//===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the DAGTypeLegalizer class. This is a private interface // shared between the code that implements the SelectionDAG::LegalizeTypes // method. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H #include "llvm/ADT/DenseMap.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/Support/Compiler.h" namespace llvm { //===----------------------------------------------------------------------===// /// This takes an arbitrary SelectionDAG as input and hacks on it until only /// value types the target machine can handle are left. This involves promoting /// small sizes to large sizes or splitting up large values into small values. /// class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer { const TargetLowering &TLI; SelectionDAG &DAG; public: /// This pass uses the NodeId on the SDNodes to hold information about the /// state of the node. The enum has all the values. enum NodeIdFlags { /// All operands have been processed, so this node is ready to be handled. ReadyToProcess = 0, /// This is a new node, not before seen, that was created in the process of /// legalizing some other node. NewNode = -1, /// This node's ID needs to be set to the number of its unprocessed /// operands. Unanalyzed = -2, /// This is a node that has already been processed. Processed = -3 // 1+ - This is a node which has this many unprocessed operands. }; private: /// This is a bitvector that contains two bits for each simple value type, /// where the two bits correspond to the LegalizeAction enum from /// TargetLowering. This can be queried with "getTypeAction(VT)". TargetLowering::ValueTypeActionImpl ValueTypeActions; /// Return how we should legalize values of this type. TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const { return TLI.getTypeAction(*DAG.getContext(), VT); } /// Return true if this type is legal on this target. bool isTypeLegal(EVT VT) const { return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal; } /// Return true if this is a simple legal type. bool isSimpleLegalType(EVT VT) const { return VT.isSimple() && TLI.isTypeLegal(VT); } EVT getSetCCResultType(EVT VT) const { return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); } /// Pretend all of this node's results are legal. bool IgnoreNodeResults(SDNode *N) const { return N->getOpcode() == ISD::TargetConstant || N->getOpcode() == ISD::Register; } // Bijection from SDValue to unique id. As each created node gets a // new id we do not need to worry about reuse expunging. Should we // run out of ids, we can do a one time expensive compactifcation. typedef unsigned TableId; TableId NextValueId = 1; SmallDenseMap ValueToIdMap; SmallDenseMap IdToValueMap; /// For integer nodes that are below legal width, this map indicates what /// promoted value to use. SmallDenseMap PromotedIntegers; /// For integer nodes that need to be expanded this map indicates which /// operands are the expanded version of the input. SmallDenseMap, 8> ExpandedIntegers; /// For floating-point nodes converted to integers of the same size, this map /// indicates the converted value to use. SmallDenseMap SoftenedFloats; /// For floating-point nodes that have a smaller precision than the smallest /// supported precision, this map indicates what promoted value to use. SmallDenseMap PromotedFloats; /// For floating-point nodes that have a smaller precision than the smallest /// supported precision, this map indicates the converted value to use. SmallDenseMap SoftPromotedHalfs; /// For float nodes that need to be expanded this map indicates which operands /// are the expanded version of the input. SmallDenseMap, 8> ExpandedFloats; /// For nodes that are <1 x ty>, this map indicates the scalar value of type /// 'ty' to use. SmallDenseMap ScalarizedVectors; /// For nodes that need to be split this map indicates which operands are the /// expanded version of the input. SmallDenseMap, 8> SplitVectors; /// For vector nodes that need to be widened, indicates the widened value to /// use. SmallDenseMap WidenedVectors; /// For values that have been replaced with another, indicates the replacement /// value to use. SmallDenseMap ReplacedValues; /// This defines a worklist of nodes to process. In order to be pushed onto /// this worklist, all operands of a node must have already been processed. SmallVector Worklist; TableId getTableId(SDValue V) { assert(V.getNode() && "Getting TableId on SDValue()"); auto I = ValueToIdMap.find(V); if (I != ValueToIdMap.end()) { // replace if there's been a shift. RemapId(I->second); assert(I->second && "All Ids should be nonzero"); return I->second; } // Add if it's not there. ValueToIdMap.insert(std::make_pair(V, NextValueId)); IdToValueMap.insert(std::make_pair(NextValueId, V)); ++NextValueId; assert(NextValueId != 0 && "Ran out of Ids. Increase id type size or add compactification"); return NextValueId - 1; } const SDValue &getSDValue(TableId &Id) { RemapId(Id); assert(Id && "TableId should be non-zero"); auto I = IdToValueMap.find(Id); assert(I != IdToValueMap.end() && "cannot find Id in map"); return I->second; } public: