//===-- lib/CodeGen/GlobalISel/GICombinerHelper.cpp -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/CombinerHelper.h" #include "llvm/CodeGen/GlobalISel/Combiner.h" #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #define DEBUG_TYPE "gi-combiner" using namespace llvm; // Option to allow testing of the combiner while no targets know about indexed // addressing. static cl::opt ForceLegalIndexing("force-legal-indexing", cl::Hidden, cl::init(false), cl::desc("Force all indexed operations to be " "legal for the GlobalISel combiner")); CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, MachineIRBuilder &B, GISelKnownBits *KB, MachineDominatorTree *MDT) : Builder(B), MRI(Builder.getMF().getRegInfo()), Observer(Observer), KB(KB), MDT(MDT) { (void)this->KB; } void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, Register ToReg) const { Observer.changingAllUsesOfReg(MRI, FromReg); if (MRI.constrainRegAttrs(ToReg, FromReg)) MRI.replaceRegWith(FromReg, ToReg); else Builder.buildCopy(ToReg, FromReg); Observer.finishedChangingAllUsesOfReg(); } void CombinerHelper::replaceRegOpWith(MachineRegisterInfo &MRI, MachineOperand &FromRegOp, Register ToReg) const { assert(FromRegOp.getParent() && "Expected an operand in an MI"); Observer.changingInstr(*FromRegOp.getParent()); FromRegOp.setReg(ToReg); Observer.changedInstr(*FromRegOp.getParent()); } bool CombinerHelper::tryCombineCopy(MachineInstr &MI) { if (matchCombineCopy(MI)) { applyCombineCopy(MI); return true; } return false; } bool CombinerHelper::matchCombineCopy(MachineInstr &MI) { if (MI.getOpcode() != TargetOpcode::COPY) return false; Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); // Give up if either DstReg or SrcReg is a physical register. if (Register::isPhysicalRegister(DstReg) || Register::isPhysicalRegister(SrcReg)) return false; // Give up the types don't match. LLT DstTy = MRI.getType(DstReg); LLT SrcTy = MRI.getType(SrcReg); // Give up if one has a valid LLT, but the other doesn't. if (DstTy.isValid() != SrcTy.isValid()) return false; // Give up if the types don't match. if (DstTy.isValid() && SrcTy.isValid() && DstTy != SrcTy) return false; // Get the register banks and classes. const RegisterBank *DstBank = MRI.getRegBankOrNull(DstReg); const RegisterBank *SrcBank = MRI.getRegBankOrNull(SrcReg); const TargetRegisterClass *DstRC = MRI.getRegClassOrNull(DstReg); const TargetRegisterClass *SrcRC = MRI.getRegClassOrNull(SrcReg); // Replace if the register constraints match. if ((SrcRC == DstRC) && (SrcBank == DstBank)) return true; // Replace if DstReg has no constraints. if (!DstBank && !DstRC) return true; return false; } void CombinerHelper::applyCombineCopy(MachineInstr &MI) { Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, SrcReg); } bool CombinerHelper::tryCombineConcatVectors(MachineInstr &MI) { bool IsUndef = false; SmallVector Ops; if (matchCombineConcatVectors(MI, IsUndef, Ops)) { applyCombineConcatVectors(MI, IsUndef, Ops); return true; } return false; } bool CombinerHelper::matchCombineConcatVectors(MachineInstr &MI, bool &IsUndef, SmallVectorImpl &Ops) { assert(MI.getOpcode() == TargetOpcode::G_CONCAT_VECTORS && "Invalid instruction"); IsUndef = true; MachineInstr *Undef = nullptr; // Walk over all the operands of concat vectors and check if they are // build_vector themselves or undef. // Then collect their operands in Ops. for (const MachineOperand &MO : MI.uses()) { Register Reg = MO.getReg(); MachineInstr *Def = MRI.getVRegDef(Reg); assert(Def && "Operand not defined"); switch (Def->getOpcode()) { case TargetOpcode::G_BUILD_VECTOR: IsUndef = false; // Remember the operands of the build_vector to fold // them into the yet-to-build flattened concat vectors. for (const MachineOperand &BuildVecMO : Def->uses()) Ops.push_back(BuildVecMO.getReg()); break; case TargetOpcode::G_IMPLICIT_DEF: { LLT OpType = MRI.getType(Reg); // Keep one undef value for all the undef operands. if (!Undef) { Builder.setInsertPt(*MI.getParent(), MI); Undef = Builder.buildUndef(OpType.getScalarType()); } assert(MRI.getType(Undef->getOperand(0).getReg()) == OpType.getScalarType() && "All undefs should have the same type"); // Break the undef vector in as many scalar elements as needed // for the flattening. for (unsigned EltIdx = 0, EltEnd = OpType.getNumElements(); EltIdx != EltEnd; ++EltIdx) Ops.push_back(Undef->getOperand(0).getReg()); break; } default: return false; } } return true; } void CombinerHelper::applyCombineConcatVectors( MachineInstr &MI, bool IsUndef, const ArrayRef Ops) { // We determined that the concat_vectors can be flatten. // Generate the flattened build_vector. Register DstReg = MI.getOperand(0).getReg(); Builder.setInsertPt(*MI.getParent(), MI); Register NewDstReg = MRI.cloneVirtualRegister(DstReg); // Note: IsUndef is sort of redundant. We could have determine it by // checking that at all Ops are undef. Alternatively, we could have // generate a build_vector of undefs and rely on another combine to // clean that up. For now, given we already gather this information // in tryCombineConcatVectors, just