//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// Replaces repeated sequences of instructions with function calls. /// /// This works by placing every instruction from every basic block in a /// suffix tree, and repeatedly querying that tree for repeated sequences of /// instructions. If a sequence of instructions appears often, then it ought /// to be beneficial to pull out into a function. /// /// The MachineOutliner communicates with a given target using hooks defined in /// TargetInstrInfo.h. The target supplies the outliner with information on how /// a specific sequence of instructions should be outlined. This information /// is used to deduce the number of instructions necessary to /// /// * Create an outlined function /// * Call that outlined function /// /// Targets must implement /// * getOutliningCandidateInfo /// * buildOutlinedFrame /// * insertOutlinedCall /// * isFunctionSafeToOutlineFrom /// /// in order to make use of the MachineOutliner. /// /// This was originally presented at the 2016 LLVM Developers' Meeting in the /// talk "Reducing Code Size Using Outlining". For a high-level overview of /// how this pass works, the talk is available on YouTube at /// /// https://www.youtube.com/watch?v=yorld-WSOeU /// /// The slides for the talk are available at /// /// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf /// /// The talk provides an overview of how the outliner finds candidates and /// ultimately outlines them. It describes how the main data structure for this /// pass, the suffix tree, is queried and purged for candidates. It also gives /// a simplified suffix tree construction algorithm for suffix trees based off /// of the algorithm actually used here, Ukkonen's algorithm. /// /// For the original RFC for this pass, please see /// /// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html /// /// For more information on the suffix tree data structure, please see /// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf /// //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineOutliner.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Twine.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Mangler.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/SuffixTree.h" #include "llvm/Support/raw_ostream.h" #include #include #include #define DEBUG_TYPE "machine-outliner" using namespace llvm; using namespace ore; using namespace outliner; // Statistics for outlined functions. STATISTIC(NumOutlined, "Number of candidates outlined"); STATISTIC(FunctionsCreated, "Number of functions created"); // Statistics for instruction mapping. STATISTIC(NumLegalInUnsignedVec, "Outlinable instructions mapped"); STATISTIC(NumIllegalInUnsignedVec, "Unoutlinable instructions mapped + number of sentinel values"); STATISTIC(NumSentinels, "Sentinel values inserted during mapping"); STATISTIC(NumInvisible, "Invisible instructions skipped during mapping"); STATISTIC(UnsignedVecSize, "Total number of instructions mapped and saved to mapping vector"); // Set to true if the user wants the outliner to run on linkonceodr linkage // functions. This is false by default because the linker can dedupe linkonceodr // functions. Since the outliner is confined to a single module (modulo LTO), // this is off by default. It should, however, be the default behaviour in // LTO. static cl::opt EnableLinkOnceODROutlining( "enable-linkonceodr-outlining", cl::Hidden, cl::desc("Enable the machine outliner on linkonceodr functions"), cl::init(false)); /// Number of times to re-run the outliner. This is not the total number of runs /// as the outliner will run at least one time. The default value is set to 0, /// meaning the outliner will run one time and rerun zero times after that. static cl::opt OutlinerReruns( "machine-outliner-reruns", cl::init(0), cl::Hidden, cl::desc( "Number of times to rerun the outliner after the initial outline")); static cl::opt OutlinerBenefitThreshold( "outliner-benefit-threshold", cl::init(1), cl::Hidden, cl::desc( "The minimum size in bytes before an outlining candidate is accepted")); namespace { /// Maps \p MachineInstrs to unsigned integers and stores the mappings. struct InstructionMapper { /// The next available integer to assign to a \p MachineInstr that /// cannot be outlined. /// /// Set to -3 for compatability with \p DenseMapInfo. unsigned IllegalInstrNumber = -3; /// The next available integer to assign to a \p MachineInstr that can /// be outlined. unsigned LegalInstrNumber = 0; /// Correspondence from \p MachineInstrs to unsigned integers. DenseMap InstructionIntegerMap; /// Correspondence between \p MachineBasicBlocks and target-defined flags. DenseMap MBBFlagsMap; /// The vector of unsigned integers that the module is mapped to. SmallVector UnsignedVec; /// Stores the location of the instruction associated with the integer /// at index i in \p UnsignedVec for each index i. SmallVector InstrList; // Set if we added an illegal number in the previous step. // Since each illegal number is unique, we only need one of them between // each range of