explicit DAGTypeLegalizer(SelectionDAG &dag) : TLI(dag.getTargetLoweringInfo()), DAG(dag), ValueTypeActions(TLI.getValueTypeActions()) { static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, "Too many value types for ValueTypeActions to hold!"); } /// This is the main entry point for the type legalizer. This does a /// top-down traversal of the dag, legalizing types as it goes. Returns /// "true" if it made any changes. bool run(); void NoteDeletion(SDNode *Old, SDNode *New) { assert(Old != New && "node replaced with self"); for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { TableId NewId = getTableId(SDValue(New, i)); TableId OldId = getTableId(SDValue(Old, i)); if (OldId != NewId) { ReplacedValues[OldId] = NewId; // Delete Node from tables. We cannot do this when OldId == NewId, // because NewId can still have table references to it in // ReplacedValues. IdToValueMap.erase(OldId); PromotedIntegers.erase(OldId); ExpandedIntegers.erase(OldId); SoftenedFloats.erase(OldId); PromotedFloats.erase(OldId); SoftPromotedHalfs.erase(OldId); ExpandedFloats.erase(OldId); ScalarizedVectors.erase(OldId); SplitVectors.erase(OldId); WidenedVectors.erase(OldId); } ValueToIdMap.erase(SDValue(Old, i)); } } SelectionDAG &getDAG() const { return DAG; } private: SDNode *AnalyzeNewNode(SDNode *N); void AnalyzeNewValue(SDValue &Val); void PerformExpensiveChecks(); void RemapId(TableId &Id); void RemapValue(SDValue &V); // Common routines. SDValue BitConvertToInteger(SDValue Op); SDValue BitConvertVectorToIntegerVector(SDValue Op); SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT); bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult); bool CustomWidenLowerNode(SDNode *N, EVT VT); /// Replace each result of the given MERGE_VALUES node with the corresponding /// input operand, except for the result 'ResNo', for which the corresponding /// input operand is returned. SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo); SDValue JoinIntegers(SDValue Lo, SDValue Hi); std::pair ExpandAtomic(SDNode *Node); SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT); void ReplaceValueWith(SDValue From, SDValue To); void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT, SDValue &Lo, SDValue &Hi); //===--------------------------------------------------------------------===// // Integer Promotion Support: LegalizeIntegerTypes.cpp //===--------------------------------------------------------------------===// /// Given a processed operand Op which was promoted to a larger integer type, /// this returns the promoted value. The low bits of the promoted value /// corresponding to the original type are exactly equal to Op. /// The extra bits contain rubbish, so the promoted value may need to be zero- /// or sign-extended from the original type before it is usable (the helpers /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). /// For example, if Op is an i16 and was promoted to an i32, then this method /// returns an i32, the lower 16 bits of which coincide with Op, and the upper /// 16 bits of which contain rubbish. SDValue GetPromotedInteger(SDValue Op) { TableId &PromotedId = PromotedIntegers[getTableId(Op)]; SDValue PromotedOp = getSDValue(PromotedId); assert(PromotedOp.getNode() && "Operand wasn't promoted?"); return PromotedOp; } void SetPromotedInteger(SDValue Op, SDValue Result); /// Get a promoted operand and sign extend it to the final size. SDValue SExtPromotedInteger(SDValue Op) { EVT OldVT = Op.getValueType(); SDLoc dl(Op); Op = GetPromotedInteger(Op); return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op, DAG.getValueType(OldVT)); } /// Get a promoted operand and zero extend it to the final size. SDValue ZExtPromotedInteger(SDValue Op) { EVT OldVT = Op.getValueType(); SDLoc dl(Op); Op = GetPromotedInteger(Op); return DAG.getZeroExtendInReg(Op, dl, OldVT); } // Get a promoted operand and sign or zero extend it to the final size // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given // subtarget and type, the choice of sign or zero-extension will be // consistent. SDValue SExtOrZExtPromotedInteger(SDValue Op) { EVT OldVT = Op.getValueType(); SDLoc DL(Op); Op = GetPromotedInteger(Op); if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType())) return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op, DAG.getValueType(OldVT)); return DAG.getZeroExtendInReg(Op, DL, OldVT); } // Promote the given operand V (vector or scalar) according to N's specific // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the // promoted value. SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V); // Integer Result Promotion. void PromoteIntegerResult(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_AssertSext(SDNode *N); SDValue PromoteIntRes_AssertZext(SDNode *N); SDValue PromoteIntRes_Atomic0(AtomicSDNode *N); SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo); SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N); SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N); SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N); SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N); SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N); SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N); SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N); SDValue