save compile time and issue the // right thing. if (IsUndef) Builder.buildUndef(NewDstReg); else Builder.buildBuildVector(NewDstReg, Ops); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, NewDstReg); } bool CombinerHelper::tryCombineShuffleVector(MachineInstr &MI) { SmallVector Ops; if (matchCombineShuffleVector(MI, Ops)) { applyCombineShuffleVector(MI, Ops); return true; } return false; } bool CombinerHelper::matchCombineShuffleVector(MachineInstr &MI, SmallVectorImpl &Ops) { assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR && "Invalid instruction kind"); LLT DstType = MRI.getType(MI.getOperand(0).getReg()); Register Src1 = MI.getOperand(1).getReg(); LLT SrcType = MRI.getType(Src1); // As bizarre as it may look, shuffle vector can actually produce // scalar! This is because at the IR level a <1 x ty> shuffle // vector is perfectly valid. unsigned DstNumElts = DstType.isVector() ? DstType.getNumElements() : 1; unsigned SrcNumElts = SrcType.isVector() ? SrcType.getNumElements() : 1; // If the resulting vector is smaller than the size of the source // vectors being concatenated, we won't be able to replace the // shuffle vector into a concat_vectors. // // Note: We may still be able to produce a concat_vectors fed by // extract_vector_elt and so on. It is less clear that would // be better though, so don't bother for now. // // If the destination is a scalar, the size of the sources doesn't // matter. we will lower the shuffle to a plain copy. This will // work only if the source and destination have the same size. But // that's covered by the next condition. // // TODO: If the size between the source and destination don't match // we could still emit an extract vector element in that case. if (DstNumElts < 2 * SrcNumElts && DstNumElts != 1) return false; // Check that the shuffle mask can be broken evenly between the // different sources. if (DstNumElts % SrcNumElts != 0) return false; // Mask length is a multiple of the source vector length. // Check if the shuffle is some kind of concatenation of the input // vectors. unsigned NumConcat = DstNumElts / SrcNumElts; SmallVector ConcatSrcs(NumConcat, -1); ArrayRef Mask = MI.getOperand(3).getShuffleMask(); for (unsigned i = 0; i != DstNumElts; ++i) { int Idx = Mask[i]; // Undef value. if (Idx < 0) continue; // Ensure the indices in each SrcType sized piece are sequential and that // the same source is used for the whole piece. if ((Idx % SrcNumElts != (i % SrcNumElts)) || (ConcatSrcs[i / SrcNumElts] >= 0 && ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) return false; // Remember which source this index came from. ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; } // The shuffle is concatenating multiple vectors together. // Collect the different operands for that. Register UndefReg; Register Src2 = MI.getOperand(2).getReg(); for (auto Src : ConcatSrcs) { if (Src < 0) { if (!UndefReg) { Builder.setInsertPt(*MI.getParent(), MI); UndefReg = Builder.buildUndef(SrcType).getReg(0); } Ops.push_back(UndefReg); } else if (Src == 0) Ops.push_back(Src1); else Ops.push_back(Src2); } return true; } void CombinerHelper::applyCombineShuffleVector(MachineInstr &MI, const ArrayRef Ops) { Register DstReg = MI.getOperand(0).getReg(); Builder.setInsertPt(*MI.getParent(), MI); Register NewDstReg = MRI.cloneVirtualRegister(DstReg); if (Ops.size() == 1) Builder.buildCopy(NewDstReg, Ops[0]); else Builder.buildMerge(NewDstReg, Ops); MI.eraseFromParent(); replaceRegWith(MRI, DstReg, NewDstReg); } namespace { /// Select a preference between two uses. CurrentUse is the current preference /// while *ForCandidate is attributes of the candidate under consideration. PreferredTuple ChoosePreferredUse(PreferredTuple &CurrentUse, const LLT &TyForCandidate, unsigned OpcodeForCandidate, MachineInstr *MIForCandidate) { if (!CurrentUse.Ty.isValid()) { if (CurrentUse.ExtendOpcode == OpcodeForCandidate || CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; return CurrentUse; } // We permit the extend to hoist through basic blocks but this is only // sensible if the target has extending loads. If you end up lowering back // into a load and extend during the legalizer then the end result is // hoisting the extend up to the load. // Prefer defined extensions to undefined extensions as these are more // likely to reduce the number of instructions. if (OpcodeForCandidate == TargetOpcode::G_ANYEXT && CurrentUse.ExtendOpcode != TargetOpcode::G_ANYEXT) return CurrentUse; else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ANYEXT && OpcodeForCandidate != TargetOpcode::G_ANYEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; // Prefer sign extensions to zero extensions as sign-extensions tend to be // more expensive. if (CurrentUse.Ty == TyForCandidate) { if (CurrentUse.ExtendOpcode == TargetOpcode::G_SEXT && OpcodeForCandidate == TargetOpcode::G_ZEXT) return CurrentUse; else if (CurrentUse.ExtendOpcode == TargetOpcode::G_ZEXT && OpcodeForCandidate == TargetOpcode::G_SEXT) return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; } // This