//===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Analysis/CGSCCPassManager.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/PriorityWorklist.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/LazyCallGraph.h" #include "llvm/IR/Constant.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/PassManagerImpl.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/raw_ostream.h" #include #include #include #define DEBUG_TYPE "cgscc" using namespace llvm; // Explicit template instantiations and specialization definitions for core // template typedefs. namespace llvm { static cl::opt AbortOnMaxDevirtIterationsReached( "abort-on-max-devirt-iterations-reached", cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " "pass is reached")); AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key; // Explicit instantiations for the core proxy templates. template class AllAnalysesOn; template class AnalysisManager; template class PassManager; template class InnerAnalysisManagerProxy; template class OuterAnalysisManagerProxy; template class OuterAnalysisManagerProxy; /// Explicitly specialize the pass manager run method to handle call graph /// updates. template <> PreservedAnalyses PassManager::run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM, LazyCallGraph &G, CGSCCUpdateResult &UR) { // Request PassInstrumentation from analysis manager, will use it to run // instrumenting callbacks for the passes later. PassInstrumentation PI = AM.getResult(InitialC, G); PreservedAnalyses PA = PreservedAnalyses::all(); // The SCC may be refined while we are running passes over it, so set up // a pointer that we can update. LazyCallGraph::SCC *C = &InitialC; // Get Function analysis manager from its proxy. FunctionAnalysisManager &FAM = AM.getCachedResult(*C)->getManager(); for (auto &Pass : Passes) { // Check the PassInstrumentation's BeforePass callbacks before running the // pass, skip its execution completely if asked to (callback returns false). if (!PI.runBeforePass(*Pass, *C)) continue; PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); // Update the SCC if necessary. C = UR.UpdatedC ? UR.UpdatedC : C; if (UR.UpdatedC) { // If C is updated, also create a proxy and update FAM inside the result. auto *ResultFAMCP = &AM.getResult(*C, G); ResultFAMCP->updateFAM(FAM); } // Intersect the final preserved analyses to compute the aggregate // preserved set for this pass manager. PA.intersect(PassPA); // If the CGSCC pass wasn't able to provide a valid updated SCC, the // current SCC may simply need to be skipped if invalid. if (UR.InvalidatedSCCs.count(C)) { PI.runAfterPassInvalidated(*Pass, PassPA); LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); break; } // Check that we didn't miss any update scenario. assert(C->begin() != C->end() && "Cannot have an empty SCC!"); // Update the analysis manager as each pass runs and potentially // invalidates analyses. AM.invalidate(*C, PassPA); PI.runAfterPass(*Pass, *C, PassPA); } // Before we mark all of *this* SCC's analyses as preserved below, intersect // this with the cross-SCC preserved analysis set. This is used to allow // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation // for them. UR.CrossSCCPA.intersect(PA); // Invalidation was handled after each pass in the above loop for the current // SCC. Therefore, the remaining analysis results in the AnalysisManager are // preserved. We mark this with a set so that we don't need to inspect each // one individually. PA.preserveSet>(); return PA; } PreservedAnalyses ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) { // Setup the CGSCC analysis manager from its proxy. CGSCCAnalysisManager &CGAM = AM.getResult(M).getManager(); // Get the call graph for this module. LazyCallGraph &CG = AM.getResult(M); // Get Function analysis manager from its proxy. FunctionAnalysisManager &FAM = AM.getCachedResult(M)->getManager(); // We keep worklists to allow us to push more work onto the pass manager as // the passes are run. SmallPriorityWorklist RCWorklist; SmallPriorityWorklist CWorklist; // Keep sets for invalidated SCCs and RefSCCs that should be skipped when // iterating off the worklists. SmallPtrSet InvalidRefSCCSet; SmallPtrSet InvalidSCCSet; SmallDenseSet, 4> InlinedInternalEdges; CGSCCUpdateResult UR = { RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet, nullptr, PreservedAnalyses::all(), InlinedInternalEdges, {}}; // Request PassInstrumentation from analysis manager, will use it to run // instrumenting callbacks for the passes later. PassInstrumentation PI = AM.getResult(M); PreservedAnalyses PA = PreservedAnalyses::all(); CG.buildRefSCCs(); for (LazyCallGraph::RefSCC &RC : llvm::make_early_inc_range(CG.postorder_ref_sccs())) { assert(RCWorklist.empty() && "Should always start with an empty RefSCC worklist"); // The postorder_ref_sccs range we are walking is lazily constructed, so // we only push the first one onto the worklist. The worklist allows us // to capture *new* RefSCCs created