PromoteIntRes_ScalarOp(SDNode *N); SDValue PromoteIntRes_STEP_VECTOR(SDNode *N); SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N); SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N); SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N); SDValue PromoteIntRes_BITCAST(SDNode *N); SDValue PromoteIntRes_BSWAP(SDNode *N); SDValue PromoteIntRes_BITREVERSE(SDNode *N); SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); SDValue PromoteIntRes_Constant(SDNode *N); SDValue PromoteIntRes_CTLZ(SDNode *N); SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N); SDValue PromoteIntRes_CTTZ(SDNode *N); SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N); SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N); SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N); SDValue PromoteIntRes_FREEZE(SDNode *N); SDValue PromoteIntRes_INT_EXTEND(SDNode *N); SDValue PromoteIntRes_LOAD(LoadSDNode *N); SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N); SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N); SDValue PromoteIntRes_Overflow(SDNode *N); SDValue PromoteIntRes_FFREXP(SDNode *N); SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_Select(SDNode *N); SDValue PromoteIntRes_SELECT_CC(SDNode *N); SDValue PromoteIntRes_SETCC(SDNode *N); SDValue PromoteIntRes_SHL(SDNode *N); SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N); SDValue PromoteIntRes_SExtIntBinOp(SDNode *N); SDValue PromoteIntRes_UMINUMAX(SDNode *N); SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); SDValue PromoteIntRes_SRA(SDNode *N); SDValue PromoteIntRes_SRL(SDNode *N); SDValue PromoteIntRes_TRUNCATE(SDNode *N); SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_UNDEF(SDNode *N); SDValue PromoteIntRes_VAARG(SDNode *N); SDValue PromoteIntRes_VSCALE(SDNode *N); SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo); SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N); SDValue PromoteIntRes_MULFIX(SDNode *N); SDValue PromoteIntRes_DIVFIX(SDNode *N); SDValue PromoteIntRes_GET_ROUNDING(SDNode *N); SDValue PromoteIntRes_VECREDUCE(SDNode *N); SDValue PromoteIntRes_VP_REDUCE(SDNode *N); SDValue PromoteIntRes_ABS(SDNode *N); SDValue PromoteIntRes_Rotate(SDNode *N); SDValue PromoteIntRes_FunnelShift(SDNode *N); SDValue PromoteIntRes_IS_FPCLASS(SDNode *N); // Integer Operand Promotion. bool PromoteIntegerOperand(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N); SDValue PromoteIntOp_BITCAST(SDNode *N); SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N); SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N); SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N); SDValue PromoteIntOp_ScalarOp(SDNode *N); SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_Shift(SDNode *N); SDValue PromoteIntOp_FunnelShift(SDNode *N); SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N); SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N); SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue PromoteIntOp_TRUNCATE(SDNode *N); SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N); SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N); SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo); SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo); SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo); SDValue PromoteIntOp_ADDSUBO_CARRY(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N); SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_FIX(SDNode *N); SDValue PromoteIntOp_ExpOp(SDNode *N); SDValue PromoteIntOp_VECREDUCE(SDNode *N); SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_SET_ROUNDING(SDNode *N); SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo); SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo); void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); //===--------------------------------------------------------------------===// // Integer Expansion Support: LegalizeIntegerTypes.cpp //===--------------------------------------------------------------------===// /// Given a processed operand Op which was expanded into two integers of half /// the size, this returns the two halves. The low bits of Op are exactly /// equal to the bits of Lo; the high bits exactly equal Hi. /// For example, if Op is an i64 which was expanded into two i32's, then this /// method returns the two i32's, with Lo being equal to the lower 32 bits of /// Op, and Hi being equal to the upper 32 bits. void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); // Integer Result Expansion. void ExpandIntegerResult(SDNode *N, unsigned ResNo); void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_READCYCLECOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_GET_ROUNDING (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_FP_TO_SINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_FP_TO_UINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_FP_TO_XINT_SAT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_XROUND_XRINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_PARITY (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_SHLSAT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_Rotate (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_FunnelShift (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandIntRes_VSCALE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandShiftByConstant(SDNode *N, const APInt &Amt, SDValue &Lo, SDValue &Hi); bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); // Integer Operand Expansion. bool ExpandIntegerOperand(SDNode *N, unsigned OpNo); SDValue ExpandIntOp_BR_CC(SDNode *N); SDValue ExpandIntOp_SELECT_CC(SDNode *N); SDValue ExpandIntOp_SETCC(SDNode *N); SDValue ExpandIntOp_SETCCCARRY(SDNode *N); SDValue ExpandIntOp_Shift(SDNode *N); SDValue ExpandIntOp_SINT_TO_FP(SDNode *N); SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue ExpandIntOp_TRUNCATE(SDNode *N); SDValue ExpandIntOp_UINT_TO_FP(SDNode *N); SDValue ExpandIntOp_RETURNADDR(SDNode *N); SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N); SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N); SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo); SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo); SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo); void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &dl); //===--------------------------------------------------------------------===// // Float to Integer Conversion Support: LegalizeFloatTypes.cpp //===--------------------------------------------------------------------===// /// GetSoftenedFloat - Given a processed operand Op which was converted to an /// integer of the same size, this returns the integer. The integer contains /// exactly the same bits as Op - only the type changed. For example, if Op /// is an f32 which was softened to an i32, then this method returns an i32, /// the bits of which coincide with those of Op SDValue GetSoftenedFloat(SDValue Op) { TableId Id = getTableId(Op); auto Iter = SoftenedFloats.find(Id); if (Iter == SoftenedFloats.end()) { assert(isSimpleLegalType(Op.getValueType()) && "Operand wasn't converted to integer?"); return Op; } SDValue SoftenedOp = getSDValue(Iter->second); assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?"); return SoftenedOp; } void SetSoftenedFloat(SDValue Op, SDValue Result); // Convert Float Results to Integer. void SoftenFloatResult(SDNode *N, unsigned ResNo); SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC); SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC); SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo); SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N); SDValue SoftenFloatRes_BITCAST(SDNode *N); SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); SDValue SoftenFloatRes_ConstantFP(SDNode *N); SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo); SDValue SoftenFloatRes_FABS(SDNode *N); SDValue SoftenFloatRes_FMINNUM(SDNode *N); SDValue SoftenFloatRes_FMAXNUM(SDNode *N); SDValue SoftenFloatRes_FADD(SDNode *N); SDValue SoftenFloatRes_FCBRT(SDNode *N); SDValue SoftenFloatRes_FCEIL(SDNode *N); SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); SDValue SoftenFloatRes_FCOS(SDNode *N); SDValue SoftenFloatRes_FDIV(SDNode *N); SDValue SoftenFloatRes_FEXP(SDNode *N); SDValue SoftenFloatRes_FEXP2(SDNode *N); SDValue SoftenFloatRes_FFLOOR(SDNode *N); SDValue SoftenFloatRes_FLOG(SDNode *N); SDValue SoftenFloatRes_FLOG2(SDNode *N); SDValue SoftenFloatRes_FLOG10(SDNode *N); SDValue SoftenFloatRes_FMA(SDNode *N); SDValue SoftenFloatRes_FMUL(SDNode *N); SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); SDValue SoftenFloatRes_FNEG(SDNode *N); SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N); SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N); SDValue SoftenFloatRes_FP_ROUND(SDNode *N); SDValue SoftenFloatRes_FPOW(SDNode *N); SDValue SoftenFloatRes_ExpOp(SDNode *N); SDValue SoftenFloatRes_FFREXP(SDNode *N); SDValue SoftenFloatRes_FREEZE(SDNode *N); SDValue SoftenFloatRes_FREM(SDNode *N); SDValue SoftenFloatRes_FRINT(SDNode *N); SDValue SoftenFloatRes_FROUND(SDNode *N); SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N); SDValue SoftenFloatRes_FSIN(SDNode *N); SDValue SoftenFloatRes_FSQRT(SDNode *N); SDValue SoftenFloatRes_FSUB(SDNode *N); SDValue SoftenFloatRes_FTRUNC(SDNode *N); SDValue SoftenFloatRes_LOAD(SDNode *N); SDValue SoftenFloatRes_SELECT(SDNode *N); SDValue SoftenFloatRes_SELECT_CC(SDNode *N); SDValue SoftenFloatRes_UNDEF(SDNode *N); SDValue SoftenFloatRes_VAARG(SDNode *N); SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); SDValue SoftenFloatRes_VECREDUCE(SDNode *N); SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N); // Convert Float Operand to Integer. bool SoftenFloatOperand(SDNode *N, unsigned OpNo); SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC); SDValue SoftenFloatOp_BITCAST(SDNode *N); SDValue SoftenFloatOp_BR_CC(SDNode *N); SDValue SoftenFloatOp_FP_ROUND(SDNode *N); SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N); SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N); SDValue