is potentially target specific. We've chosen the largest type // because G_TRUNC is usually free. One potential catch with this is that // some targets have a reduced number of larger registers than smaller // registers and this choice potentially increases the live-range for the // larger value. if (TyForCandidate.getSizeInBits() > CurrentUse.Ty.getSizeInBits()) { return {TyForCandidate, OpcodeForCandidate, MIForCandidate}; } return CurrentUse; } /// Find a suitable place to insert some instructions and insert them. This /// function accounts for special cases like inserting before a PHI node. /// The current strategy for inserting before PHI's is to duplicate the /// instructions for each predecessor. However, while that's ok for G_TRUNC /// on most targets since it generally requires no code, other targets/cases may /// want to try harder to find a dominating block. static void InsertInsnsWithoutSideEffectsBeforeUse( MachineIRBuilder &Builder, MachineInstr &DefMI, MachineOperand &UseMO, std::function Inserter) { MachineInstr &UseMI = *UseMO.getParent(); MachineBasicBlock *InsertBB = UseMI.getParent(); // If the use is a PHI then we want the predecessor block instead. if (UseMI.isPHI()) { MachineOperand *PredBB = std::next(&UseMO); InsertBB = PredBB->getMBB(); } // If the block is the same block as the def then we want to insert just after // the def instead of at the start of the block. if (InsertBB == DefMI.getParent()) { MachineBasicBlock::iterator InsertPt = &DefMI; Inserter(InsertBB, std::next(InsertPt), UseMO); return; } // Otherwise we want the start of the BB Inserter(InsertBB, InsertBB->getFirstNonPHI(), UseMO); } } // end anonymous namespace bool CombinerHelper::tryCombineExtendingLoads(MachineInstr &MI) { PreferredTuple Preferred; if (matchCombineExtendingLoads(MI, Preferred)) { applyCombineExtendingLoads(MI, Preferred); return true; } return false; } bool CombinerHelper::matchCombineExtendingLoads(MachineInstr &MI, PreferredTuple &Preferred) { // We match the loads and follow the uses to the extend instead of matching // the extends and following the def to the load. This is because the load // must remain in the same position for correctness (unless we also add code // to find a safe place to sink it) whereas the extend is freely movable. // It also prevents us from duplicating the load for the volatile case or just // for performance. if (MI.getOpcode() != TargetOpcode::G_LOAD && MI.getOpcode() != TargetOpcode::G_SEXTLOAD && MI.getOpcode() != TargetOpcode::G_ZEXTLOAD) return false; auto &LoadValue = MI.getOperand(0); assert(LoadValue.isReg() && "Result wasn't a register?"); LLT LoadValueTy = MRI.getType(LoadValue.getReg()); if (!LoadValueTy.isScalar()) return false; // Most architectures are going to legalize getOperand(0).getReg(); // Inserter to insert a truncate back to the original type at a given point // with some basic CSE to limit truncate duplication to one per BB. DenseMap EmittedInsns; auto InsertTruncAt = [&](MachineBasicBlock *InsertIntoBB, MachineBasicBlock::iterator InsertBefore, MachineOperand &UseMO) { MachineInstr *PreviouslyEmitted = EmittedInsns.lookup(InsertIntoBB); if (PreviouslyEmitted) { Observer.changingInstr(*UseMO.getParent()); UseMO.setReg(PreviouslyEmitted->getOperand(0).getReg()); Observer.changedInstr(*UseMO.getParent()); return; } Builder.setInsertPt(*InsertIntoBB, InsertBefore); Register NewDstReg = MRI.cloneVirtualRegister(MI.getOperand(0).getReg()); MachineInstr *NewMI = Builder.buildTrunc(NewDstReg, ChosenDstReg); EmittedInsns[InsertIntoBB] = NewMI; replaceRegOpWith(MRI, UseMO, NewDstReg); }; Observer.changingInstr(MI); MI.setDesc( Builder.getTII().get(Preferred.ExtendOpcode == TargetOpcode::G_SEXT ? TargetOpcode::G_SEXTLOAD : Preferred.ExtendOpcode == TargetOpcode::G_ZEXT ? TargetOpcode::G_ZEXTLOAD : TargetOpcode::G_LOAD)); // Rewrite all the uses to fix up the types. auto &LoadValue = MI.getOperand(0); SmallVector Uses; for (auto &UseMO : MRI.use_operands(LoadValue.getReg())) Uses.push_back(&UseMO); for (auto *UseMO : Uses) { MachineInstr *UseMI = UseMO->getParent(); // If the extend is compatible with the preferred extend then we should fix // up the type and extend so that it uses the preferred use. if (UseMI->getOpcode() == Preferred.ExtendOpcode || UseMI->getOpcode() == TargetOpcode::G_ANYEXT) { Register UseDstReg = UseMI->getOperand(0).getReg(); MachineOperand &UseSrcMO = UseMI->getOperand(1); const LLT &UseDstTy = MRI.getType(UseDstReg); if (UseDstReg != ChosenDstReg) { if (Preferred.Ty == UseDstTy) { // If the use has the same type as the preferred use, then merge // the vregs and erase the extend. For example: // %1:_(s8) = G_LOAD ... // %2:_(s32) = G_SEXT %1(s8) // %3:_(s32) = G_ANYEXT %1(s8) // ... = ... %3(s32) // rewrites to: // %2:_(s32) = G_SEXTLOAD ... // ... = ... %2(s32) replaceRegWith(MRI, UseDstReg, ChosenDstReg); Observer.erasingInstr(*UseMO->getParent()); UseMO->getParent()->eraseFromParent(); } else if (Preferred.Ty.getSizeInBits() < UseDstTy.getSizeInBits()) { // If the preferred size is