//===- SymbolizableObjectFile.cpp -----------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Implementation of SymbolizableObjectFile class. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/Symbolize/SymbolizableObjectFile.h" #include "llvm/ADT/STLExtras.h" #include "llvm/BinaryFormat/COFF.h" #include "llvm/DebugInfo/DWARF/DWARFContext.h" #include "llvm/Object/COFF.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/SymbolSize.h" #include "llvm/Support/Casting.h" #include "llvm/Support/DataExtractor.h" #include "llvm/TargetParser/Triple.h" #include using namespace llvm; using namespace object; using namespace symbolize; Expected> SymbolizableObjectFile::create(const object::ObjectFile *Obj, std::unique_ptr DICtx, bool UntagAddresses) { assert(DICtx); std::unique_ptr res( new SymbolizableObjectFile(Obj, std::move(DICtx), UntagAddresses)); std::unique_ptr OpdExtractor; uint64_t OpdAddress = 0; // Find the .opd (function descriptor) section if any, for big-endian // PowerPC64 ELF. if (Obj->getArch() == Triple::ppc64) { for (section_iterator Section : Obj->sections()) { Expected NameOrErr = Section->getName(); if (!NameOrErr) return NameOrErr.takeError(); if (*NameOrErr == ".opd") { Expected E = Section->getContents(); if (!E) return E.takeError(); OpdExtractor.reset(new DataExtractor(*E, Obj->isLittleEndian(), Obj->getBytesInAddress())); OpdAddress = Section->getAddress(); break; } } } std::vector> Symbols = computeSymbolSizes(*Obj); for (auto &P : Symbols) if (Error E = res->addSymbol(P.first, P.second, OpdExtractor.get(), OpdAddress)) return std::move(E); // If this is a COFF object and we didn't find any symbols, try the export // table. if (Symbols.empty()) { if (auto *CoffObj = dyn_cast(Obj)) if (Error E = res->addCoffExportSymbols(CoffObj)) return std::move(E); } std::vector &SS = res->Symbols; // Sort by (Addr,Size,Name). If several SymbolDescs share the same Addr, // pick the one with the largest Size. This helps us avoid symbols with no // size information (Size=0). llvm::stable_sort(SS); auto I = SS.begin(), E = SS.end(), J = SS.begin(); while (I != E) { auto OI = I; while (++I != E && OI->Addr == I->Addr) { } *J++ = I[-1]; } SS.erase(J, SS.end()); return std::move(res); } SymbolizableObjectFile::SymbolizableObjectFile(const ObjectFile *Obj, std::unique_ptr DICtx, bool UntagAddresses) : Module(Obj), DebugInfoContext(std::move(DICtx)), UntagAddresses(UntagAddresses) {} namespace { struct OffsetNamePair { uint32_t Offset; StringRef Name; bool operator<(const OffsetNamePair &R) const { return Offset < R.Offset; } }; } // end anonymous namespace Error SymbolizableObjectFile::addCoffExportSymbols( const COFFObjectFile *CoffObj) { // Get all export names and offsets. std::vector ExportSyms; for (const ExportDirectoryEntryRef &Ref : CoffObj->export_directories()) { StringRef Name; uint32_t Offset; if (auto EC = Ref.getSymbolName(Name)) return EC; if (auto EC = Ref.getExportRVA(Offset)) return EC; ExportSyms.push_back(OffsetNamePair{Offset, Name}); } if (ExportSyms.empty()) return Error::success(); // Sort by ascending offset. array_pod_sort(ExportSyms.begin(), ExportSyms.end()); // Approximate the symbol sizes by assuming they run to the next symbol. // FIXME: This assumes all exports are functions. uint64_t ImageBase = CoffObj->getImageBase(); for (auto I = ExportSyms.begin(), E = ExportSyms.end(); I != E; ++I) { OffsetNamePair &Export = *I; // FIXME: The last export has a one byte size now. uint32_t NextOffset = I != E ? I->Offset : Export.Offset + 1; uint64_t SymbolStart = ImageBase + Export.Offset; uint64_t SymbolSize = NextOffset - Export.Offset; Symbols.push_back({SymbolStart, SymbolSize, Export.Name, 0}); } return Error::success(); } Error SymbolizableObjectFile::addSymbol(const SymbolRef &Symbol, uint64_t SymbolSize, DataExtractor *OpdExtractor, uint64_t OpdAddress) { // Avoid adding symbols from an unknown/undefined section. const ObjectFile &Obj = *Symbol.getObject(); Expected SymbolNameOrErr = Symbol.getName(); if (!SymbolNameOrErr) return SymbolNameOrErr.takeError(); StringRef SymbolName = *SymbolNameOrErr; uint32_t ELFSymIdx = Obj.isELF() ? ELFSymbolRef(Symbol).getRawDataRefImpl().d.b : 0; Expected Sec = Symbol.getSection(); if (!Sec || Obj.section_end() == *Sec) { if (Obj.isELF()) { // Store the (index, filename) pair for a file symbol. ELFSymbolRef ESym(Symbol); if (ESym.getELFType() == ELF::STT_FILE) FileSymbols.emplace_back(ELFSymIdx, SymbolName); } return Error::success(); } Expected SymbolTypeOrErr = Symbol.getType(); if (!SymbolTypeOrErr) return SymbolTypeOrErr.takeError(); SymbolRef::Type SymbolType = *SymbolTypeOrErr; if (Obj.isELF()) { // Ignore any symbols coming from sections that don't have runtime // allocated memory. if ((elf_section_iterator(*Sec)->getFlags() & ELF::SHF_ALLOC) == 0) return Error::success(); // Allow function and data symbols. Additionally allow STT_NONE, which are // common for functions defined in assembly. uint8_t Type = ELFSymbolRef(Symbol).getELFType(); if (Type != ELF::STT_NOTYPE && Type != ELF::STT_FUNC && Type != ELF::STT_OBJECT && Type != ELF::STT_GNU_IFUNC) return Error::success(); // Some STT_NOTYPE symbols are not desired. This excludes STT_SECTION and // ARM mapping symbols. uint32_t Flags = cantFail(Symbol.getFlags()); if (Flags & SymbolRef::SF_FormatSpecific) return Error::success(); } else if (SymbolType != SymbolRef::ST_Function && SymbolType != SymbolRef::ST_Data) { return Error::success(); } Expected SymbolAddressOrErr = Symbol.getAddress(); if (!SymbolAddressOrErr) return SymbolAddressOrErr.takeError(); uint64_t SymbolAddress = *SymbolAddressOrErr; if (UntagAddresses) { // For kernel addresses, bits 56-63 need to be set, so we sign extend bit 55 // into bits 56-63 instead of masking them out. SymbolAddress &= (1ull << 56) - 1; SymbolAddress = (int64_t(SymbolAddress) << 8) >> 8; } if (OpdExtractor) { // For big-endian PowerPC64 ELF, symbols in the .opd section refer to // function descriptors. The first word of the descriptor is a pointer to // the function's code. // For the purposes of symbolization, pretend the symbol's address is that // of the function's code, not the descriptor. uint64_t OpdOffset = SymbolAddress - OpdAddress; if (OpdExtractor->isValidOffsetForAddress(OpdOffset)) SymbolAddress = OpdExtractor->getAddress(&OpdOffset); } // Mach-O symbol table names have leading underscore, skip it. if (Module->isMachO() && !SymbolName.empty() && SymbolName[0] == '_') SymbolName = SymbolName.drop_front(); if (Obj.isELF() && ELFSymbolRef(Symbol).getBinding() != ELF::STB_LOCAL) ELFSymIdx = 0; Symbols.push_back({SymbolAddress, SymbolSize, SymbolName, ELFSymIdx}); return Error::success(); } // Return true if this is a 32-bit x86 PE COFF module. bool SymbolizableObjectFile::isWin32Module() const { auto *CoffObject = dyn_cast(Module); return CoffObject && CoffObject->getMachine() == COFF::IMAGE_FILE_MACHINE_I386; } uint64_t SymbolizableObjectFile::getModulePreferredBase() const { if (auto *CoffObject = dyn_cast(Module)) return CoffObject->getImageBase(); return 0; } bool SymbolizableObjectFile::getNameFromSymbolTable( uint64_t Address, std::string &Name, uint64_t &Addr, uint64_t &Size, std::string &FileName) const { SymbolDesc SD{Address, UINT64_C(-1), StringRef(), 0}; auto SymbolIterator = llvm::upper_bound(Symbols, SD); if (SymbolIterator == Symbols.begin()) return false; --SymbolIterator; if (SymbolIterator->Size != 0 && SymbolIterator->Addr + SymbolIterator->Size <= Address) return false; Name = SymbolIterator->Name.str(); Addr = SymbolIterator->Addr; Size = SymbolIterator->Size; if (SymbolIterator->ELFLocalSymIdx != 0) { // If this is an ELF local symbol, find the STT_FILE symbol preceding // SymbolIterator to get the filename. The ELF spec requires the STT_FILE // symbol (if present) precedes the other STB_LOCAL symbols for the