SoftenFloatOp_LROUND(SDNode *N); SDValue SoftenFloatOp_LLROUND(SDNode *N); SDValue SoftenFloatOp_LRINT(SDNode *N); SDValue SoftenFloatOp_LLRINT(SDNode *N); SDValue SoftenFloatOp_SELECT_CC(SDNode *N); SDValue SoftenFloatOp_SETCC(SDNode *N); SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N); //===--------------------------------------------------------------------===// // Float Expansion Support: LegalizeFloatTypes.cpp //===--------------------------------------------------------------------===// /// Given a processed operand Op which was expanded into two floating-point /// values of half the size, this returns the two halves. /// The low bits of Op are exactly equal to the bits of Lo; the high bits /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded /// into two f64's, then this method returns the two f64's, with Lo being /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits. void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); // Float Result Expansion. void ExpandFloatResult(SDNode *N, unsigned ResNo); void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FLDEXP (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); // Float Operand Expansion. bool ExpandFloatOperand(SDNode *N, unsigned OpNo); SDValue ExpandFloatOp_BR_CC(SDNode *N); SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N); SDValue ExpandFloatOp_FP_ROUND(SDNode *N); SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N); SDValue ExpandFloatOp_LROUND(SDNode *N); SDValue ExpandFloatOp_LLROUND(SDNode *N); SDValue ExpandFloatOp_LRINT(SDNode *N); SDValue ExpandFloatOp_LLRINT(SDNode *N); SDValue ExpandFloatOp_SELECT_CC(SDNode *N); SDValue ExpandFloatOp_SETCC(SDNode *N); SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &dl, SDValue &Chain, bool IsSignaling = false); //===--------------------------------------------------------------------===// // Float promotion support: LegalizeFloatTypes.cpp //===--------------------------------------------------------------------===// SDValue GetPromotedFloat(SDValue Op) { TableId &PromotedId = PromotedFloats[getTableId(Op)]; SDValue PromotedOp = getSDValue(PromotedId); assert(PromotedOp.getNode() && "Operand wasn't promoted?"); return PromotedOp; } void SetPromotedFloat(SDValue Op, SDValue Result); void PromoteFloatResult(SDNode *N, unsigned ResNo); SDValue PromoteFloatRes_BITCAST(SDNode *N); SDValue PromoteFloatRes_BinOp(SDNode *N); SDValue PromoteFloatRes_ConstantFP(SDNode *N); SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N); SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N); SDValue PromoteFloatRes_FMAD(SDNode *N); SDValue PromoteFloatRes_ExpOp(SDNode *N); SDValue PromoteFloatRes_FFREXP(SDNode *N); SDValue PromoteFloatRes_FP_ROUND(SDNode *N); SDValue PromoteFloatRes_LOAD(SDNode *N); SDValue PromoteFloatRes_SELECT(SDNode *N); SDValue PromoteFloatRes_SELECT_CC(SDNode *N); SDValue PromoteFloatRes_UnaryOp(SDNode *N); SDValue PromoteFloatRes_UNDEF(SDNode *N); SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N); SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N); SDValue PromoteFloatRes_VECREDUCE(SDNode *N); SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N); bool PromoteFloatOperand(SDNode *N, unsigned OpNo); SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo); SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo); SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo); SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo); SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo); SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo); SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo); SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo); //===--------------------------------------------------------------------===// // Half soft promotion support: LegalizeFloatTypes.cpp //===--------------------------------------------------------------------===// SDValue GetSoftPromotedHalf(SDValue Op) { TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)]; SDValue PromotedOp = getSDValue(PromotedId); assert(PromotedOp.getNode() && "Operand wasn't promoted?"); return PromotedOp; } void SetSoftPromotedHalf(SDValue Op, SDValue Result); void SoftPromoteHalfResult(SDNode *N, unsigned ResNo); SDValue SoftPromoteHalfRes_BinOp(SDNode *N); SDValue SoftPromoteHalfRes_BITCAST(SDNode *N); SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N); SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N); SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N); SDValue SoftPromoteHalfRes_FMAD(SDNode *N); SDValue SoftPromoteHalfRes_ExpOp(SDNode *N); SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N); SDValue SoftPromoteHalfRes_LOAD(SDNode *N); SDValue SoftPromoteHalfRes_SELECT(SDNode *N); SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N); SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N); SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N); SDValue SoftPromoteHalfRes_UNDEF(SDNode *N); SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N); SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N); bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo); SDValue