smaller, then keep the extend but extend // from the result of the extending load. For example: // %1:_(s8) = G_LOAD ... // %2:_(s32) = G_SEXT %1(s8) // %3:_(s64) = G_ANYEXT %1(s8) // ... = ... %3(s64) /// rewrites to: // %2:_(s32) = G_SEXTLOAD ... // %3:_(s64) = G_ANYEXT %2:_(s32) // ... = ... %3(s64) replaceRegOpWith(MRI, UseSrcMO, ChosenDstReg); } else { // If the preferred size is large, then insert a truncate. For // example: // %1:_(s8) = G_LOAD ... // %2:_(s64) = G_SEXT %1(s8) // %3:_(s32) = G_ZEXT %1(s8) // ... = ... %3(s32) /// rewrites to: // %2:_(s64) = G_SEXTLOAD ... // %4:_(s8) = G_TRUNC %2:_(s32) // %3:_(s64) = G_ZEXT %2:_(s8) // ... = ... %3(s64) InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); } continue; } // The use is (one of) the uses of the preferred use we chose earlier. // We're going to update the load to def this value later so just erase // the old extend. Observer.erasingInstr(*UseMO->getParent()); UseMO->getParent()->eraseFromParent(); continue; } // The use isn't an extend. Truncate back to the type we originally loaded. // This is free on many targets. InsertInsnsWithoutSideEffectsBeforeUse(Builder, MI, *UseMO, InsertTruncAt); } MI.getOperand(0).setReg(ChosenDstReg); Observer.changedInstr(MI); } bool CombinerHelper::isPredecessor(MachineInstr &DefMI, MachineInstr &UseMI) { assert(DefMI.getParent() == UseMI.getParent()); if (&DefMI == &UseMI) return false; // Loop through the basic block until we find one of the instructions. MachineBasicBlock::const_iterator I = DefMI.getParent()->begin(); for (; &*I != &DefMI && &*I != &UseMI; ++I) return &*I == &DefMI; llvm_unreachable("Block must contain instructions"); } bool CombinerHelper::dominates(MachineInstr &DefMI, MachineInstr &UseMI) { if (MDT) return MDT->dominates(&DefMI, &UseMI); else if (DefMI.getParent() != UseMI.getParent()) return false; return isPredecessor(DefMI, UseMI); } bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, Register &Base, Register &Offset) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); #ifndef NDEBUG unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); #endif Base = MI.getOperand(1).getReg(); MachineInstr *BaseDef = MRI.getUniqueVRegDef(Base); if (BaseDef && BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) return false; LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); for (auto &Use : MRI.use_instructions(Base)) { if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) continue; Offset = Use.getOperand(2).getReg(); if (!ForceLegalIndexing && !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ false, MRI)) { LLVM_DEBUG(dbgs() << " Ignoring candidate with illegal addrmode: " << Use); continue; } // Make sure the offset calculation is before the potentially indexed op. // FIXME: we really care about dependency here. The offset calculation might // be movable. MachineInstr *OffsetDef = MRI.getUniqueVRegDef(Offset); if (!OffsetDef || !dominates(*OffsetDef, MI)) { LLVM_DEBUG(dbgs() << " Ignoring candidate with offset after mem-op: " << Use); continue; } // FIXME: check whether all uses of Base are load/store with foldable // addressing modes. If so, using the normal addr-modes is better than // forming an indexed one. bool MemOpDominatesAddrUses = true; for (auto &PtrAddUse : MRI.use_instructions(Use.getOperand(0).getReg())) { if (!dominates(MI, PtrAddUse)) { MemOpDominatesAddrUses = false; break; } } if (!MemOpDominatesAddrUses) { LLVM_DEBUG( dbgs() << " Ignoring candidate as memop does not dominate uses: " << Use); continue; } LLVM_DEBUG(dbgs() << " Found match: " << Use); Addr = Use.getOperand(0).getReg(); return true; } return false; } bool CombinerHelper::findPreIndexCandidate(MachineInstr &MI, Register &Addr, Register &Base, Register &Offset) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); #ifndef NDEBUG unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_LOAD || Opcode == TargetOpcode::G_SEXTLOAD || Opcode == TargetOpcode::G_ZEXTLOAD || Opcode == TargetOpcode::G_STORE); #endif Addr = MI.getOperand(1).getReg(); MachineInstr *AddrDef = getOpcodeDef(TargetOpcode::G_PTR_ADD, Addr, MRI); if (!AddrDef || MRI.hasOneUse(Addr)) return false; Base = AddrDef->getOperand(1).getReg(); Offset = AddrDef->getOperand(2).getReg(); LLVM_DEBUG(dbgs() << "Found potential pre-indexed load_store: " << MI); if (!ForceLegalIndexing && !TLI.isIndexingLegal(MI, Base, Offset, /*IsPre*/ true, MRI)) { LLVM_DEBUG(dbgs() << " Skipping, not legal for target"); return false; } MachineInstr *BaseDef = getDefIgnoringCopies(Base, MRI); if (BaseDef->getOpcode() == TargetOpcode::G_FRAME_INDEX) { LLVM_DEBUG(dbgs() << " Skipping, frame index would need copy anyway."); return false; } if (MI.getOpcode() == TargetOpcode::G_STORE) { // Would require a copy. if (Base == MI.getOperand(0).getReg()) { LLVM_DEBUG(dbgs() << " Skipping, storing base so need copy anyway."); return false; } // We're expecting one use of Addr in MI, but it could also be the // value stored, which isn't actually dominated by the instruction. if (MI.getOperand(0).getReg() == Addr) { LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses"); return false; } } // FIXME: check whether all uses of the base pointer are constant PtrAdds. // That might allow us to end base's liveness here by adjusting the constant. for (auto &UseMI : MRI.use_instructions(Addr)) { if (!dominates(MI, UseMI)) { LLVM_DEBUG(dbgs() << " Skipping, does not dominate all addr uses."); return false; } } return true; } bool CombinerHelper::tryCombineIndexedLoadStore(MachineInstr &MI) { IndexedLoadStoreMatchInfo MatchInfo; if (matchCombineIndexedLoadStore(MI, MatchInfo)) { applyCombineIndexedLoadStore(MI, MatchInfo); return true; } return false; } bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { unsigned Opcode = MI.getOpcode(); if (Opcode != TargetOpcode::G_LOAD && Opcode != TargetOpcode::G_SEXTLOAD && Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) return false; MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, MatchInfo.Offset); if (!MatchInfo.IsPre && !findPostIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, MatchInfo.Offset)) return false; return true; } void CombinerHelper::applyCombineIndexedLoadStore( MachineInstr &MI, IndexedLoadStoreMatchInfo &MatchInfo) { MachineInstr &AddrDef = *MRI.getUniqueVRegDef(MatchInfo.Addr); MachineIRBuilder MIRBuilder(MI); unsigned Opcode = MI.getOpcode(); bool IsStore = Opcode == TargetOpcode::G_STORE; unsigned NewOpcode; switch (Opcode) { case TargetOpcode::G_LOAD: NewOpcode = TargetOpcode::G_INDEXED_LOAD; break; case TargetOpcode::G_SEXTLOAD: NewOpcode = TargetOpcode::G_INDEXED_SEXTLOAD; break; case TargetOpcode::G_ZEXTLOAD: NewOpcode = TargetOpcode::G_INDEXED_ZEXTLOAD; break; case TargetOpcode::G_STORE: NewOpcode = TargetOpcode::G_INDEXED_STORE; break; default: llvm_unreachable("Unknown load/store opcode"); } auto MIB = MIRBuilder.buildInstr(NewOpcode); if (IsStore) { MIB.addDef(MatchInfo.Addr); MIB.addUse(MI.getOperand(0).getReg()); } else { MIB.addDef(MI.getOperand(0).getReg()); MIB.addDef(MatchInfo.Addr); } MIB.addUse(MatchInfo.Base); MIB.addUse(MatchInfo.Offset); MIB.addImm(MatchInfo.IsPre); MI.eraseFromParent(); AddrDef.eraseFromParent(); LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); } bool CombinerHelper::matchElideBrByInvertingCond(MachineInstr &MI) { if (MI.getOpcode() != TargetOpcode::G_BR) return false; // Try to match the following: // bb1: // %c(s32) = G_ICMP pred, %a, %b // %c1(s1) = G_TRUNC %c(s32) // G_BRCOND %c1, %bb2 // G_BR %bb3 // bb2: // ... // bb3: // The above pattern does not have a fall through to the successor bb2, always // resulting in a branch no matter which path is taken. Here we try to find // and replace that pattern with conditional branch to bb3 and otherwise // fallthrough to bb2. MachineBasicBlock *MBB = MI.getParent(); MachineBasicBlock::iterator BrIt(MI); if (BrIt == MBB->begin()) return false; assert(std::next(BrIt) == MBB->end() && "expected G_BR to be a terminator"); MachineInstr *BrCond = &*std::prev(BrIt); if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) return false; // Check that the next block is the conditional branch target. if (!MBB->isLayoutSuccessor(BrCond->getOperand(1).getMBB())) return false; MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); if (!CmpMI || CmpMI->getOpcode() != TargetOpcode::G_ICMP || !MRI.hasOneUse(CmpMI->getOperand(0).getReg())) return false; return true; } bool CombinerHelper::tryElideBrByInvertingCond(MachineInstr &MI) { if (!matchElideBrByInvertingCond(MI)) return false; applyElideBrByInvertingCond(MI); return true; } void CombinerHelper::applyElideBrByInvertingCond(MachineInstr &MI) { MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); MachineBasicBlock::iterator BrIt(MI); MachineInstr *BrCond = &*std::prev(BrIt); MachineInstr *CmpMI = MRI.getVRegDef(BrCond->getOperand(0).getReg()); CmpInst::Predicate InversePred = CmpInst::getInversePredicate( (CmpInst::Predicate)CmpMI->getOperand(1).getPredicate()); // Invert the G_ICMP condition. Observer.changingInstr(*CmpMI); CmpMI->getOperand(1).setPredicate(InversePred); Observer.changedInstr(*CmpMI); // Change the conditional branch target. Observer.changingInstr(*BrCond); BrCond->getOperand(1).setMBB(BrTarget); Observer.changedInstr(*BrCond); MI.eraseFromParent(); } static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { // On Darwin, -Os means optimize for size without hurting performance, so // only really optimize for size when -Oz (MinSize) is used. if (MF.getTarget().getTargetTriple().isOSDarwin()) return MF.getFunction().hasMinSize(); return MF.getFunction().hasOptSize(); } // Returns a list of types to use for memory op lowering in MemOps. A partial // port of findOptimalMemOpLowering in TargetLowering. static bool findGISelOptimalMemOpLowering( std::vector &MemOps, unsigned Limit, uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc, bool AllowOverlap, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes, const TargetLowering &TLI) { // If 'SrcAlign' is zero, that means the memory operation does not need to // load the value, i.e. memset or memcpy from constant string. Otherwise, // it's the inferred alignment of the source. 