//===- Attributes.cpp - Implement AttributesList --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // \file // This file implements the Attribute, AttributeImpl, AttrBuilder, // AttributeListImpl, and AttributeList classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Attributes.h" #include "AttributeImpl.h" #include "LLVMContextImpl.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/AttributeMask.h" #include "llvm/IR/Function.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Type.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ModRef.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include using namespace llvm; //===----------------------------------------------------------------------===// // Attribute Construction Methods //===----------------------------------------------------------------------===// // allocsize has two integer arguments, but because they're both 32 bits, we can // pack them into one 64-bit value, at the cost of making said value // nonsensical. // // In order to do this, we need to reserve one value of the second (optional) // allocsize argument to signify "not present." static const unsigned AllocSizeNumElemsNotPresent = -1; static uint64_t packAllocSizeArgs(unsigned ElemSizeArg, const std::optional &NumElemsArg) { assert((!NumElemsArg || *NumElemsArg != AllocSizeNumElemsNotPresent) && "Attempting to pack a reserved value"); return uint64_t(ElemSizeArg) << 32 | NumElemsArg.value_or(AllocSizeNumElemsNotPresent); } static std::pair> unpackAllocSizeArgs(uint64_t Num) { unsigned NumElems = Num & std::numeric_limits::max(); unsigned ElemSizeArg = Num >> 32; std::optional NumElemsArg; if (NumElems != AllocSizeNumElemsNotPresent) NumElemsArg = NumElems; return std::make_pair(ElemSizeArg, NumElemsArg); } static uint64_t packVScaleRangeArgs(unsigned MinValue, std::optional MaxValue) { return uint64_t(MinValue) << 32 | MaxValue.value_or(0); } static std::pair> unpackVScaleRangeArgs(uint64_t Value) { unsigned MaxValue = Value & std::numeric_limits::max(); unsigned MinValue = Value >> 32; return std::make_pair(MinValue, MaxValue > 0 ? MaxValue : std::optional()); } Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind, uint64_t Val) { bool IsIntAttr = Attribute::isIntAttrKind(Kind); assert((IsIntAttr || Attribute::isEnumAttrKind(Kind)) && "Not an enum or int attribute"); LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddInteger(Kind); if (IsIntAttr) ID.AddInteger(Val); else assert(Val == 0 && "Value must be zero for enum attributes"); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!IsIntAttr) PA = new (pImpl->Alloc) EnumAttributeImpl(Kind); else PA = new (pImpl->Alloc) IntAttributeImpl(Kind, Val); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) { LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddString(Kind); if (!Val.empty()) ID.AddString(Val); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. void *Mem = pImpl->Alloc.Allocate(StringAttributeImpl::totalSizeToAlloc(Kind, Val), alignof(StringAttributeImpl)); PA = new (Mem) StringAttributeImpl(Kind, Val); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind, Type *Ty) { assert(Attribute::isTypeAttrKind(Kind) && "Not a type attribute"); LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddInteger(Kind); ID.AddPointer(Ty); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. PA = new (pImpl->Alloc) TypeAttributeImpl(Kind, Ty); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::getWithAlignment(LLVMContext &Context, Align A) { assert(A <= llvm::Value::MaximumAlignment && "Alignment too large."); return get(Context, Alignment, A.value()); } Attribute