SoftPromoteHalfOp_BITCAST(SDNode *N); SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo); SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N); SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N); SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N); SDValue SoftPromoteHalfOp_SETCC(SDNode *N); SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo); SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo); SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo); SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo); //===--------------------------------------------------------------------===// // Scalarization Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// /// Given a processed one-element vector Op which was scalarized to its /// element type, this returns the element. For example, if Op is a v1i32, /// Op = < i32 val >, this method returns val, an i32. SDValue GetScalarizedVector(SDValue Op) { TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)]; SDValue ScalarizedOp = getSDValue(ScalarizedId); assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?"); return ScalarizedOp; } void SetScalarizedVector(SDValue Op, SDValue Result); // Vector Result Scalarization: <1 x ty> -> ty. void ScalarizeVectorResult(SDNode *N, unsigned ResNo); SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo); SDValue ScalarizeVecRes_BinOp(SDNode *N); SDValue ScalarizeVecRes_TernaryOp(SDNode *N); SDValue ScalarizeVecRes_UnaryOp(SDNode *N); SDValue ScalarizeVecRes_StrictFPOp(SDNode *N); SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo); SDValue ScalarizeVecRes_InregOp(SDNode *N); SDValue ScalarizeVecRes_VecInregOp(SDNode *N); SDValue ScalarizeVecRes_BITCAST(SDNode *N); SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N); SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N); SDValue ScalarizeVecRes_FP_ROUND(SDNode *N); SDValue ScalarizeVecRes_ExpOp(SDNode *N); SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); SDValue ScalarizeVecRes_VSELECT(SDNode *N); SDValue ScalarizeVecRes_SELECT(SDNode *N); SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); SDValue ScalarizeVecRes_SETCC(SDNode *N); SDValue ScalarizeVecRes_UNDEF(SDNode *N); SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N); SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N); SDValue ScalarizeVecRes_FIX(SDNode *N); SDValue ScalarizeVecRes_FFREXP(SDNode *N, unsigned ResNo); // Vector Operand Scalarization: <1 x ty> -> ty. bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); SDValue ScalarizeVecOp_BITCAST(SDNode *N); SDValue ScalarizeVecOp_UnaryOp(SDNode *N); SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N); SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue ScalarizeVecOp_VSELECT(SDNode *N); SDValue ScalarizeVecOp_VSETCC(SDNode *N); SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo); SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo); SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N); SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N); SDValue ScalarizeVecOp_VECREDUCE(SDNode *N); SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N); //===--------------------------------------------------------------------===// // Vector Splitting Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// /// Given a processed vector Op which was split into vectors of half the size, /// this method returns the halves. The first elements of Op coincide with the /// elements of Lo; the remaining elements of Op coincide with the elements of /// Hi: Op is what you would get by concatenating Lo and Hi. /// For example, if Op is a v8i32 that was split into two v4i32's, then this /// method returns the two v4i32's, with Lo corresponding to the first 4 /// elements of Op, and Hi to the last 4 elements. void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); /// Split mask operator of a VP intrinsic. std::pair SplitMask(SDValue Mask); /// Split mask operator of a VP intrinsic in a given location. std::pair SplitMask(SDValue Mask, const SDLoc &DL); // Helper function for incrementing the pointer when splitting // memory operations void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI, SDValue &Ptr, uint64_t *ScaledOffset = nullptr); // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. void SplitVectorResult(SDNode *N, unsigned ResNo); void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_FFREXP(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi); void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi); void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi); void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi); void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo, SDValue &Hi); void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi); void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi, bool SplitSETCC = false); void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N); void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N); void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi); void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi); // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. bool