'DstAlign', on the other hand, // is the specified alignment of the memory operation. If it is zero, that // means it's possible to change the alignment of the destination. // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does // not need to be loaded. if (SrcAlign != 0 && SrcAlign < DstAlign) return false; LLT Ty = TLI.getOptimalMemOpLLT(Size, DstAlign, SrcAlign, IsMemset, ZeroMemset, MemcpyStrSrc, FuncAttributes); if (Ty == LLT()) { // Use the largest scalar type whose alignment constraints are satisfied. // We only need to check DstAlign here as SrcAlign is always greater or // equal to DstAlign (or zero). Ty = LLT::scalar(64); while (DstAlign && DstAlign < Ty.getSizeInBytes() && !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, DstAlign)) Ty = LLT::scalar(Ty.getSizeInBytes()); assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); // FIXME: check for the largest legal type we can load/store to. } unsigned NumMemOps = 0; while (Size != 0) { unsigned TySize = Ty.getSizeInBytes(); while (TySize > Size) { // For now, only use non-vector load / store's for the left-over pieces. LLT NewTy = Ty; // FIXME: check for mem op safety and legality of the types. Not all of // SDAGisms map cleanly to GISel concepts. if (NewTy.isVector()) NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1)); unsigned NewTySize = NewTy.getSizeInBytes(); assert(NewTySize > 0 && "Could not find appropriate type"); // If the new LLT cannot cover all of the remaining bits, then consider // issuing a (or a pair of) unaligned and overlapping load / store. bool Fast; // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). MVT VT = getMVTForLLT(Ty); if (NumMemOps && AllowOverlap && NewTySize < Size && TLI.allowsMisalignedMemoryAccesses( VT, DstAS, DstAlign, MachineMemOperand::MONone, &Fast) && Fast) TySize = Size; else { Ty = NewTy; TySize = NewTySize; } } if (++NumMemOps > Limit) return false; MemOps.push_back(Ty); Size -= TySize; } return true; } static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { if (Ty.isVector()) return VectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), Ty.getNumElements()); return IntegerType::get(C, Ty.getSizeInBits()); } // Get a vectorized representation of the memset value operand, GISel edition. static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { MachineRegisterInfo &MRI = *MIB.getMRI(); unsigned NumBits = Ty.getScalarSizeInBits(); auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); if (!Ty.isVector() && ValVRegAndVal) { unsigned KnownVal = ValVRegAndVal->Value; APInt Scalar = APInt(8, KnownVal); APInt SplatVal = APInt::getSplat(NumBits, Scalar); return MIB.buildConstant(Ty, SplatVal).getReg(0); } // FIXME: for vector types create a G_BUILD_VECTOR. if (Ty.isVector()) return Register(); // Extend the byte value to the larger type, and then multiply by a magic // value 0x010101... in order to replicate it across every byte. LLT ExtType = Ty.getScalarType(); auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); if (NumBits > 8) { APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); auto MagicMI = MIB.buildConstant(ExtType, Magic); Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); } assert(ExtType == Ty && "Vector memset value type not supported yet"); return Val; } bool CombinerHelper::optimizeMemset(MachineInstr &MI, Register Dst, Register Val, unsigned KnownLen, unsigned Align, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memset length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; if (!findGISelOptimalMemOpLowering( MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Align), 0, /*IsMemset=*/true, /*ZeroMemset=*/IsZeroVal, /*MemcpyStrSrc=*/false, /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), ~0u, MF.getFunction().getAttributes(), TLI)) return false; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); if (NewAlign > Align) { Align = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlignment(FI) < Align) MFI.setObjectAlignment(FI, Align); } } MachineIRBuilder MIB(MI); // Find the largest store and generate the bit pattern for it. LLT LargestTy = MemOps[0]; for (unsigned i = 1; i < MemOps.size(); i++) if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) LargestTy = MemOps[i]; // The memset stored value is always defined as an s8, so in order to make it // work with larger store types we need to repeat the bit pattern across the // wider type. Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); if (!MemSetValue) return false; // Generate the stores. For each store type in the list, we generate the // matching store of that type to the destination address. LLT PtrTy = MRI.getType(Dst); unsigned DstOff = 0; unsigned Size = KnownLen; for (unsigned I = 0; I < MemOps.size(); I++) { LLT Ty = MemOps[I]; unsigned TySize = Ty.getSizeInBytes(); if (TySize > Size) { // Issuing an unaligned load / store pair that overlaps with the previous // pair. Adjust the offset accordingly. assert(I == MemOps.size() - 1 && I != 0); DstOff -= TySize - Size; } // If this store is smaller than the largest store see whether we can get // the smaller value for free with a truncate. Register Value = MemSetValue; if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { MVT VT = getMVTForLLT(Ty); MVT LargestVT = getMVTForLLT(LargestTy); if (!LargestTy.isVector() && !Ty.isVector() && TLI.isTruncateFree(LargestVT, VT)) Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); else Value = getMemsetValue(Val, Ty, MIB); if (!Value) return false; } auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty.getSizeInBytes()); Register Ptr = Dst; if (DstOff != 0) { auto Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); } MIB.buildStore(Value, Ptr, *StoreMMO); DstOff += Ty.getSizeInBytes(); Size -= TySize; } MI.eraseFromParent(); return true; } bool CombinerHelper::optimizeMemcpy(MachineInstr &MI, Register Dst, Register Src, unsigned KnownLen, unsigned DstAlign, unsigned SrcAlign, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memcpy length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF); unsigned Alignment = MinAlign(DstAlign, SrcAlign); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; // FIXME: infer better src pointer alignment like SelectionDAG does here. // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining // if the memcpy is in a tail call position. unsigned Limit = TLI.getMaxStoresPerMemcpy(OptSize); std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); const auto &SrcMMO = **std::next(MI.memoperands_begin()); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); if (!findGISelOptimalMemOpLowering( MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), SrcAlign, /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, /*AllowOverlap=*/!IsVolatile, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) return false; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); // Don't promote to an alignment that would require dynamic stack // realignment. const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TRI->needsStackRealignment(MF)) while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(Align(NewAlign))) NewAlign /= 2; if (NewAlign > Alignment) { Alignment = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlignment(FI) < Alignment) MFI.setObjectAlignment(FI, Alignment); } } LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); MachineIRBuilder MIB(MI); // Now we need to emit a pair of load and stores for each of the types we've // collected. I.e. for each type, generate a load from the source pointer of // that type width, and then generate a corresponding store to the dest buffer // of that value loaded. This can result in a sequence of loads and stores // mixed types, depending on what the target specifies as good types to use. unsigned CurrOffset = 0; LLT PtrTy = MRI.getType(Src); unsigned Size = KnownLen; for (auto CopyTy : MemOps) { // Issuing an unaligned load / store pair that overlaps with the previous // pair. Adjust the offset accordingly. if (CopyTy.getSizeInBytes() > Size) CurrOffset -= CopyTy.getSizeInBytes() - Size; // Construct MMOs for the accesses. auto *LoadMMO = MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); // Create the load. Register LoadPtr = Src; Register Offset; if (CurrOffset != 0) { Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset) .getReg(0); LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); } auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); // Create the store. Register StorePtr = CurrOffset == 0 ? Dst : MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); MIB.buildStore(LdVal, StorePtr, *StoreMMO); CurrOffset += CopyTy.getSizeInBytes(); Size -= CopyTy.getSizeInBytes(); } MI.eraseFromParent(); return true; } bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, Register Src, unsigned KnownLen, unsigned DstAlign, unsigned SrcAlign, bool IsVolatile) { auto &MF = *MI.getParent()->getParent(); const auto &TLI = *MF.getSubtarget().getTargetLowering(); auto &DL = MF.getDataLayout(); LLVMContext &C = MF.getFunction().getContext(); assert(KnownLen != 0 && "Have a zero length memmove length!"); bool DstAlignCanChange = false; MachineFrameInfo &MFI = MF.getFrameInfo(); bool OptSize = shouldLowerMemFuncForSize(MF); unsigned Alignment = MinAlign(DstAlign, SrcAlign); MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) DstAlignCanChange = true; unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); std::vector MemOps; const auto &DstMMO = **MI.memoperands_begin(); const auto &SrcMMO = **std::next(MI.memoperands_begin()); MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due // to a bug in it's findOptimalMemOpLowering implementation. For now do the // same thing here. if (!findGISelOptimalMemOpLowering( MemOps, Limit, KnownLen, (DstAlignCanChange ? 