legal numbers. This lets us make sure we don't add more // than one illegal number per range. bool AddedIllegalLastTime = false; /// Maps \p *It to a legal integer. /// /// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB, /// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber. /// /// \returns The integer that \p *It was mapped to. unsigned mapToLegalUnsigned( MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, bool &HaveLegalRange, unsigned &NumLegalInBlock, SmallVector &UnsignedVecForMBB, SmallVector &InstrListForMBB) { // We added something legal, so we should unset the AddedLegalLastTime // flag. AddedIllegalLastTime = false; // If we have at least two adjacent legal instructions (which may have // invisible instructions in between), remember that. if (CanOutlineWithPrevInstr) HaveLegalRange = true; CanOutlineWithPrevInstr = true; // Keep track of the number of legal instructions we insert. NumLegalInBlock++; // Get the integer for this instruction or give it the current // LegalInstrNumber. InstrListForMBB.push_back(It); MachineInstr &MI = *It; bool WasInserted; DenseMap::iterator ResultIt; std::tie(ResultIt, WasInserted) = InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber)); unsigned MINumber = ResultIt->second; // There was an insertion. if (WasInserted) LegalInstrNumber++; UnsignedVecForMBB.push_back(MINumber); // Make sure we don't overflow or use any integers reserved by the DenseMap. if (LegalInstrNumber >= IllegalInstrNumber) report_fatal_error("Instruction mapping overflow!"); assert(LegalInstrNumber != DenseMapInfo::getEmptyKey() && "Tried to assign DenseMap tombstone or empty key to instruction."); assert(LegalInstrNumber != DenseMapInfo::getTombstoneKey() && "Tried to assign DenseMap tombstone or empty key to instruction."); // Statistics. ++NumLegalInUnsignedVec; return MINumber; } /// Maps \p *It to an illegal integer. /// /// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p /// IllegalInstrNumber. /// /// \returns The integer that \p *It was mapped to. unsigned mapToIllegalUnsigned( MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr, SmallVector &UnsignedVecForMBB, SmallVector &InstrListForMBB) { // Can't outline an illegal instruction. Set the flag. CanOutlineWithPrevInstr = false; // Only add one illegal number per range of legal numbers. if (AddedIllegalLastTime) return IllegalInstrNumber; // Remember that we added an illegal number last time. AddedIllegalLastTime = true; unsigned MINumber = IllegalInstrNumber; InstrListForMBB.push_back(It); UnsignedVecForMBB.push_back(IllegalInstrNumber); IllegalInstrNumber--; // Statistics. ++NumIllegalInUnsignedVec; assert(LegalInstrNumber < IllegalInstrNumber && "Instruction mapping overflow!"); assert(IllegalInstrNumber != DenseMapInfo::getEmptyKey() && "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); assert(IllegalInstrNumber != DenseMapInfo::getTombstoneKey() && "IllegalInstrNumber cannot be DenseMap tombstone or empty key!"); return MINumber; } /// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds /// and appends it to \p UnsignedVec and \p InstrList. /// /// Two instructions are assigned the same integer if they are identical. /// If an instruction is deemed unsafe to outline, then it will be assigned an /// unique integer. The resulting mapping is placed into a suffix tree and /// queried for candidates. /// /// \param MBB The \p MachineBasicBlock to be translated into integers. /// \param TII \p TargetInstrInfo for the function. void convertToUnsignedVec(MachineBasicBlock &MBB, const TargetInstrInfo &TII) { LLVM_DEBUG(dbgs() << "*** Converting MBB '" << MBB.getName() << "' to unsigned vector ***\n"); unsigned Flags = 0; // Don't even map in this case. if (!TII.isMBBSafeToOutlineFrom(MBB, Flags)) return; auto OutlinableRanges = TII.getOutlinableRanges(MBB, Flags); LLVM_DEBUG(dbgs() << MBB.getName() << ": " << OutlinableRanges.size() << " outlinable range(s)\n"); if (OutlinableRanges.empty()) return; // Store info for the MBB for later outlining. MBBFlagsMap[&MBB] = Flags; MachineBasicBlock::iterator It = MBB.begin(); // The number of instructions in this block that will be considered for // outlining. unsigned NumLegalInBlock = 0; // True if we have at least two legal instructions which aren't separated // by an illegal instruction. bool HaveLegalRange = false; // True if we can perform outlining given the last mapped (non-invisible) // instruction. This lets us know if we have a legal range. bool CanOutlineWithPrevInstr = false; // FIXME: Should this all just be handled in the target, rather than using // repeated calls to getOutliningType? SmallVector UnsignedVecForMBB; SmallVector InstrListForMBB; LLVM_DEBUG(dbgs() << "*** Mapping outlinable ranges ***\n"); for (auto &OutlinableRange : OutlinableRanges) { auto OutlinableRangeBegin = OutlinableRange.first; auto OutlinableRangeEnd = OutlinableRange.second; #ifndef NDEBUG LLVM_DEBUG( dbgs() << "Mapping " << std::distance(OutlinableRangeBegin, OutlinableRangeEnd) << " instruction range\n"); // Everything outside of an outlinable