file. assert(Module->isELF()); auto It = llvm::upper_bound( FileSymbols, std::make_pair(SymbolIterator->ELFLocalSymIdx, StringRef())); if (It != FileSymbols.begin()) FileName = It[-1].second.str(); } return true; } bool SymbolizableObjectFile::shouldOverrideWithSymbolTable( FunctionNameKind FNKind, bool UseSymbolTable) const { // When DWARF is used with -gline-tables-only / -gmlt, the symbol table gives // better answers for linkage names than the DIContext. Otherwise, we are // probably using PEs and PDBs, and we shouldn't do the override. PE files // generally only contain the names of exported symbols. return FNKind == FunctionNameKind::LinkageName && UseSymbolTable && isa(DebugInfoContext.get()); } DILineInfo SymbolizableObjectFile::symbolizeCode(object::SectionedAddress ModuleOffset, DILineInfoSpecifier LineInfoSpecifier, bool UseSymbolTable) const { if (ModuleOffset.SectionIndex == object::SectionedAddress::UndefSection) ModuleOffset.SectionIndex = getModuleSectionIndexForAddress(ModuleOffset.Address); DILineInfo LineInfo = DebugInfoContext->getLineInfoForAddress(ModuleOffset, LineInfoSpecifier); // Override function name from symbol table if necessary. if (shouldOverrideWithSymbolTable(LineInfoSpecifier.FNKind, UseSymbolTable)) { std::string FunctionName, FileName; uint64_t Start, Size; if (getNameFromSymbolTable(ModuleOffset.Address, FunctionName, Start, Size, FileName)) { LineInfo.FunctionName = FunctionName; LineInfo.StartAddress = Start; if (LineInfo.FileName == DILineInfo::BadString && !FileName.empty()) LineInfo.FileName = FileName; } } return LineInfo; } DIInliningInfo SymbolizableObjectFile::symbolizeInlinedCode( object::SectionedAddress ModuleOffset, DILineInfoSpecifier LineInfoSpecifier, bool UseSymbolTable) const { if (ModuleOffset.SectionIndex == object::SectionedAddress::UndefSection) ModuleOffset.SectionIndex = getModuleSectionIndexForAddress(ModuleOffset.Address); DIInliningInfo InlinedContext = DebugInfoContext->getInliningInfoForAddress( ModuleOffset, LineInfoSpecifier); // Make sure there is at least one frame in context. if (InlinedContext.getNumberOfFrames() == 0) InlinedContext.addFrame(DILineInfo()); // Override the function name in lower frame with name from symbol table. if (shouldOverrideWithSymbolTable(LineInfoSpecifier.FNKind, UseSymbolTable)) { std::string FunctionName, FileName; uint64_t Start, Size; if (getNameFromSymbolTable(ModuleOffset.Address, FunctionName, Start, Size, FileName)) { DILineInfo *LI = InlinedContext.getMutableFrame( InlinedContext.getNumberOfFrames() - 1); LI->FunctionName = FunctionName; LI->StartAddress = Start; if (LI->FileName == DILineInfo::BadString && !FileName.empty()) LI->FileName = FileName; } } return InlinedContext; } DIGlobal SymbolizableObjectFile::symbolizeData( object::SectionedAddress ModuleOffset) const { DIGlobal Res; std::string FileName; getNameFromSymbolTable(ModuleOffset.Address, Res.Name, Res.Start, Res.Size, FileName); Res.DeclFile = FileName; // Try and get a better filename:lineno pair from the debuginfo, if present. DILineInfo DL = DebugInfoContext->getLineInfoForDataAddress(ModuleOffset); if (DL.Line != 0) { Res.DeclFile = DL.FileName; Res.DeclLine = DL.Line; } return Res; } std::vector SymbolizableObjectFile::symbolizeFrame( object::SectionedAddress ModuleOffset) const { if (ModuleOffset.SectionIndex == object::SectionedAddress::UndefSection) ModuleOffset.SectionIndex = getModuleSectionIndexForAddress(ModuleOffset.Address); return DebugInfoContext->getLocalsForAddress(ModuleOffset); } /// Search for the first occurence of specified Address in ObjectFile. uint64_t SymbolizableObjectFile::getModuleSectionIndexForAddress( uint64_t Address) const { for (SectionRef Sec : Module->sections()) { if (!Sec.isText() || Sec.isVirtual()) continue; if (Address >= Sec.getAddress() && Address < Sec.getAddress() + Sec.getSize()) return Sec.getIndex(); } return object::SectionedAddress::UndefSection; }