0 : Alignment), SrcAlign, /*IsMemset=*/false, /*ZeroMemset=*/false, /*MemcpyStrSrc=*/false, /*AllowOverlap=*/false, DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), MF.getFunction().getAttributes(), TLI)) return false; if (DstAlignCanChange) { // Get an estimate of the type from the LLT. Type *IRTy = getTypeForLLT(MemOps[0], C); unsigned NewAlign = (unsigned)DL.getABITypeAlignment(IRTy); // Don't promote to an alignment that would require dynamic stack // realignment. const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TRI->needsStackRealignment(MF)) while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(Align(NewAlign))) NewAlign /= 2; if (NewAlign > Alignment) { Alignment = NewAlign; unsigned FI = FIDef->getOperand(1).getIndex(); // Give the stack frame object a larger alignment if needed. if (MFI.getObjectAlignment(FI) < Alignment) MFI.setObjectAlignment(FI, Alignment); } } LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); MachineIRBuilder MIB(MI); // Memmove requires that we perform the loads first before issuing the stores. // Apart from that, this loop is pretty much doing the same thing as the // memcpy codegen function. unsigned CurrOffset = 0; LLT PtrTy = MRI.getType(Src); SmallVector LoadVals; for (auto CopyTy : MemOps) { // Construct MMO for the load. auto *LoadMMO = MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); // Create the load. Register LoadPtr = Src; if (CurrOffset != 0) { auto Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); LoadPtr = MIB.buildPtrAdd(PtrTy, Src, Offset).getReg(0); } LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); CurrOffset += CopyTy.getSizeInBytes(); } CurrOffset = 0; for (unsigned I = 0; I < MemOps.size(); ++I) { LLT CopyTy = MemOps[I]; // Now store the values loaded. auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); Register StorePtr = Dst; if (CurrOffset != 0) { auto Offset = MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), CurrOffset); StorePtr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); } MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); CurrOffset += CopyTy.getSizeInBytes(); } MI.eraseFromParent(); return true; } bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { // This combine is fairly complex so it's not written with a separate // matcher function. assert(MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); Intrinsic::ID ID = (Intrinsic::ID)MI.getIntrinsicID(); assert((ID == Intrinsic::memcpy || ID == Intrinsic::memmove || ID == Intrinsic::memset) && "Expected a memcpy like intrinsic"); auto MMOIt = MI.memoperands_begin(); const MachineMemOperand *MemOp = *MMOIt; bool IsVolatile = MemOp->isVolatile(); // Don't try to optimize volatile. if (IsVolatile) return false; unsigned DstAlign = MemOp->getBaseAlignment(); unsigned SrcAlign = 0; Register Dst = MI.getOperand(1).getReg(); Register Src = MI.getOperand(2).getReg(); Register Len = MI.getOperand(3).getReg(); if (ID != Intrinsic::memset) { assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); MemOp = *(++MMOIt); SrcAlign = MemOp->getBaseAlignment(); } // See if this is a constant length copy auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); if (!LenVRegAndVal) return false; // Leave it to the legalizer to lower it to a libcall. unsigned KnownLen = LenVRegAndVal->Value; if (KnownLen == 0) { MI.eraseFromParent(); return true; } if (MaxLen && KnownLen > MaxLen) return false; if (ID == Intrinsic::memcpy) return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); if (ID == Intrinsic::memmove) return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); if (ID == Intrinsic::memset) return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); return false; } bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, PtrAddChain &MatchInfo) { // We're trying to match the following pattern: // %t1 = G_PTR_ADD %base, G_CONSTANT imm1 // %root = G_PTR_ADD %t1, G_CONSTANT imm2 // --> // %root = G_PTR_ADD %base, G_CONSTANT (imm1 + imm2) if (MI.getOpcode() != TargetOpcode::G_PTR_ADD) return false; Register Add2 = MI.getOperand(1).getReg(); Register Imm1 = MI.getOperand(2).getReg(); auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); if (!MaybeImmVal) return false; MachineInstr *Add2Def = MRI.getUniqueVRegDef(Add2); if (!Add2Def || Add2Def->getOpcode() != TargetOpcode::G_PTR_ADD) return false; Register Base = Add2Def->getOperand(1).getReg(); Register Imm2 = Add2Def->getOperand(2).getReg(); auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); if (!MaybeImm2Val) return false; // Pass the combined immediate to the apply function. MatchInfo.Imm = MaybeImmVal->Value + MaybeImm2Val->Value; MatchInfo.Base = Base; return true; } bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, PtrAddChain &MatchInfo) { assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected G_PTR_ADD"); MachineIRBuilder MIB(MI); LLT OffsetTy = MRI.getType(MI.getOperand(2).getReg()); auto NewOffset = MIB.buildConstant(OffsetTy, MatchInfo.Imm); Observer.changingInstr(MI); MI.getOperand(1).setReg(MatchInfo.Base); MI.getOperand(2).setReg(NewOffset.getReg(0)); Observer.changedInstr(MI); return true; } bool CombinerHelper::tryCombine(MachineInstr &MI) { if (tryCombineCopy(MI)) return true; if (tryCombineExtendingLoads(MI)) return true; if (tryCombineIndexedLoadStore(MI)) return true; return false; }