range is illegal. unsigned NumSkippedInRange = 0; #endif for (; It != OutlinableRangeBegin; ++It) { #ifndef NDEBUG ++NumSkippedInRange; #endif mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, InstrListForMBB); } #ifndef NDEBUG LLVM_DEBUG(dbgs() << "Skipped " << NumSkippedInRange << " instructions outside outlinable range\n"); #endif assert(It != MBB.end() && "Should still have instructions?"); // `It` is now positioned at the beginning of a range of instructions // which may be outlinable. Check if each instruction is known to be safe. for (; It != OutlinableRangeEnd; ++It) { // Keep track of where this instruction is in the module. switch (TII.getOutliningType(It, Flags)) { case InstrType::Illegal: mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, InstrListForMBB); break; case InstrType::Legal: mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); break; case InstrType::LegalTerminator: mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange, NumLegalInBlock, UnsignedVecForMBB, InstrListForMBB); // The instruction also acts as a terminator, so we have to record // that in the string. mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, InstrListForMBB); break; case InstrType::Invisible: // Normally this is set by mapTo(Blah)Unsigned, but we just want to // skip this instruction. So, unset the flag here. ++NumInvisible; AddedIllegalLastTime = false; break; } } } LLVM_DEBUG(dbgs() << "HaveLegalRange = " << HaveLegalRange << "\n"); // Are there enough legal instructions in the block for outlining to be // possible? if (HaveLegalRange) { // After we're done every insertion, uniquely terminate this part of the // "string". This makes sure we won't match across basic block or function // boundaries since the "end" is encoded uniquely and thus appears in no // repeated substring. mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB, InstrListForMBB); ++NumSentinels; append_range(InstrList, InstrListForMBB); append_range(UnsignedVec, UnsignedVecForMBB); } } InstructionMapper() { // Make sure that the implementation of DenseMapInfo hasn't // changed. assert(DenseMapInfo::getEmptyKey() == (unsigned)-1 && "DenseMapInfo's empty key isn't -1!"); assert(DenseMapInfo::getTombstoneKey() == (unsigned)-2 && "DenseMapInfo's tombstone key isn't -2!"); } }; /// An interprocedural pass which finds repeated sequences of /// instructions and replaces them with calls to functions. /// /// Each instruction is mapped to an unsigned integer and placed in a string. /// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree /// is then repeatedly queried for repeated sequences of instructions. Each /// non-overlapping repeated sequence is then placed in its own /// \p MachineFunction and each instance is then replaced with a call to that /// function. struct MachineOutliner : public ModulePass { static char ID; /// Set to true if the outliner should consider functions with /// linkonceodr linkage. bool OutlineFromLinkOnceODRs = false; /// The current repeat number of machine outlining. unsigned OutlineRepeatedNum = 0; /// Set to true if the outliner should run on all functions in the module /// considered safe for outlining. /// Set to true by default for compatibility with llc's -run-pass option. /// Set when the pass is constructed in TargetPassConfig. bool RunOnAllFunctions = true; StringRef getPassName() const override { return "Machine Outliner"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.setPreservesAll(); ModulePass::getAnalysisUsage(AU); } MachineOutliner() : ModulePass(ID) { initializeMachineOutlinerPass(*PassRegistry::getPassRegistry()); } /// Remark output explaining that not outlining a set of candidates would be /// better than outlining that set. void emitNotOutliningCheaperRemark( unsigned StringLen, std::vector &CandidatesForRepeatedSeq, OutlinedFunction &OF); /// Remark output explaining that a function was outlined. void emitOutlinedFunctionRemark(OutlinedFunction &OF); /// Find all repeated substrings that satisfy the outlining cost model by /// constructing a suffix tree. /// /// If a substring appears at least twice, then it must be represented by /// an internal node which appears in at least two suffixes. Each suffix /// is represented by a leaf node. To do this, we visit each internal node /// in the tree, using the leaf children of each internal node. If an /// internal node represents a beneficial substring, then we use each of /// its leaf children to find the locations of its substring. /// /// \param Mapper Contains outlining mapping information. /// \param[out] FunctionList Filled with a list of \p OutlinedFunctions /// each type of candidate. void findCandidates(InstructionMapper &Mapper, std::vector &FunctionList); /// Replace the sequences of instructions represented by \p OutlinedFunctions /// with calls to functions. /// /// \param M The module we are outlining from. /// \param FunctionList A list of functions to be inserted into the module. /// \param Mapper Contains the instruction mappings for the module. bool outline(Module &M, std::vector &FunctionList, InstructionMapper &Mapper, unsigned &OutlinedFunctionNum); /// Creates a function for \p OF and inserts it into the module. MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name); /// Calls 'doOutline()' 1 + OutlinerReruns times. bool runOnModule(Module &M) override; /// Construct a suffix tree on the instructions in \p M and outline repeated /// strings from that tree. bool doOutline(Module &M, unsigned &OutlinedFunctionNum); /// Return a DISubprogram for OF if one exists, and null otherwise. Helper /// function for remark emission. DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) { for (const Candidate &C : OF.Candidates) if (MachineFunction *MF = C.getMF()) if (DISubprogram *SP = MF->getFunction().getSubprogram()) return SP; return nullptr; } /// Populate and \p InstructionMapper with instruction-to-integer mappings. /// These are used to construct a suffix tree. void populateMapper(InstructionMapper &Mapper, Module &M, MachineModuleInfo &MMI); /// Initialize information necessary to output a size remark. /// FIXME: This should be handled by the pass manager, not the outliner. /// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy /// pass manager. void initSizeRemarkInfo(const Module &M, const MachineModuleInfo &MMI, StringMap &FunctionToInstrCount); /// Emit the remark. // FIXME: This should be handled by the pass manager, not the outliner. void emitInstrCountChangedRemark(const Module &M, const MachineModuleInfo &MMI, const StringMap &FunctionToInstrCount); }; } // Anonymous namespace. char MachineOutliner::ID = 0; namespace llvm { ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) { MachineOutliner *OL = new MachineOutliner(); OL->RunOnAllFunctions = RunOnAllFunctions; return OL; } } // namespace llvm INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false, false) void MachineOutliner::emitNotOutliningCheaperRemark( unsigned StringLen, std::vector &CandidatesForRepeatedSeq, OutlinedFunction &OF) { // FIXME: Right now, we arbitrarily choose some Candidate from the // OutlinedFunction. This isn't necessarily fixed, nor does it have to be. // We should probably sort these by function name or something to make sure // the remarks are stable. Candidate &C = CandidatesForRepeatedSeq.front(); MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr); MORE.emit([&]() { MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper", C.front()->getDebugLoc(), C.getMBB()); R << "Did not outline " << NV("Length", StringLen) << " instructions" << " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size()) << " locations." << " Bytes from outlining all occurrences (" << NV("OutliningCost", OF.getOutliningCost()) << ")" << " >= Unoutlined instruction bytes (" << NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")" << " (Also found at: "; // Tell the user the other places the candidate was found. for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) { R << NV((Twine("OtherStartLoc") + Twine(i)).str(), CandidatesForRepeatedSeq[i].front()->getDebugLoc()); if (i != e - 1) R << ", "; } R << ")"; return R; }); } void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) { MachineBasicBlock *MBB = &*OF.MF->begin(); MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr); MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction", MBB->findDebugLoc(MBB->begin()), MBB); R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by " << "outlining " << NV("Length", OF.getNumInstrs()) << " instructions " << "from " << NV("NumOccurrences", OF.getOccurrenceCount()) << " locations. " << "(Found at: "; // Tell the user the other places the candidate was found. for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) { R << NV((Twine("StartLoc") + Twine(i)).str(), OF.Candidates[i].front()->getDebugLoc()); if (i != e - 1) R << ", "; } R << ")"; MORE.emit(R); } void MachineOutliner::findCandidates( InstructionMapper &Mapper, std::vector &FunctionList) { FunctionList.clear(); SuffixTree ST(Mapper.UnsignedVec); // First, find all of the repeated substrings in the tree of minimum length // 2. std::vector CandidatesForRepeatedSeq; LLVM_DEBUG(dbgs() << "*** Discarding overlapping candidates *** \n"); LLVM_DEBUG( dbgs() << "Searching for overlaps in all repeated sequences...\n"); for (const SuffixTree::RepeatedSubstring &RS : ST) { CandidatesForRepeatedSeq.clear(); unsigned StringLen = RS.Length; LLVM_DEBUG(dbgs() << " Sequence length: " << StringLen << "\n"); // Debug code to keep track of how many candidates we removed. #ifndef NDEBUG unsigned NumDiscarded = 0; unsigned NumKept = 0; #endif for (const unsigned &StartIdx : RS.StartIndices) { // Trick: Discard some candidates that would be incompatible with the // ones we've already found for this sequence. This will save us some // work in candidate selection. // // If two candidates overlap, then we can't outline them both. This // happens when we have candidates that look like, say // // AA (where each "A" is an instruction). // // We might have some portion of the module that looks like this: // AAAAAA (6 A's) // // In