during transformations. // // We really want to form RefSCCs lazily because that makes them cheaper // to update as the program is simplified and allows us to have greater // cache locality as forming a RefSCC touches all the parts of all the // functions within that RefSCC. // // We also eagerly increment the iterator to the next position because // the CGSCC passes below may delete the current RefSCC. RCWorklist.insert(&RC); do { LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val(); if (InvalidRefSCCSet.count(RC)) { LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n"); continue; } assert(CWorklist.empty() && "Should always start with an empty SCC worklist"); LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC << "\n"); // The top of the worklist may *also* be the same SCC we just ran over // (and invalidated for). Keep track of that last SCC we processed due // to SCC update to avoid redundant processing when an SCC is both just // updated itself and at the top of the worklist. LazyCallGraph::SCC *LastUpdatedC = nullptr; // Push the initial SCCs in reverse post-order as we'll pop off the // back and so see this in post-order. for (LazyCallGraph::SCC &C : llvm::reverse(*RC)) CWorklist.insert(&C); do { LazyCallGraph::SCC *C = CWorklist.pop_back_val(); // Due to call graph mutations, we may have invalid SCCs or SCCs from // other RefSCCs in the worklist. The invalid ones are dead and the // other RefSCCs should be queued above, so we just need to skip both // scenarios here. if (InvalidSCCSet.count(C)) { LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n"); continue; } if (LastUpdatedC == C) { LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n"); continue; } // We used to also check if the current SCC is part of the current // RefSCC and bail if it wasn't, since it should be in RCWorklist. // However, this can cause compile time explosions in some cases on // modules with a huge RefSCC. If a non-trivial amount of SCCs in the // huge RefSCC can become their own child RefSCC, we create one child // RefSCC, bail on the current RefSCC, visit the child RefSCC, revisit // the huge RefSCC, and repeat. By visiting all SCCs in the original // RefSCC we create all the child RefSCCs in one pass of the RefSCC, // rather one pass of the RefSCC creating one child RefSCC at a time. // Ensure we can proxy analysis updates from the CGSCC analysis manager // into the Function analysis manager by getting a proxy here. // This also needs to update the FunctionAnalysisManager, as this may be // the first time we see this SCC. CGAM.getResult(*C, CG).updateFAM( FAM); // Each time we visit a new SCC pulled off the worklist, // a transformation of a child SCC may have also modified this parent // and invalidated analyses. So we invalidate using the update record's // cross-SCC preserved set. This preserved set is intersected by any // CGSCC pass that handles invalidation (primarily pass managers) prior // to marking its SCC as preserved. That lets us track everything that // might need invalidation across SCCs without excessive invalidations // on a single SCC. // // This essentially allows SCC passes to freely invalidate analyses // of any ancestor SCC. If this becomes detrimental to successfully // caching analyses, we could force each SCC pass to manually // invalidate the analyses for any SCCs other than themselves which // are mutated. However, that seems to lose the robustness of the // pass-manager driven invalidation scheme. CGAM.invalidate(*C, UR.CrossSCCPA); do { // Check that we didn't miss any update scenario. assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!"); assert(C->begin() != C->end() && "Cannot have an empty SCC!"); LastUpdatedC = UR.UpdatedC; UR.UpdatedC = nullptr; // Check the PassInstrumentation's BeforePass callbacks before // running the pass, skip its execution completely if asked to // (callback returns false). if (!PI.runBeforePass(*Pass, *C)) continue; PreservedAnalyses PassPA = Pass->run(*C, CGAM, CG, UR); // Update the SCC and RefSCC if necessary. C = UR.UpdatedC ? UR.UpdatedC : C; if (UR.UpdatedC) { // If we're updating the SCC, also update the FAM inside the proxy's // result. CGAM.getResult(*C, CG).updateFAM( FAM); } // Intersect with the cross-SCC preserved set to capture any // cross-SCC invalidation. UR.CrossSCCPA.intersect(PassPA); // Intersect the preserved set so that invalidation of module // analyses will eventually occur when the module pass completes. PA.intersect(PassPA); // If the CGSCC pass wasn't able to provide a valid updated SCC, // the current SCC may simply need to be skipped if invalid. if (UR.InvalidatedSCCs.count(C)) { PI.runAfterPassInvalidated(*Pass, PassPA); LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); break; } // Check that we didn't miss any update scenario. assert(C->begin() != C->end() && "Cannot have an empty SCC!"); // We handle invalidating the CGSCC analysis manager's information // for the (potentially updated) SCC