargetLibraryInfo *TLI_) : AC(AC_), DL(DL_), TLI(TLI_) {} LazyValueInfo(LazyValueInfo &&Arg) : AC(Arg.AC), DL(Arg.DL), TLI(Arg.TLI), PImpl(Arg.PImpl) { Arg.PImpl = nullptr; } LazyValueInfo &operator=(LazyValueInfo &&Arg) { releaseMemory(); AC = Arg.AC; DL = Arg.DL; TLI = Arg.TLI; PImpl = Arg.PImpl; Arg.PImpl = nullptr; return *this; } /// This is used to return true/false/dunno results. enum Tristate { Unknown = -1, False = 0, True = 1 }; // Public query interface. /// Determine whether the specified value comparison with a constant is known /// to be true or false on the specified CFG edge. /// Pred is a CmpInst predicate. Tristate getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI = nullptr); /// Determine whether the specified value comparison with a constant is known /// to be true or false at the specified instruction. /// \p Pred is a CmpInst predicate. If \p UseBlockValue is true, the block /// value is also taken into account. Tristate getPredicateAt(unsigned Pred, Value *V, Constant *C, Instruction *CxtI, bool UseBlockValue); /// Determine whether the specified value comparison is known to be true /// or false at the specified instruction. While this takes two Value's, /// it still requires that one of them is a constant. /// \p Pred is a CmpInst predicate. /// If \p UseBlockValue is true, the block value is also taken into account. Tristate getPredicateAt(unsigned Pred, Value *LHS, Value *RHS, Instruction *CxtI, bool UseBlockValue); /// Determine whether the specified value is known to be a constant at the /// specified instruction. Return null if not. Constant *getConstant(Value *V, Instruction *CxtI); /// Return the ConstantRange constraint that is known to hold for the /// specified value at the specified instruction. This may only be called /// on integer-typed Values. ConstantRange getConstantRange(Value *V, Instruction *CxtI, bool UndefAllowed = true); /// Return the ConstantRange constraint that is known to hold for the value /// at a specific use-site. ConstantRange getConstantRangeAtUse(const Use &U, bool UndefAllowed = true); /// Determine whether the specified value is known to be a /// constant on the specified edge. Return null if not. Constant *getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI = nullptr); /// Return the ConstantRage constraint that is known to hold for the /// specified value on the specified edge. This may be only be called /// on integer-typed Values. ConstantRange getConstantRangeOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI = nullptr); /// Inform the analysis cache that we have threaded an edge from /// PredBB to OldSucc to be from PredBB to NewSucc instead. void threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc); /// Remove information related to this value from the cache. void forgetValue(Value *V); /// Inform the analysis cache that we have erased a block. void eraseBlock(BasicBlock *BB); /// Complete flush all previously computed values void clear(const Module *M); /// Print the \LazyValueInfo Analysis. /// We pass in the DTree that is required for identifying which basic blocks /// we can solve/print for, in the LVIPrinter. void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS); // For old PM pass. Delete once LazyValueInfoWrapperPass is gone. void releaseMemory(); /// Handle invalidation events in the new pass manager. bool invalidate(Function &F, const PreservedAnalyses &PA, FunctionAnalysisManager::Invalidator &Inv); }; /// Analysis to compute lazy value information. class LazyValueAnalysis : public AnalysisInfoMixin { public: typedef LazyValueInfo Result; Result run(Function &F, FunctionAnalysisManager &FAM); private: static AnalysisKey Key; friend struct AnalysisInfoMixin; }; /// Wrapper around LazyValueInfo. class LazyValueInfoWrapperPass : public FunctionPass { LazyValueInfoWrapperPass(const LazyValueInfoWrapperPass&) = delete; void operator=(const LazyValueInfoWrapperPass&) = delete; public: static char ID; LazyValueInfoWrapperPass(); ~LazyValueInfoWrapperPass() override { assert(!Info.PImpl && "releaseMemory not called"); } LazyValueInfo &getLVI(); void getAnalysisUsage(AnalysisUsage &AU) const override; void releaseMemory() override; bool runOnFunction(Function &F) override; private: LazyValueInfo Info; }; } // end namespace llvm #endif