this case, there are 5 different copies of "AA" in this range, but // at most 3 can be outlined. If only outlining 3 of these is going to // be unbeneficial, then we ought to not bother. // // Note that two things DON'T overlap when they look like this: // start1...end1 .... start2...end2 // That is, one must either // * End before the other starts // * Start after the other ends unsigned EndIdx = StartIdx + StringLen - 1; auto FirstOverlap = find_if( CandidatesForRepeatedSeq, [StartIdx, EndIdx](const Candidate &C) { return EndIdx >= C.getStartIdx() && StartIdx <= C.getEndIdx(); }); if (FirstOverlap != CandidatesForRepeatedSeq.end()) { #ifndef NDEBUG ++NumDiscarded; LLVM_DEBUG(dbgs() << " .. DISCARD candidate @ [" << StartIdx << ", " << EndIdx << "]; overlaps with candidate @ [" << FirstOverlap->getStartIdx() << ", " << FirstOverlap->getEndIdx() << "]\n"); #endif continue; } // It doesn't overlap with anything, so we can outline it. // Each sequence is over [StartIt, EndIt]. // Save the candidate and its location. #ifndef NDEBUG ++NumKept; #endif MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx]; MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx]; MachineBasicBlock *MBB = StartIt->getParent(); CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, EndIt, MBB, FunctionList.size(), Mapper.MBBFlagsMap[MBB]); } #ifndef NDEBUG LLVM_DEBUG(dbgs() << " Candidates discarded: " << NumDiscarded << "\n"); LLVM_DEBUG(dbgs() << " Candidates kept: " << NumKept << "\n\n"); #endif // We've found something we might want to outline. // Create an OutlinedFunction to store it and check if it'd be beneficial // to outline. if (CandidatesForRepeatedSeq.size() < 2) continue; // Arbitrarily choose a TII from the first candidate. // FIXME: Should getOutliningCandidateInfo move to TargetMachine? const TargetInstrInfo *TII = CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo(); std::optional OF = TII->getOutliningCandidateInfo(CandidatesForRepeatedSeq); // If we deleted too many candidates, then there's nothing worth outlining. // FIXME: This should take target-specified instruction sizes into account. if (!OF || OF->Candidates.size() < 2) continue; // Is it better to outline this candidate than not? if (OF->getBenefit() < OutlinerBenefitThreshold) { emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq, *OF); continue; } FunctionList.push_back(*OF); } } MachineFunction *MachineOutliner::createOutlinedFunction( Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) { // Create the function name. This should be unique. // FIXME: We should have a better naming scheme. This should be stable, // regardless of changes to the outliner's cost model/traversal order. std::string FunctionName = "OUTLINED_FUNCTION_"; if (OutlineRepeatedNum > 0) FunctionName += std::to_string(OutlineRepeatedNum + 1) + "_"; FunctionName += std::to_string(Name); LLVM_DEBUG(dbgs() << "NEW FUNCTION: " << FunctionName << "\n"); // Create the function using an IR-level function. LLVMContext &C = M.getContext(); Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false), Function::ExternalLinkage, FunctionName, M); // NOTE: If this is linkonceodr, then we can take advantage of linker deduping // which gives us better results when we outline from linkonceodr functions. F->setLinkage(GlobalValue::InternalLinkage); F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Set optsize/minsize, so we don't insert padding between outlined // functions. F->addFnAttr(Attribute::OptimizeForSize); F->addFnAttr(Attribute::MinSize); Candidate &FirstCand = OF.Candidates.front(); const TargetInstrInfo &TII = *FirstCand.getMF()->getSubtarget().getInstrInfo(); TII.mergeOutliningCandidateAttributes(*F, OF.Candidates); // Set uwtable, so we generate eh_frame. UWTableKind UW = std::accumulate( OF.Candidates.cbegin(), OF.Candidates.cend(), UWTableKind::None, [](UWTableKind K, const outliner::Candidate &C) { return std::max(K, C.getMF()->getFunction().getUWTableKind()); }); if (UW != UWTableKind::None) F->setUWTableKind(UW); BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F); IRBuilder<> Builder(EntryBB); Builder.CreateRetVoid(); MachineModuleInfo &MMI = getAnalysis().getMMI(); MachineFunction &MF = MMI.getOrCreateMachineFunction(*F); MF.setIsOutlined(true); MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock(); // Insert the new function into the module. MF.insert(MF.begin(), &MBB); MachineFunction *OriginalMF = FirstCand.front()->getMF(); const std::vector &Instrs = OriginalMF->getFrameInstructions(); for (auto I = FirstCand.front(), E = std::next(FirstCand.back()); I != E; ++I) { if (I->isDebugInstr()) continue; // Don't keep debug information for outlined instructions. auto DL = DebugLoc(); if (I->isCFIInstruction()) { unsigned CFIIndex = I->getOperand(0).getCFIIndex(); MCCFIInstruction CFI = Instrs[CFIIndex]; BuildMI(MBB, MBB.end(), DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(MF.addFrameInst(CFI)); } else { MachineInstr *NewMI = MF.CloneMachineInstr(&*I); NewMI->dropMemRefs(MF); NewMI->setDebugLoc(DL); MBB.insert(MBB.end(), NewMI); } } // Set