SplitVectorOperand(SDNode *N, unsigned OpNo); SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo); SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo); SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N); SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo); SDValue SplitVecOp_UnaryOp(SDNode *N); SDValue SplitVecOp_TruncateHelper(SDNode *N); SDValue SplitVecOp_BITCAST(SDNode *N); SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo); SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N); SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue SplitVecOp_ExtVecInRegOp(SDNode *N); SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo); SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo); SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo); SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo); SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); SDValue SplitVecOp_VSETCC(SDNode *N); SDValue SplitVecOp_FP_ROUND(SDNode *N); SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N); SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N); //===--------------------------------------------------------------------===// // Vector Widening Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// /// Given a processed vector Op which was widened into a larger vector, this /// method returns the larger vector. The elements of the returned vector /// consist of the elements of Op followed by elements containing rubbish. /// For example, if Op is a v2i32 that was widened to a v4i32, then this /// method returns a v4i32 for which the first two elements are the same as /// those of Op, while the last two elements contain rubbish. SDValue GetWidenedVector(SDValue Op) { TableId &WidenedId = WidenedVectors[getTableId(Op)]; SDValue WidenedOp = getSDValue(WidenedId); assert(WidenedOp.getNode() && "Operand wasn't widened?"); return WidenedOp; } void SetWidenedVector(SDValue Op, SDValue Result); /// Given a mask Mask, returns the larger vector into which Mask was widened. SDValue GetWidenedMask(SDValue Mask, ElementCount EC) { // For VP operations, we must also widen the mask. Note that the mask type // may not actually need widening, leading it be split along with the VP // operation. // FIXME: This could lead to an infinite split/widen loop. We only handle // the case where the mask needs widening to an identically-sized type as // the vector inputs. assert(getTypeAction(Mask.getValueType()) == TargetLowering::TypeWidenVector && "Unable to widen binary VP op"); Mask = GetWidenedVector(Mask); assert(Mask.getValueType().getVectorElementCount() == EC && "Unable to widen binary VP op"); return Mask; } // Widen Vector Result Promotion. void WidenVectorResult(SDNode *N, unsigned ResNo); SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo); SDValue WidenVecRes_AssertZext(SDNode* N); SDValue WidenVecRes_BITCAST(SDNode* N); SDValue WidenVecRes_BUILD_VECTOR(SDNode* N); SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N); SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N); SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N); SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N); SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N); SDValue WidenVecRes_LOAD(SDNode* N); SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N); SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N); SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N); SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N); SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N); SDValue WidenVecRes_ScalarOp(SDNode* N); SDValue WidenVecRes_Select(SDNode *N); SDValue WidenVSELECTMask(SDNode *N); SDValue WidenVecRes_SELECT_CC(SDNode* N); SDValue WidenVecRes_SETCC(SDNode* N); SDValue WidenVecRes_STRICT_FSETCC(SDNode* N); SDValue WidenVecRes_UNDEF(SDNode *N); SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N); SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N); SDValue WidenVecRes_Ternary(SDNode *N); SDValue WidenVecRes_Binary(SDNode *N); SDValue WidenVecRes_BinaryCanTrap(SDNode *N); SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N); SDValue WidenVecRes_StrictFP(SDNode *N); SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo); SDValue WidenVecRes_Convert(SDNode *N); SDValue WidenVecRes_Convert_StrictFP(SDNode *N); SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N); SDValue WidenVecRes_FCOPYSIGN(SDNode *N); SDValue WidenVecRes_IS_FPCLASS(SDNode *N); SDValue WidenVecRes_ExpOp(SDNode *N); SDValue WidenVecRes_Unary(SDNode *N); SDValue WidenVecRes_InregOp(SDNode *N); // Widen Vector Operand. bool WidenVectorOperand(SDNode *N, unsigned OpNo); SDValue WidenVecOp_BITCAST(SDNode *N); SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N); SDValue WidenVecOp_EXTEND(SDNode *N); SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N); SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N); SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N); SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N); SDValue