Attribute::getWithStackAlignment(LLVMContext &Context, Align A) { assert(A <= 0x100 && "Alignment too large."); return get(Context, StackAlignment, A.value()); } Attribute Attribute::getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes) { assert(Bytes && "Bytes must be non-zero."); return get(Context, Dereferenceable, Bytes); } Attribute Attribute::getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes) { assert(Bytes && "Bytes must be non-zero."); return get(Context, DereferenceableOrNull, Bytes); } Attribute Attribute::getWithByValType(LLVMContext &Context, Type *Ty) { return get(Context, ByVal, Ty); } Attribute Attribute::getWithStructRetType(LLVMContext &Context, Type *Ty) { return get(Context, StructRet, Ty); } Attribute Attribute::getWithByRefType(LLVMContext &Context, Type *Ty) { return get(Context, ByRef, Ty); } Attribute Attribute::getWithPreallocatedType(LLVMContext &Context, Type *Ty) { return get(Context, Preallocated, Ty); } Attribute Attribute::getWithInAllocaType(LLVMContext &Context, Type *Ty) { return get(Context, InAlloca, Ty); } Attribute Attribute::getWithUWTableKind(LLVMContext &Context, UWTableKind Kind) { return get(Context, UWTable, uint64_t(Kind)); } Attribute Attribute::getWithMemoryEffects(LLVMContext &Context, MemoryEffects ME) { return get(Context, Memory, ME.toIntValue()); } Attribute Attribute::getWithNoFPClass(LLVMContext &Context, FPClassTest ClassMask) { return get(Context, NoFPClass, ClassMask); } Attribute Attribute::getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg, const std::optional &NumElemsArg) { assert(!(ElemSizeArg == 0 && NumElemsArg && *NumElemsArg == 0) && "Invalid allocsize arguments -- given allocsize(0, 0)"); return get(Context, AllocSize, packAllocSizeArgs(ElemSizeArg, NumElemsArg)); } Attribute Attribute::getWithVScaleRangeArgs(LLVMContext &Context, unsigned MinValue, unsigned MaxValue) { return get(Context, VScaleRange, packVScaleRangeArgs(MinValue, MaxValue)); } Attribute::AttrKind Attribute::getAttrKindFromName(StringRef AttrName) { return StringSwitch(AttrName) #define GET_ATTR_NAMES #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ .Case(#DISPLAY_NAME, Attribute::ENUM_NAME) #include "llvm/IR/Attributes.inc" .Default(Attribute::None); } StringRef Attribute::getNameFromAttrKind(Attribute::AttrKind AttrKind) { switch (AttrKind) { #define GET_ATTR_NAMES #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ case Attribute::ENUM_NAME: \ return #DISPLAY_NAME; #include "llvm/IR/Attributes.inc" case Attribute::None: return "none"; default: llvm_unreachable("invalid Kind"); } } bool Attribute::isExistingAttribute(StringRef Name) { return StringSwitch(Name) #define GET_ATTR_NAMES #define ATTRIBUTE_ALL(ENUM_NAME, DISPLAY_NAME) .Case(#DISPLAY_NAME, true) #include "llvm/IR/Attributes.inc" .Default(false); } //===----------------------------------------------------------------------===// // Attribute Accessor Methods //===----------------------------------------------------------------------===// bool Attribute::isEnumAttribute() const { return pImpl && pImpl->isEnumAttribute(); } bool Attribute::isIntAttribute() const { return pImpl && pImpl->isIntAttribute(); } bool Attribute::isStringAttribute() const { return pImpl && pImpl->isStringAttribute(); } bool Attribute::isTypeAttribute() const { return pImpl && pImpl->isTypeAttribute(); } Attribute::AttrKind Attribute::getKindAsEnum() const { if (!pImpl) return None; assert((isEnumAttribute() || isIntAttribute() || isTypeAttribute()) && "Invalid attribute type to get the kind as an enum!"); return pImpl->getKindAsEnum(); } uint64_t Attribute::getValueAsInt() const { if (!pImpl) return 0; assert(isIntAttribute() && "Expected the attribute to be an integer attribute!"); return pImpl->getValueAsInt(); } bool Attribute::getValueAsBool() const { if (!pImpl) return false; assert(isStringAttribute() && "Expected the attribute to be a string attribute!"); return pImpl->getValueAsBool(); } StringRef Attribute::getKindAsString() const { if (!pImpl) return {}; assert(isStringAttribute() && "Invalid attribute type to get the kind as a string!"); return pImpl->getKindAsString(); } StringRef Attribute::getValueAsString() const { if (!pImpl) return {}; assert(isStringAttribute() && "Invalid attribute type to get the value as a string!"); return pImpl->getValueAsString(); } Type *Attribute::getValueAsType() const { if (!pImpl) return {}; assert(isTypeAttribute() && "Invalid attribute type to get the value as a type!"); return pImpl->getValueAsType(); } bool Attribute::hasAttribute(AttrKind Kind) const { return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None); } bool Attribute::hasAttribute(StringRef Kind) const { if (!isStringAttribute()) return false; return pImpl && pImpl->hasAttribute(Kind); } MaybeAlign Attribute::getAlignment() const { assert(hasAttribute(Attribute::Alignment) && "Trying to get alignment from non-alignment attribute!"); return MaybeAlign(pImpl->getValueAsInt()); } MaybeAlign Attribute::getStackAlignment() const { assert(hasAttribute(Attribute::StackAlignment) && "Trying to get alignment from non-alignment attribute!"); return MaybeAlign(pImpl->getValueAsInt()); } uint64_t Attribute::getDereferenceableBytes() const { assert(hasAttribute(Attribute::Dereferenceable) && "Trying to get dereferenceable bytes from " "non-dereferenceable attribute!"); return pImpl->getValueAsInt(); } uint64_t Attribute::getDereferenceableOrNullBytes() const { assert(hasAttribute(Attribute::DereferenceableOrNull) && "Trying to get dereferenceable bytes from " "non-dereferenceable attribute!"); return pImpl->getValueAsInt(); } std::pair> Attribute::getAllocSizeArgs() const { assert(hasAttribute(Attribute::AllocSize) && "Trying to get allocsize args from non-allocsize attribute"); return unpackAllocSizeArgs(pImpl->getValueAsInt()); } unsigned Attribute::getVScaleRangeMin() const { assert(hasAttribute(Attribute::VScaleRange) && "Trying to get vscale args from non-vscale attribute"); return unpackVScaleRangeArgs(pImpl->getValueAsInt()).first; } std::optional Attribute::getVScaleRangeMax() const { assert(hasAttribute(Attribute::VScaleRange) && "Trying to get vscale args from non-vscale attribute"); return unpackVScaleRangeArgs(pImpl->getValueAsInt()).second; } UWTableKind Attribute::getUWTableKind() const { assert(hasAttribute(Attribute::UWTable) && "Trying to get unwind table kind from non-uwtable attribute"); return UWTableKind(pImpl->getValueAsInt()); } AllocFnKind Attribute::getAllocKind() const { assert(hasAttribute(Attribute::AllocKind) && "Trying to get allockind value from non-allockind attribute"); return AllocFnKind(pImpl->getValueAsInt()); } MemoryEffects Attribute::getMemoryEffects() const { assert(hasAttribute(Attribute::Memory) && "Can only call getMemoryEffects() on memory attribute"); return MemoryEffects::createFromIntValue(pImpl->getValueAsInt()); } FPClassTest Attribute::getNoFPClass() const { assert(hasAttribute(Attribute::NoFPClass) && "Can only call getNoFPClass() on nofpclass attribute"); return static_cast(pImpl->getValueAsInt()); } static const char *getModRefStr(ModRefInfo MR) { switch (MR) { case ModRefInfo::NoModRef: return "none"; case ModRefInfo::Ref: return "read"; case ModRefInfo::Mod: return "write"; case