normal properties for a late MachineFunction. MF.getProperties().reset(MachineFunctionProperties::Property::IsSSA); MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs); MF.getProperties().set(MachineFunctionProperties::Property::TracksLiveness); MF.getRegInfo().freezeReservedRegs(MF); // Compute live-in set for outlined fn const MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); LivePhysRegs LiveIns(TRI); for (auto &Cand : OF.Candidates) { // Figure out live-ins at the first instruction. MachineBasicBlock &OutlineBB = *Cand.front()->getParent(); LivePhysRegs CandLiveIns(TRI); CandLiveIns.addLiveOuts(OutlineBB); for (const MachineInstr &MI : reverse(make_range(Cand.front(), OutlineBB.end()))) CandLiveIns.stepBackward(MI); // The live-in set for the outlined function is the union of the live-ins // from all the outlining points. for (MCPhysReg Reg : CandLiveIns) LiveIns.addReg(Reg); } addLiveIns(MBB, LiveIns); TII.buildOutlinedFrame(MBB, MF, OF); // If there's a DISubprogram associated with this outlined function, then // emit debug info for the outlined function. if (DISubprogram *SP = getSubprogramOrNull(OF)) { // We have a DISubprogram. Get its DICompileUnit. DICompileUnit *CU = SP->getUnit(); DIBuilder DB(M, true, CU); DIFile *Unit = SP->getFile(); Mangler Mg; // Get the mangled name of the function for the linkage name. std::string Dummy; raw_string_ostream MangledNameStream(Dummy); Mg.getNameWithPrefix(MangledNameStream, F, false); DISubprogram *OutlinedSP = DB.createFunction( Unit /* Context */, F->getName(), StringRef(MangledNameStream.str()), Unit /* File */, 0 /* Line 0 is reserved for compiler-generated code. */, DB.createSubroutineType( DB.getOrCreateTypeArray(std::nullopt)), /* void type */ 0, /* Line 0 is reserved for compiler-generated code. */ DINode::DIFlags::FlagArtificial /* Compiler-generated code. */, /* Outlined code is optimized code by definition. */ DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized); // Don't add any new variables to the subprogram. DB.finalizeSubprogram(OutlinedSP); // Attach subprogram to the function. F->setSubprogram(OutlinedSP); // We're done with the DIBuilder. DB.finalize(); } return &MF; } bool MachineOutliner::outline(Module &M, std::vector &FunctionList, InstructionMapper &Mapper, unsigned &OutlinedFunctionNum) { LLVM_DEBUG(dbgs() << "*** Outlining ***\n"); LLVM_DEBUG(dbgs() << "NUMBER OF POTENTIAL FUNCTIONS: " << FunctionList.size() << "\n"); bool OutlinedSomething = false; // Sort by benefit. The most beneficial functions should be outlined first. stable_sort(FunctionList, [](const OutlinedFunction &LHS, const OutlinedFunction &RHS) { return LHS.getBenefit() > RHS.getBenefit(); }); // Walk over each function, outlining them as we go along. Functions are // outlined greedily, based off the sort above. auto *UnsignedVecBegin = Mapper.UnsignedVec.begin(); LLVM_DEBUG(dbgs() << "WALKING FUNCTION LIST\n"); for (OutlinedFunction &OF : FunctionList) { #ifndef NDEBUG auto NumCandidatesBefore = OF.Candidates.size(); #endif // If we outlined something that overlapped with a candidate in a previous // step, then we can't outline from it. erase_if(OF.Candidates, [&UnsignedVecBegin](Candidate &C) { return std::any_of(UnsignedVecBegin + C.getStartIdx(), UnsignedVecBegin + C.getEndIdx() + 1, [](unsigned I) { return I == static_cast(-1); }); }); #ifndef NDEBUG auto NumCandidatesAfter = OF.Candidates.size(); LLVM_DEBUG(dbgs() << "PRUNED: " << NumCandidatesBefore - NumCandidatesAfter << "/" << NumCandidatesBefore << " candidates\n"); #endif // If we made it unbeneficial to outline this function, skip it. if (OF.getBenefit() < OutlinerBenefitThreshold) { LLVM_DEBUG(dbgs() << "SKIP: Expected benefit (" << OF.getBenefit() << " B) < threshold (" << OutlinerBenefitThreshold << " B)\n"); continue; } LLVM_DEBUG(dbgs() << "OUTLINE: Expected benefit (" << OF.getBenefit() << " B) > threshold (" << OutlinerBenefitThreshold << " B)\n"); // It's beneficial. Create the function and outline its sequence's // occurrences. OF.MF = createOutlinedFunction(M, OF, Mapper, OutlinedFunctionNum); emitOutlinedFunctionRemark(OF); FunctionsCreated++; OutlinedFunctionNum++; // Created a function, move to the next name. MachineFunction *MF = OF.MF; const TargetSubtargetInfo &STI = MF->getSubtarget(); const TargetInstrInfo &TII = *STI.getInstrInfo(); // Replace occurrences of the sequence with calls to the new function. LLVM_DEBUG(dbgs() << "CREATE OUTLINED CALLS\n"); for (Candidate &C : OF.Candidates) { MachineBasicBlock &MBB = *C.getMBB(); MachineBasicBlock::iterator StartIt = C.front(); MachineBasicBlock::iterator EndIt = C.back(); // Insert the call. auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C); // Insert the call. #ifndef NDEBUG auto MBBBeingOutlinedFromName = MBB.getName().empty() ? "" : MBB.getName().str(); auto MFBeingOutlinedFromName = MBB.getParent()->getName().empty() ? "" : MBB.getParent()->getName().str(); LLVM_DEBUG(dbgs() << " CALL: " << MF->getName() << " in " << MFBeingOutlinedFromName << ":" << MBBBeingOutlinedFromName << "\n"); LLVM_DEBUG(dbgs() << " .. " << *CallInst); #endif // If the caller tracks liveness, then we need to make sure that // anything we outline doesn't break liveness assumptions. The outlined // functions themselves currently don't track liveness, but we should // make sure that the ranges we yank things out of aren't wrong. if (MBB.getParent()->getProperties().hasProperty( MachineFunctionProperties::Property::TracksLiveness)) { // The following code is to add implicit def operands to the call // instruction. It also updates call site information for moved // code. SmallSet UseRegs, DefRegs; // Copy over the defs in the outlined range. // First inst in outlined range <-- Anything that's defined in this // ... .. range has to be added as an // implicit Last inst in outlined range <-- def to the call // instruction. Also remove call site information for outlined block // of code. The exposed uses need to be copied in the outlined range. for (MachineBasicBlock::reverse_iterator Iter = EndIt.getReverse(), Last = std::next(CallInst.getReverse()); Iter != Last; Iter++) { MachineInstr *MI = &*Iter; SmallSet InstrUseRegs; for (MachineOperand &MOP : MI->operands()) { // Skip over anything that isn't a register. if (!MOP.isReg()) continue; if (MOP.isDef()) { // Introduce DefRegs set to skip the redundant register. DefRegs.insert(MOP.getReg()); if (UseRegs.count(MOP.getReg()) && !InstrUseRegs.count(MOP.getReg())) // Since the regiester is modeled as defined, // it is not necessary to be put in use register set. UseRegs.erase(MOP.getReg()); } else if (!MOP.isUndef()) { // Any register which is not undefined should // be put in the use register set. UseRegs.insert(MOP.getReg()); InstrUseRegs.insert(MOP.getReg()); } } if (MI->isCandidateForCallSiteEntry()) MI->getMF()->eraseCallSiteInfo(MI); } for (const Register &I : DefRegs) // If it's a def, add it to the call instruction. CallInst->addOperand( MachineOperand::CreateReg(I, true, /* isDef = true */ true /* isImp = true */)); for (const Register &I : UseRegs) // If it's a exposed use, add it to the call instruction. CallInst->addOperand( MachineOperand::CreateReg(I, false, /* isDef = false */ true /* isImp = true */)); } // Erase from the point after where the call was inserted up to, and // including, the final instruction in the sequence. // Erase needs one past the end, so we need std::next there too. MBB.erase(std::next(StartIt), std::next(EndIt)); // Keep track of what we removed by marking them all as -1. for (unsigned &I : make_range(UnsignedVecBegin + C.getStartIdx(), UnsignedVecBegin + C.getEndIdx() + 1)) I = static_cast(-1); OutlinedSomething = true; // Statistics. NumOutlined++; } } LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";); return OutlinedSomething; } void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M, MachineModuleInfo &MMI) { // Build instruction mappings for each function in the module. Start by // iterating over each Function in M. LLVM_DEBUG(dbgs() << "*** Populating mapper ***\n"); for (Function &F : M) { LLVM_DEBUG(dbgs() << "MAPPING FUNCTION: " << F.getName() << "\n"); if (F.hasFnAttribute("nooutline")) { LLVM_DEBUG(dbgs() << "SKIP: Function has nooutline attribute\n"); continue; } // There's something in F. Check if it has a MachineFunction associated with // it. MachineFunction *MF = MMI.getMachineFunction(F); // If it doesn't, then there's nothing to outline from. Move to the next // Function. if (!MF) { LLVM_DEBUG(dbgs() << "SKIP: Function does not have a MachineFunction\n"); continue; } const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) { LLVM_DEBUG(dbgs() << "SKIP: Target does not want to outline from " "function by default\n"); continue; } // We have a MachineFunction. Ask the target if it's suitable for outlining. // If it isn't, then move on to the next Function in the module. if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) { LLVM_DEBUG(dbgs() << "SKIP: " << MF->getName() << ": unsafe to outline from\n"); continue; } // We have a function suitable for outlining. Iterate over every // MachineBasicBlock in MF and try to map its instructions to a list of // unsigned integers. const unsigned MinMBBSize = 2; for (MachineBasicBlock &MBB : *MF) { LLVM_DEBUG(dbgs() << " MAPPING MBB: '" << MBB.getName() << "'\n"); // If there isn't anything in MBB, then there's no point in outlining from // it. // If there are fewer than 2 instructions in the MBB, then it can't ever // contain something worth outlining. // FIXME: This should be based off of the maximum size in B of an outlined // call versus the size in B of the MBB. if (MBB.size() < MinMBBSize) { LLVM_DEBUG(dbgs() << " SKIP: MBB size less than minimum size of " << MinMBBSize << "\n"); continue; } // Check if MBB could be the target of an indirect branch. If it is, then // we don't want to outline from it. if (MBB.hasAddressTaken()) { LLVM_DEBUG(dbgs() << " SKIP: MBB's address is taken\n"); continue; } // MBB is suitable for outlining. Map it to a list of unsigneds. Mapper.convertToUnsignedVec(MBB, *TII); } } // Statistics. UnsignedVecSize = Mapper.UnsignedVec.size(); } void MachineOutliner::initSizeRemarkInfo( const Module &M, const MachineModuleInfo &MMI, StringMap &FunctionToInstrCount) { // Collect instruction counts for every function. We'll use this to emit // per-function size remarks later. for (const Function &F : M) { MachineFunction *MF = MMI.getMachineFunction(F); // We only care about MI counts here. If there's no MachineFunction at this // point, then there won't be after the outliner runs, so let's move on. if (!MF) continue; FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount(); } } void MachineOutliner::emitInstrCountChangedRemark( const Module &M, const MachineModuleInfo &MMI, const StringMap &FunctionToInstrCount) { // Iterate over each function in the module and emit remarks. // Note that we won't miss anything by doing this, because the outliner never // deletes functions. for (const Function &F : M) { MachineFunction *MF = MMI.getMachineFunction(F); // The outliner never deletes functions. If we don't have a MF here, then we // didn't have one prior to outlining either. if (!MF) continue; std::string Fname = std::string(F.getName()); unsigned FnCountAfter = MF->getInstructionCount(); unsigned FnCountBefore = 0; // Check if the function was recorded before. auto It = FunctionToInstrCount.find(Fname); // Did we have a previously-recorded size? If yes, then set FnCountBefore // to that. if (It != FunctionToInstrCount.end()) FnCountBefore = It->second; // Compute the delta and emit a remark if there was a change. int64_t FnDelta = static_cast(FnCountAfter) - static_cast(FnCountBefore); if (FnDelta == 0) continue; MachineOptimizationRemarkEmitter MORE(*MF, nullptr); MORE.emit([&]() { MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange", DiagnosticLocation(), &MF->front()); R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner") << ": Function: " << DiagnosticInfoOptimizationBase::Argument("Function", F.getName()) << ": MI instruction count changed from " << DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore", FnCountBefore) << " to " << DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter", FnCountAfter) << "; Delta: " << DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta); return R; }); } } bool MachineOutliner::runOnModule(Module &M) { // Check if there's anything in the module. If it's empty, then there's // nothing to outline. if (M.empty()) return false; // Number to append to the current outlined function. unsigned OutlinedFunctionNum = 0; OutlineRepeatedNum = 0; if (!doOutline(M, OutlinedFunctionNum)) return false; for (unsigned I = 0; I < OutlinerReruns; ++I) { OutlinedFunctionNum = 0; OutlineRepeatedNum++; if (!doOutline(M, OutlinedFunctionNum)) { LLVM_DEBUG({ dbgs() << "Did not outline on iteration " << I + 2 << " out of " << OutlinerReruns + 1 << "\n"; }); break; } } return true; } bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) { MachineModuleInfo &MMI = getAnalysis().getMMI(); // If the user passed -enable-machine-outliner=always or // -enable-machine-outliner, the pass will run on all functions in the module. // Otherwise, if the target supports default outlining, it will run on all // functions deemed by the target to be worth outlining from by default. Tell // the user how the outliner is running. LLVM_DEBUG({ dbgs() << "Machine Outliner: Running on "; if (RunOnAllFunctions) dbgs() << "all functions"; else dbgs() << "target-default functions"; dbgs() << "\n"; }); // If the user specifies that they want to outline from linkonceodrs, set // it here. OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining; InstructionMapper Mapper; // Prepare instruction mappings for the suffix tree. populateMapper(Mapper, M, MMI); std::vector FunctionList; // Find all of the outlining candidates. findCandidates(Mapper, FunctionList); // If we've requested size remarks, then collect the MI counts of every // function before outlining, and the MI counts after outlining. // FIXME: This shouldn't be in the outliner at all; it should ultimately be // the pass manager's responsibility. // This could pretty easily be placed in outline instead, but because we // really ultimately *don't* want this here, it's done like this for now // instead. // Check if we want size remarks. bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark(); StringMap FunctionToInstrCount; if (ShouldEmitSizeRemarks) initSizeRemarkInfo(M, MMI, FunctionToInstrCount); // Outline each of the candidates and return true if something was outlined. bool OutlinedSomething = outline(M, FunctionList, Mapper, OutlinedFunctionNum); // If we outlined something, we definitely changed the MI count of the // module. If we've asked for size remarks, then output them. // FIXME: This should be in the pass manager. if (ShouldEmitSizeRemarks && OutlinedSomething) emitInstrCountChangedRemark(M, MMI, FunctionToInstrCount); LLVM_DEBUG({ if (!OutlinedSomething) dbgs() << "Stopped outlining at iteration " << OutlineRepeatedNum << " because no changes were found.\n"; }); return OutlinedSomething; }