WidenVecOp_STORE(SDNode* N); SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo); SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo); SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo); SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo); SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo); SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo); SDValue WidenVecOp_SETCC(SDNode* N); SDValue WidenVecOp_STRICT_FSETCC(SDNode* N); SDValue WidenVecOp_VSELECT(SDNode *N); SDValue WidenVecOp_Convert(SDNode *N); SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N); SDValue WidenVecOp_UnrollVectorOp(SDNode *N); SDValue WidenVecOp_IS_FPCLASS(SDNode *N); SDValue WidenVecOp_VECREDUCE(SDNode *N); SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N); SDValue WidenVecOp_VP_REDUCE(SDNode *N); SDValue WidenVecOp_ExpOp(SDNode *N); /// Helper function to generate a set of operations to perform /// a vector operation for a wider type. /// SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE); //===--------------------------------------------------------------------===// // Vector Widening Utilities Support: LegalizeVectorTypes.cpp //===--------------------------------------------------------------------===// /// Helper function to generate a set of loads to load a vector with a /// resulting wider type. It takes: /// LdChain: list of chains for the load to be generated. /// Ld: load to widen SDValue GenWidenVectorLoads(SmallVectorImpl &LdChain, LoadSDNode *LD); /// Helper function to generate a set of extension loads to load a vector with /// a resulting wider type. It takes: /// LdChain: list of chains for the load to be generated. /// Ld: load to widen /// ExtType: extension element type SDValue GenWidenVectorExtLoads(SmallVectorImpl &LdChain, LoadSDNode *LD, ISD::LoadExtType ExtType); /// Helper function to generate a set of stores to store a widen vector into /// non-widen memory. Returns true if successful, false otherwise. /// StChain: list of chains for the stores we have generated /// ST: store of a widen value bool GenWidenVectorStores(SmallVectorImpl &StChain, StoreSDNode *ST); /// Modifies a vector input (widen or narrows) to a vector of NVT. The /// input vector must have the same element type as NVT. /// When FillWithZeroes is "on" the vector will be widened with zeroes. /// By default, the vector will be widened with undefined values. SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false); /// Return a mask of vector type MaskVT to replace InMask. Also adjust /// MaskVT to ToMaskVT if needed with vector extension or truncation. SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT); //===--------------------------------------------------------------------===// // Generic Splitting: LegalizeTypesGeneric.cpp //===--------------------------------------------------------------------===// // Legalization methods which only use that the illegal type is split into two // not necessarily identical types. As such they can be used for splitting // vectors and expanding integers and floats. void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { if (Op.getValueType().isVector()) GetSplitVector(Op, Lo, Hi); else if (Op.getValueType().isInteger()) GetExpandedInteger(Op, Lo, Hi); else GetExpandedFloat(Op, Lo, Hi); } /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the /// given value. void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi); // Generic Result Splitting. void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi); void SplitVecRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_Select (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); void SplitRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi); //===--------------------------------------------------------------------===// // Generic Expansion: LegalizeTypesGeneric.cpp //===--------------------------------------------------------------------===// // Legalization methods which only use that the illegal type is split into two // identical types of half the size, and that the Lo/Hi part is stored first // in memory on little/big-endian machines, followed by the Hi/Lo part. As // such they can be used for expanding integers and floats. void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { if (Op.getValueType().isInteger()) GetExpandedInteger(Op, Lo, Hi); else GetExpandedFloat(Op, Lo, Hi); } /// This function will split the integer \p Op into \p NumElements /// operations of type \p EltVT and store them in \p Ops. void IntegerToVector(SDValue Op, unsigned NumElements, SmallVectorImpl &Ops, EVT EltVT); // Generic Result Expansion. void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi); void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); // Generic Operand Expansion. SDValue ExpandOp_BITCAST (SDNode *N); SDValue ExpandOp_BUILD_VECTOR (SDNode *N); SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N); SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N); SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N); SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); }; } // end namespace llvm. #endif