ModRefInfo::ModRef: return "readwrite"; } llvm_unreachable("Invalid ModRefInfo"); } std::string Attribute::getAsString(bool InAttrGrp) const { if (!pImpl) return {}; if (isEnumAttribute()) return getNameFromAttrKind(getKindAsEnum()).str(); if (isTypeAttribute()) { std::string Result = getNameFromAttrKind(getKindAsEnum()).str(); Result += '('; raw_string_ostream OS(Result); getValueAsType()->print(OS, false, true); OS.flush(); Result += ')'; return Result; } // FIXME: These should be output like this: // // align=4 // alignstack=8 // if (hasAttribute(Attribute::Alignment)) return (InAttrGrp ? "align=" + Twine(getValueAsInt()) : "align " + Twine(getValueAsInt())) .str(); auto AttrWithBytesToString = [&](const char *Name) { return (InAttrGrp ? Name + ("=" + Twine(getValueAsInt())) : Name + ("(" + Twine(getValueAsInt())) + ")") .str(); }; if (hasAttribute(Attribute::StackAlignment)) return AttrWithBytesToString("alignstack"); if (hasAttribute(Attribute::Dereferenceable)) return AttrWithBytesToString("dereferenceable"); if (hasAttribute(Attribute::DereferenceableOrNull)) return AttrWithBytesToString("dereferenceable_or_null"); if (hasAttribute(Attribute::AllocSize)) { unsigned ElemSize; std::optional NumElems; std::tie(ElemSize, NumElems) = getAllocSizeArgs(); return (NumElems ? "allocsize(" + Twine(ElemSize) + "," + Twine(*NumElems) + ")" : "allocsize(" + Twine(ElemSize) + ")") .str(); } if (hasAttribute(Attribute::VScaleRange)) { unsigned MinValue = getVScaleRangeMin(); std::optional MaxValue = getVScaleRangeMax(); return ("vscale_range(" + Twine(MinValue) + "," + Twine(MaxValue.value_or(0)) + ")") .str(); } if (hasAttribute(Attribute::UWTable)) { UWTableKind Kind = getUWTableKind(); if (Kind != UWTableKind::None) { return Kind == UWTableKind::Default ? "uwtable" : ("uwtable(" + Twine(Kind == UWTableKind::Sync ? "sync" : "async") + ")") .str(); } } if (hasAttribute(Attribute::AllocKind)) { AllocFnKind Kind = getAllocKind(); SmallVector parts; if ((Kind & AllocFnKind::Alloc) != AllocFnKind::Unknown) parts.push_back("alloc"); if ((Kind & AllocFnKind::Realloc) != AllocFnKind::Unknown) parts.push_back("realloc"); if ((Kind & AllocFnKind::Free) != AllocFnKind::Unknown) parts.push_back("free"); if ((Kind & AllocFnKind::Uninitialized) != AllocFnKind::Unknown) parts.push_back("uninitialized"); if ((Kind & AllocFnKind::Zeroed) != AllocFnKind::Unknown) parts.push_back("zeroed"); if ((Kind & AllocFnKind::Aligned) != AllocFnKind::Unknown) parts.push_back("aligned"); return ("allockind(\"" + Twine(llvm::join(parts.begin(), parts.end(), ",")) + "\")") .str(); } if (hasAttribute(Attribute::Memory)) { std::string Result; raw_string_ostream OS(Result); bool First = true; OS << "memory("; MemoryEffects ME = getMemoryEffects(); // Print access kind for "other" as the default access kind. This way it // will apply to any new location kinds that get split out of "other". ModRefInfo OtherMR = ME.getModRef(IRMemLocation::Other); if (OtherMR != ModRefInfo::NoModRef || ME.getModRef() == OtherMR) { First = false; OS << getModRefStr(OtherMR); } for (auto Loc : MemoryEffects::locations()) { ModRefInfo MR = ME.getModRef(Loc); if (MR == OtherMR) continue; if (!First) OS << ", "; First = false; switch (Loc) { case IRMemLocation::ArgMem: OS << "argmem: "; break; case IRMemLocation::InaccessibleMem: OS << "inaccessiblemem: "; break; case IRMemLocation::Other: llvm_unreachable("This is represented as the default access kind"); } OS << getModRefStr(MR); } OS << ")"; OS.flush(); return Result; } if (hasAttribute(Attribute::NoFPClass)) { std::string Result = "nofpclass"; raw_string_ostream OS(Result); OS << getNoFPClass(); return