here. Note that any other SCCs // whose structure has changed should have been invalidated by // whatever was updating the call graph. This SCC gets invalidated // late as it contains the nodes that were actively being // processed. CGAM.invalidate(*C, PassPA); PI.runAfterPass(*Pass, *C, PassPA); // The pass may have restructured the call graph and refined the // current SCC and/or RefSCC. We need to update our current SCC and // RefSCC pointers to follow these. Also, when the current SCC is // refined, re-run the SCC pass over the newly refined SCC in order // to observe the most precise SCC model available. This inherently // cannot cycle excessively as it only happens when we split SCCs // apart, at most converging on a DAG of single nodes. // FIXME: If we ever start having RefSCC passes, we'll want to // iterate there too. if (UR.UpdatedC) LLVM_DEBUG(dbgs() << "Re-running SCC passes after a refinement of the " "current SCC: " << *UR.UpdatedC << "\n"); // Note that both `C` and `RC` may at this point refer to deleted, // invalid SCC and RefSCCs respectively. But we will short circuit // the processing when we check them in the loop above. } while (UR.UpdatedC); } while (!CWorklist.empty()); // We only need to keep internal inlined edge information within // a RefSCC, clear it to save on space and let the next time we visit // any of these functions have a fresh start. InlinedInternalEdges.clear(); } while (!RCWorklist.empty()); } // By definition we preserve the call garph, all SCC analyses, and the // analysis proxies by handling them above and in any nested pass managers. PA.preserveSet>(); PA.preserve(); PA.preserve(); PA.preserve(); return PA; } PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR) { PreservedAnalyses PA = PreservedAnalyses::all(); PassInstrumentation PI = AM.getResult(InitialC, CG); // The SCC may be refined while we are running passes over it, so set up // a pointer that we can update. LazyCallGraph::SCC *C = &InitialC; // Struct to track the counts of direct and indirect calls in each function // of the SCC. struct CallCount { int Direct; int Indirect; }; // Put value handles on all of the indirect calls and return the number of // direct calls for each function in the SCC. auto ScanSCC = [](LazyCallGraph::SCC &C, SmallMapVector &CallHandles) { assert(CallHandles.empty() && "Must start with a clear set of handles."); SmallDenseMap CallCounts; CallCount CountLocal = {0, 0}; for (LazyCallGraph::Node &N : C) { CallCount &Count = CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal)) .first->second; for (Instruction &I : instructions(N.getFunction())) if (auto *CB = dyn_cast(&I)) { if (CB->getCalledFunction()) { ++Count.Direct; } else { ++Count.Indirect; CallHandles.insert({CB, WeakTrackingVH(CB)}); } } } return CallCounts; }; UR.IndirectVHs.clear(); // Populate the initial call handles and get the initial call counts. auto CallCounts = ScanSCC(*C, UR.IndirectVHs); for (int Iteration = 0;; ++Iteration) { if (!PI.runBeforePass(*Pass, *C)) continue; PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR); PA.intersect(PassPA); // If the CGSCC pass wasn't able to provide a valid updated SCC, the // current SCC may simply need to be skipped if invalid. if (UR.InvalidatedSCCs.count(C)) { PI.runAfterPassInvalidated(*Pass, PassPA); LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); break; } // Update the analysis manager with each run and intersect the total set // of preserved analyses so we're ready to iterate. AM.invalidate(*C, PassPA); PI.runAfterPass(*Pass, *C, PassPA); // If the SCC structure has changed, bail immediately and let the outer // CGSCC layer handle any iteration to reflect the refined structure. if (UR.UpdatedC && UR.UpdatedC != C) break; assert(C->begin() != C->end() && "Cannot have an empty SCC!"); // Check whether any of the handles were devirtualized. bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool { if (P.second) { if (CallBase *CB = dyn_cast(P.second)) { if (CB->getCalledFunction()) { LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n"); return true; } } } return false; }); // Rescan to build up a new set of handles and count how many direct // calls remain. If we decide to iterate, this also sets up the input to // the next iteration. UR.IndirectVHs.clear(); auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs); // If we haven't found an explicit devirtualization already see if we // have decreased the number of indirect calls and increased the number // of direct calls for any function in the SCC. This can be fooled by all // manner of transformations such as DCE and other things, but seems to // work well in practice. if (!Devirt) // Iterate over the keys in NewCallCounts, if Function also exists in // CallCounts, make the check below. for (auto &Pair : NewCallCounts) { auto &CallCountNew = Pair.second; auto CountIt = CallCounts.find(Pair.first); if (CountIt != CallCounts.end()) { const auto &CallCountOld = CountIt->second; if (CallCountOld.Indirect > CallCountNew.Indirect && CallCountOld.Direct < CallCountNew.Direct) { Devirt = true; break; } } } if (!Devirt) { break; } // Otherwise, if we've already hit our max, we're done. if (Iteration >= MaxIterations) { if (AbortOnMaxDevirtIterationsReached) report_fatal_error("Max devirtualization iterations reached"); LLVM_DEBUG( dbgs() << "Found another devirtualization after hitting the max " "number of repetitions (" << MaxIterations << ") on SCC: " << *C << "\n"); break; } LLVM_DEBUG( dbgs() << "Repeating an SCC pass after finding a devirtualization in: " << *C << "\n"); // Move over the new call counts in preparation for iterating. CallCounts = std::move(NewCallCounts); } // Note that we don't add any preserved entries here unlike a more normal // "pass manager" because we only handle invalidation *between* iterations, // not after the last iteration. return PA; } PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG, CGSCCUpdateResult &UR) { // Setup the function analysis manager from its proxy. FunctionAnalysisManager &FAM = AM.getResult(C, CG).getManager(); SmallVector Nodes; for (LazyCallGraph::Node &N : C) Nodes.push_back(&N); // The SCC may get split while we are optimizing functions due to deleting // edges. If this happens, the current SCC can shift, so keep track of // a pointer we can overwrite. LazyCallGraph::SCC *CurrentC = &C; LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n"); PreservedAnalyses PA = PreservedAnalyses::all(); for (LazyCallGraph::Node *N : Nodes) { // Skip nodes from other SCCs. These may have been split out during // processing. We'll eventually visit those SCCs and pick up the nodes // there. if (CG.lookupSCC(*N) != CurrentC) continue; Function &F = N->getFunction(); if (NoRerun && FAM.getCachedResult(F)) continue; PassInstrumentation PI = FAM.getResult(F); if (!PI.runBeforePass(*Pass, F)) continue; PreservedAnalyses PassPA = Pass->run(F, FAM); // We know that the function pass couldn't have invalidated any other // function's analyses (that's the contract of a function pass), so // directly handle the function analysis manager's invalidation here. FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA); PI.runAfterPass(*Pass, F, PassPA); // Then intersect the preserved set so that invalidation of module // analyses will eventually occur when the module pass completes. PA.intersect(std::move(PassPA)); // If the call graph hasn't been preserved, update it based on this // function pass. This may also update the current SCC to point to // a smaller, more refined SCC. auto PAC = PA.getChecker(); if (!PAC.preserved() && !PAC.preservedSet>()) { CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N, AM, UR, FAM); assert(CG.lookupSCC(*N) == CurrentC && "Current SCC not updated to the SCC containing the current node!"); } } // By definition we preserve the proxy. And we preserve all analyses on // Functions. This precludes *any* invalidation of function analyses by the // proxy, but that's OK because we've taken care to invalidate analyses in // the function analysis manager incrementally above. PA.preserveSet>(); PA.preserve(); // We've also ensured that we updated the call graph along the way. PA.preserve(); return PA; } bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( Module &M, const PreservedAnalyses &PA, ModuleAnalysisManager::Invalidator &Inv) { // If literally everything is preserved, we're done. if (PA.areAllPreserved()) return false; // This is still a valid proxy. // If this proxy or the call graph is going to be invalidated, we also need // to clear all the keys coming from that analysis. // // We also directly invalidate the FAM's module proxy if necessary, and if // that proxy isn't preserved we can't preserve this proxy either. We rely on // it to handle module -> function analysis invalidation in the face of // structural changes and so if it's unavailable we conservatively clear the // entire SCC layer as well rather than trying to do invalidation ourselves. auto PAC = PA.getChecker(); if (!(PAC.preserved() || PAC.preservedSet>()) || Inv.invalidate(M, PA) || Inv.invalidate(M, PA)) { InnerAM->clear(); // And the proxy itself should be marked as invalid so that we can observe // the new call graph. This isn't strictly necessary because we cheat // above, but is still useful. return true; } // Directly check if the relevant set is preserved so we can short circuit // invalidating SCCs below. bool AreSCCAnalysesPreserved = PA.allAnalysesInSetPreserved>(); // Ok, we have a graph, so we can propagate the invalidation down into it. G->buildRefSCCs(); for (auto &RC : G->postorder_ref_sccs()) for (auto &C : RC) { std::optional InnerPA; // Check to see whether the preserved set needs to be adjusted based on // module-level analysis invalidation triggering deferred invalidation // for this SCC. if (auto *OuterProxy = InnerAM->getCachedResult(C)) for (const auto &OuterInvalidationPair : OuterProxy->getOuterInvalidations()) { AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; const auto &InnerAnalysisIDs = OuterInvalidationPair.second; if (Inv.invalidate(OuterAnalysisID, M, PA)) { if (!InnerPA) InnerPA = PA; for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) InnerPA->abandon(InnerAnalysisID); } } // Check if we needed a custom PA set. If so we'll need to run the inner // invalidation. if (InnerPA) { InnerAM->invalidate(C, *InnerPA); continue; } // Otherwise we only need to do invalidation if the original PA set didn't // preserve all SCC analyses. if (!AreSCCAnalysesPreserved) InnerAM->invalidate(C, PA); } // Return false to indicate that this result is still a valid proxy. return false; } template <> CGSCCAnalysisManagerModuleProxy::Result CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { // Force the Function analysis manager to also be available so that it can // be accessed in an SCC analysis and proxied onward to function passes. // FIXME: It is pretty awkward to just drop the result here and assert that // we can find it again later. (void)AM.getResult(M); return Result(*InnerAM, AM.getResult(M)); } AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; FunctionAnalysisManagerCGSCCProxy::Result FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &CG) { // Note: unconditionally getting checking that the proxy exists may get it at // this point. There are cases when this is being run unnecessarily, but // it is cheap and having the assertion in place is more valuable. auto &MAMProxy = AM.getResult(C, CG); Module &M = *C.begin()->getFunction().getParent(); bool ProxyExists = MAMProxy.cachedResultExists(M); assert(ProxyExists && "The CGSCC pass manager requires that the FAM module proxy is run " "on the module prior to entering the CGSCC walk"); (void)ProxyExists; // We just return an empty result. The caller will use the updateFAM interface // to correctly register the relevant FunctionAnalysisManager based on the // context in which this proxy is run. return Result(); } bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( LazyCallGraph::SCC &C, const PreservedAnalyses &PA, CGSCCAnalysisManager::Invalidator &Inv) { // If literally everything is preserved, we're done. if (PA.areAllPreserved()) return false; // This is still a valid proxy. // All updates to preserve valid results are done below, so we don't need to // invalidate this proxy. // // Note that in order to preserve this proxy, a module pass must ensure that // the FAM has been completely updated to handle the deletion of functions. // Specifically, any FAM-cached results for those functions need to have been // forcibly cleared. When preserved, this proxy will only invalidate results // cached on functions *still in the module* at the end of the module pass. auto PAC = PA.getChecker(); if (!PAC.preserved() && !PAC.preservedSet>()) { for (LazyCallGraph::Node &N : C) FAM->invalidate(N.getFunction(), PA); return false; } // Directly check if the relevant set is preserved. bool AreFunctionAnalysesPreserved = PA.allAnalysesInSetPreserved>(); // Now walk all the functions to see if any inner analysis invalidation is // necessary. for (LazyCallGraph::Node &N : C) { Function &F = N.getFunction(); std::optional FunctionPA; // Check to see whether the preserved set needs to be pruned based on // SCC-level analysis invalidation that triggers deferred invalidation // registered with the outer analysis manager proxy for this function. if (auto *OuterProxy = FAM->getCachedResult(F)) for (const auto &OuterInvalidationPair : OuterProxy->getOuterInvalidations()) { AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; const auto &InnerAnalysisIDs = OuterInvalidationPair.second; if (Inv.invalidate(OuterAnalysisID, C, PA)) { if (!FunctionPA) FunctionPA = PA; for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) FunctionPA->abandon(InnerAnalysisID); } } // Check if we needed a custom PA set, and if so we'll need to run the // inner invalidation. if (FunctionPA) { FAM->invalidate(F, *FunctionPA); continue; } // Otherwise we only need to do invalidation if the original PA set didn't // preserve all function analyses. if (!AreFunctionAnalysesPreserved) FAM->invalidate(F, PA); } // Return false to indicate that this result is still a valid proxy. return false; } } // end namespace llvm /// When a new SCC is created for the graph we first update the /// FunctionAnalysisManager in the Proxy's result. /// As there might be function analysis results cached for the functions now in /// that SCC, two forms of updates are required. /// /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be /// created so that any subsequent invalidation events to the SCC are /// propagated to the function analysis results cached for functions within it. /// /// Second, if any of the functions within the SCC have analysis results with /// outer analysis dependencies, then those dependencies would point to the /// *wrong* SCC's analysis result. We forcibly invalidate the necessary /// function analyses so that they don't retain stale handles. static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, LazyCallGraph &G, CGSCCAnalysisManager &AM, FunctionAnalysisManager &FAM) { AM.getResult(C, G).updateFAM(FAM); // Now walk the functions in this SCC and invalidate any function analysis // results that might have outer dependencies on an SCC analysis. for (LazyCallGraph::Node &N : C) { Function &F = N.getFunction(); auto *OuterProxy = FAM.getCachedResult(F); if (!OuterProxy) // No outer analyses were queried, nothing to do. continue; // Forcibly abandon all the inner analyses with dependencies, but // invalidate nothing else. auto PA = PreservedAnalyses::all(); for (const auto &OuterInvalidationPair : OuterProxy->getOuterInvalidations()) { const auto &InnerAnalysisIDs = OuterInvalidationPair.second; for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) PA.abandon(InnerAnalysisID); } // Now invalidate anything we found. FAM.invalidate(F, PA); } } /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly /// added SCCs. /// /// The range of new SCCs must be in postorder already. The SCC they were split /// out of must be provided as \p C. The current node being mutated and /// triggering updates must be passed as \p N. /// /// This function returns the SCC containing \p N. This will be either \p C if /// no new SCCs have been split out, or it will be the new SCC containing \p N. template static LazyCallGraph::SCC * incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, LazyCallGraph::Node &N, LazyCallGraph::SCC *C, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { using SCC = LazyCallGraph::SCC; if (NewSCCRange.empty()) return C; // Add the current SCC to the worklist as its shape has changed. UR.CWorklist.insert(C); LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"); SCC *OldC = C; // Update the current SCC. Note that if we have new SCCs, this must actually // change the SCC. assert(C != &*NewSCCRange.begin() && "Cannot insert new SCCs without changing current SCC!"); C = &*NewSCCRange.begin(); assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); // If we had a cached FAM proxy originally, we will want to create more of // them for each SCC that was split off. FunctionAnalysisManager *FAM = nullptr; if (auto *FAMProxy = AM.getCachedResult(*OldC)) FAM = &FAMProxy->getManager(); // We need to propagate an invalidation call to all but the newly current SCC // because the outer pass manager won't do that for us after splitting them. // FIXME: We should accept a PreservedAnalysis from the CG updater so that if // there are preserved analysis we can avoid invalidating them here for // split-off SCCs. // We know however that this will preserve any FAM proxy so go ahead and mark // that. auto PA = PreservedAnalyses::allInSet>(); PA.preserve(); AM.invalidate(*OldC, PA); // Ensure the now-current SCC's function analyses are updated. if (FAM) updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) { assert(C != &NewC && "No need to re-visit the current SCC!"); assert(OldC != &NewC && "Already handled the original SCC!"); UR.CWorklist.insert(&NewC); LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); // Ensure new SCCs' function analyses are updated. if (FAM) updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); // Also propagate a normal invalidation to the new SCC as only the current // will get one from the pass manager infrastructure. AM.invalidate(NewC, PA); } return C; } static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, FunctionAnalysisManager &FAM, bool FunctionPass) { using Node = LazyCallGraph::Node; using Edge = LazyCallGraph::Edge; using SCC = LazyCallGraph::SCC; using RefSCC = LazyCallGraph::RefSCC; RefSCC &InitialRC = InitialC.getOuterRefSCC(); SCC *C = &InitialC; RefSCC *RC = &InitialRC; Function &F = N.getFunction(); // Walk the function body and build up the set of retained, promoted, and // demoted edges. SmallVector Worklist; SmallPtrSet Visited; SmallPtrSet RetainedEdges; SmallSetVector PromotedRefTargets; SmallSetVector DemotedCallTargets; SmallSetVector NewCallEdges; SmallSetVector NewRefEdges; // First walk the function and handle all called functions. We do this first // because if there is a single call edge, whether there are ref edges is // irrelevant. for (Instruction &I : instructions(F)) { if (auto *CB = dyn_cast(&I)) { if (Function *Callee = CB->getCalledFunction()) { if (Visited.insert(Callee).second && !Callee->isDeclaration()) { Node *CalleeN = G.lookup(*Callee); assert(CalleeN && "Visited function should already have an associated node"); Edge *E = N->lookup(*CalleeN); assert((E || !FunctionPass) && "No function transformations should introduce *new* " "call edges! Any new calls should be modeled as " "promoted existing ref edges!"); bool Inserted = RetainedEdges.insert(CalleeN).second; (void)Inserted; assert(Inserted && "We should never visit a function twice."); if (!E) NewCallEdges.insert(CalleeN); else if (!E->isCall()) PromotedRefTargets.insert(CalleeN); } } else { // We can miss devirtualization if an indirect call is created then // promoted before updateCGAndAnalysisManagerForPass runs. auto *Entry = UR.IndirectVHs.find(CB); if (Entry == UR.IndirectVHs.end()) UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); else if (!Entry->second) Entry->second = WeakTrackingVH(CB); } } } // Now walk all references. for (Instruction &I : instructions(F)) for (Value *Op : I.operand_values()) if (auto *OpC = dyn_cast(Op)) if (Visited.insert(OpC).second) Worklist.push_back(OpC); auto VisitRef = [&](Function &Referee) { Node *RefereeN = G.lookup(Referee); assert(RefereeN && "Visited function should already have an associated node"); Edge *E = N->lookup(*RefereeN); assert((E || !FunctionPass) && "No function transformations should introduce *new* ref " "edges! Any new ref edges would require IPO which " "function passes aren't allowed to do!"); bool Inserted = RetainedEdges.insert(RefereeN).second; (void)Inserted; assert(Inserted && "We should never visit a function twice."); if (!E) NewRefEdges.insert(RefereeN); else if (E->isCall()) DemotedCallTargets.insert(RefereeN); }; LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); // Handle new ref edges. for (Node *RefTarget : NewRefEdges) { SCC &TargetC = *G.lookupSCC(*RefTarget); RefSCC &TargetRC = TargetC.getOuterRefSCC(); (void)TargetRC; // TODO: This only allows trivial edges to be added for now. #ifdef EXPENSIVE_CHECKS assert((RC == &TargetRC || RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); #endif RC->insertTrivialRefEdge(N, *RefTarget); } // Handle new call edges. for (Node *CallTarget : NewCallEdges) { SCC &TargetC = *G.lookupSCC(*CallTarget); RefSCC &TargetRC = TargetC.getOuterRefSCC(); (void)TargetRC; // TODO: This only allows trivial edges to be added for now. #ifdef EXPENSIVE_CHECKS assert((RC == &TargetRC || RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); #endif // Add a trivial ref edge to be promoted later on alongside // PromotedRefTargets. RC->insertTrivialRefEdge(N, *CallTarget); } // Include synthetic reference edges to known, defined lib functions. for (auto *LibFn : G.getLibFunctions()) // While the list of lib functions doesn't have repeats, don't re-visit // anything handled above. if (!Visited.count(LibFn)) VisitRef(*LibFn); // First remove all of the edges that are no longer present in this function. // The first step makes these edges uniformly ref edges and accumulates them // into a separate data structure so removal doesn't invalidate anything. SmallVector DeadTargets; for (Edge &E : *N) { if (RetainedEdges.count(&E.getNode())) continue; SCC &TargetC = *G.lookupSCC(E.getNode()); RefSCC &TargetRC = TargetC.getOuterRefSCC(); if (&TargetRC == RC && E.isCall()) { if (C != &TargetC) { // For separate SCCs this is trivial. RC->switchTrivialInternalEdgeToRef(N, E.getNode()); } else { // Now update the call graph. C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), G, N, C, AM, UR); } } // Now that this is ready for actual removal, put it into our list. DeadTargets.push_back(&E.getNode()); } // Remove the easy cases quickly and actually pull them out of our list. llvm::erase_if(DeadTargets, [&](Node *TargetN) { SCC &TargetC = *G.lookupSCC(*TargetN); RefSCC &TargetRC = TargetC.getOuterRefSCC(); // We can't trivially remove internal targets, so skip // those. if (&TargetRC == RC) return false; LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '" << *TargetN << "'\n"); RC->removeOutgoingEdge(N, *TargetN); return true; }); // Now do a batch removal of the internal ref edges left. auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); if (!NewRefSCCs.empty()) { // The old RefSCC is dead, mark it as such. UR.InvalidatedRefSCCs.insert(RC); // Note that we don't bother to invalidate analyses as ref-edge // connectivity is not really observable in any way and is intended // exclusively to be used for ordering of transforms rather than for // analysis conclusions. // Update RC to the "bottom". assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); RC = &C->getOuterRefSCC(); assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); // The RC worklist is in reverse postorder, so we enqueue the new ones in // RPO except for the one which contains the source node as that is the // "bottom" we will continue processing in the bottom-up walk. assert(NewRefSCCs.front() == RC && "New current RefSCC not first in the returned list!"); for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) { assert(NewRC != RC && "Should not encounter the current RefSCC further " "in the postorder list of new RefSCCs."); UR.RCWorklist.insert(NewRC); LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC << "\n"); } } // Next demote all the call edges that are now ref edges. This helps make // the SCCs small which should minimize the work below as we don't want to // form cycles that this would break. for (Node *RefTarget : DemotedCallTargets) { SCC &TargetC = *G.lookupSCC(*RefTarget); RefSCC &TargetRC = TargetC.getOuterRefSCC(); // The easy case is when the target RefSCC is not this RefSCC. This is // only supported when the target RefSCC is a child of this RefSCC. if (&TargetRC != RC) { #ifdef EXPENSIVE_CHECKS assert(RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!"); #endif RC->switchOutgoingEdgeToRef(N, *RefTarget); LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N << "' to '" << *RefTarget << "'\n"); continue; } // We are switching an internal call edge to a ref edge. This may split up // some SCCs. if (C != &TargetC) { // For separate SCCs this is trivial. RC->switchTrivialInternalEdgeToRef(N, *RefTarget); continue; } // Now update the call graph. C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, C, AM, UR); } // We added a ref edge earlier for new call edges, promote those to call edges // alongside PromotedRefTargets. for (Node *E : NewCallEdges) PromotedRefTargets.insert(E); // Now promote ref edges into call edges. for (Node *CallTarget : PromotedRefTargets) { SCC &TargetC = *G.lookupSCC(*CallTarget); RefSCC &TargetRC = TargetC.getOuterRefSCC(); // The easy case is when the target RefSCC is not this RefSCC. This is // only supported when the target RefSCC is a child of this RefSCC. if (&TargetRC != RC) { #ifdef EXPENSIVE_CHECKS assert(RC->isAncestorOf(TargetRC) && "Cannot potentially form RefSCC cycles here!"); #endif RC->switchOutgoingEdgeToCall(N, *CallTarget); LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N << "' to '" << *CallTarget << "'\n"); continue; } LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" << N << "' to '" << *CallTarget << "'\n"); // Otherwise we are switching an internal ref edge to a call edge. This // may merge away some SCCs, and we add those to the UpdateResult. We also // need to make sure to update the worklist in the event SCCs have moved // before the current one in the post-order sequence bool HasFunctionAnalysisProxy = false; auto InitialSCCIndex = RC->find(*C) - RC->begin(); bool FormedCycle = RC->switchInternalEdgeToCall( N, *CallTarget, [&](ArrayRef MergedSCCs) { for (SCC *MergedC : MergedSCCs) { assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); HasFunctionAnalysisProxy |= AM.getCachedResult( *MergedC) != nullptr; // Mark that this SCC will no longer be valid. UR.InvalidatedSCCs.insert(MergedC); // FIXME: We should really do a 'clear' here to forcibly release // memory, but we don't have a good way of doing that and // preserving the function analyses. auto PA = PreservedAnalyses::allInSet>(); PA.preserve(); AM.invalidate(*MergedC, PA); } }); // If we formed a cycle by creating this call, we need to update more data // structures. if (FormedCycle) { C = &TargetC; assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); // If one of the invalidated SCCs had a cached proxy to a function // analysis manager, we need to create a proxy in the new current SCC as // the invalidated SCCs had their functions moved. if (HasFunctionAnalysisProxy) AM.getResult(*C, G).updateFAM(FAM); // Any analyses cached for this SCC are no longer precise as the shape // has changed by introducing this cycle. However, we have taken care to // update the proxies so it remains valide. auto PA = PreservedAnalyses::allInSet>(); PA.preserve(); AM.invalidate(*C, PA); } auto NewSCCIndex = RC->find(*C) - RC->begin(); // If we have actually moved an SCC to be topologically "below" the current // one due to merging, we will need to revisit the current SCC after // visiting those moved SCCs. // // It is critical that we *do not* revisit the current SCC unless we // actually move SCCs in the process of merging because otherwise we may // form a cycle where an SCC is split apart, merged, split, merged and so // on infinitely. if (InitialSCCIndex < NewSCCIndex) { // Put our current SCC back onto the worklist as we'll visit other SCCs // that are now definitively ordered prior to the current one in the // post-order sequence, and may end up observing more precise context to // optimize the current SCC. UR.CWorklist.insert(C); LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"); // Enqueue in reverse order as we pop off the back of the worklist. for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, RC->begin() + NewSCCIndex))) { UR.CWorklist.insert(&MovedC); LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC << "\n"); } } } assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); // Record the current SCC for higher layers of the CGSCC pass manager now that // all the updates have been applied. if (C != &InitialC) UR.UpdatedC = C; return *C; } LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, FunctionAnalysisManager &FAM) { return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, /* FunctionPass */ true); } LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, FunctionAnalysisManager &FAM) { return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, /* FunctionPass */ false); }