Result; } // Convert target-dependent attributes to strings of the form: // // "kind" // "kind" = "value" // if (isStringAttribute()) { std::string Result; { raw_string_ostream OS(Result); OS << '"' << getKindAsString() << '"'; // Since some attribute strings contain special characters that cannot be // printable, those have to be escaped to make the attribute value // printable as is. e.g. "\01__gnu_mcount_nc" const auto &AttrVal = pImpl->getValueAsString(); if (!AttrVal.empty()) { OS << "=\""; printEscapedString(AttrVal, OS); OS << "\""; } } return Result; } llvm_unreachable("Unknown attribute"); } bool Attribute::hasParentContext(LLVMContext &C) const { assert(isValid() && "invalid Attribute doesn't refer to any context"); FoldingSetNodeID ID; pImpl->Profile(ID); void *Unused; return C.pImpl->AttrsSet.FindNodeOrInsertPos(ID, Unused) == pImpl; } bool Attribute::operator<(Attribute A) const { if (!pImpl && !A.pImpl) return false; if (!pImpl) return true; if (!A.pImpl) return false; return *pImpl < *A.pImpl; } void Attribute::Profile(FoldingSetNodeID &ID) const { ID.AddPointer(pImpl); } enum AttributeProperty { FnAttr = (1 << 0), ParamAttr = (1 << 1), RetAttr = (1 << 2), }; #define GET_ATTR_PROP_TABLE #include "llvm/IR/Attributes.inc" static bool hasAttributeProperty(Attribute::AttrKind Kind, AttributeProperty Prop) { unsigned Index = Kind - 1; assert(Index < std::size(AttrPropTable) && "Invalid attribute kind"); return AttrPropTable[Index] & Prop; } bool Attribute::canUseAsFnAttr(AttrKind Kind) { return hasAttributeProperty(Kind, AttributeProperty::FnAttr); } bool Attribute::canUseAsParamAttr(AttrKind Kind) { return hasAttributeProperty(Kind, AttributeProperty::ParamAttr); } bool Attribute::canUseAsRetAttr(AttrKind Kind) { return hasAttributeProperty(Kind, AttributeProperty::RetAttr); } //===----------------------------------------------------------------------===// // AttributeImpl Definition //===----------------------------------------------------------------------===// bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const { if (isStringAttribute()) return false; return getKindAsEnum() == A; } bool AttributeImpl::hasAttribute(StringRef Kind) const { if (!isStringAttribute()) return false; return getKindAsString() == Kind; } Attribute::AttrKind AttributeImpl::getKindAsEnum() const { assert(isEnumAttribute() || isIntAttribute() || isTypeAttribute()); return static_cast(this)->getEnumKind(); } uint64_t AttributeImpl::getValueAsInt() const { assert(isIntAttribute()); return static_cast(this)->getValue(); } bool AttributeImpl::getValueAsBool() const { assert(getValueAsString().empty() || getValueAsString() == "false" || getValueAsString() == "true"); return getValueAsString() == "true"; } StringRef AttributeImpl::getKindAsString() const { assert(isStringAttribute()); return static_cast(this)->getStringKind(); } StringRef AttributeImpl::getValueAsString() const { assert(isStringAttribute()); return static_cast(this)->getStringValue(); } Type *AttributeImpl::getValueAsType() const { assert(isTypeAttribute()); return static_cast(this)->getTypeValue(); } bool AttributeImpl::operator<(const AttributeImpl &AI) const { if (this == &AI) return false; // This sorts the attributes with Attribute::AttrKinds coming first (sorted // relative to their enum value) and then strings. if (!isStringAttribute()) { if (AI.isStringAttribute()) return true; if (getKindAsEnum() != AI.getKindAsEnum()) return getKindAsEnum() < AI.getKindAsEnum(); assert(!AI.isEnumAttribute() && "Non-unique attribute"); assert(!AI.isTypeAttribute() && "Comparison of types would be unstable"); // TODO: Is this actually needed? assert(AI.isIntAttribute() && "Only possibility left"); return getValueAsInt() < AI.getValueAsInt(); } if (!AI.isStringAttribute()) return false; if (getKindAsString() == AI.getKindAsString()) return getValueAsString() < AI.getValueAsString(); return getKindAsString() < AI.getKindAsString(); } //===----------------------------------------------------------------------===// // AttributeSet Definition //===----------------------------------------------------------------------===// AttributeSet AttributeSet::get(LLVMContext &C, const AttrBuilder &B) { return AttributeSet(AttributeSetNode::get(C, B)); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef Attrs) { return AttributeSet(AttributeSetNode::get(C, Attrs)); } AttributeSet AttributeSet::addAttribute(LLVMContext &C, Attribute::AttrKind Kind) const { if (hasAttribute(Kind)) return *this; AttrBuilder B(C); B.addAttribute(Kind); return addAttributes(C, AttributeSet::get(C, B)); } AttributeSet AttributeSet::addAttribute(LLVMContext &C, StringRef Kind, StringRef Value) const { AttrBuilder B(C); B.addAttribute(Kind, Value); return addAttributes(C, AttributeSet::get(C, B)); } AttributeSet AttributeSet::addAttributes(LLVMContext &C, const AttributeSet AS) const { if (!hasAttributes()) return AS; if (!AS.hasAttributes()) return *this; AttrBuilder B(C, *this); B.merge(AttrBuilder(C, AS)); return get(C, B); } AttributeSet AttributeSet::removeAttribute(LLVMContext &C, Attribute::AttrKind Kind) const { if (!hasAttribute(Kind)) return *this; AttrBuilder B(C, *this); B.removeAttribute(Kind); return get(C, B); } AttributeSet AttributeSet::removeAttribute(LLVMContext &C, StringRef Kind) const { if (!hasAttribute(Kind)) return *this; AttrBuilder B(C, *this); B.removeAttribute(Kind); return get(C, B); } AttributeSet AttributeSet::removeAttributes(LLVMContext &C, const AttributeMask &Attrs) const { AttrBuilder B(C, *this); // If there is nothing to remove, directly return the original set. if (!B.overlaps(Attrs)) return *this; B.remove(Attrs); return get(C, B); } unsigned AttributeSet::getNumAttributes() const { return SetNode ? SetNode->getNumAttributes() : 0; } bool AttributeSet::hasAttribute(Attribute::AttrKind Kind) const { return SetNode ? SetNode->hasAttribute(Kind) : false; } bool AttributeSet::hasAttribute(StringRef Kind) const { return SetNode ? SetNode->hasAttribute(Kind) : false; } Attribute AttributeSet::getAttribute(Attribute::AttrKind Kind) const { return SetNode ? SetNode->getAttribute(Kind) : Attribute(); } Attribute AttributeSet::getAttribute(StringRef Kind) const { return SetNode ? SetNode->getAttribute(Kind) : Attribute(); } MaybeAlign AttributeSet::getAlignment() const { return SetNode ? SetNode->getAlignment() : std::nullopt; } MaybeAlign AttributeSet::getStackAlignment() const { return SetNode ? SetNode->getStackAlignment() : std::nullopt; } uint64_t AttributeSet::getDereferenceableBytes() const { return SetNode ? SetNode->getDereferenceableBytes() : 0; } uint64_t AttributeSet::getDereferenceableOrNullBytes() const { return SetNode ? SetNode->getDereferenceableOrNullBytes() : 0; } Type *AttributeSet::getByRefType() const { return SetNode ? SetNode->getAttributeType(Attribute::ByRef) : nullptr; } Type *AttributeSet::getByValType() const { return SetNode ? SetNode->getAttributeType(Attribute::ByVal) : nullptr; } Type *AttributeSet::getStructRetType() const { return SetNode ? SetNode->getAttributeType(Attribute::StructRet) : nullptr; } Type *AttributeSet::getPreallocatedType() const { return SetNode ? SetNode->getAttributeType(Attribute::Preallocated) : nullptr; } Type *AttributeSet::getInAllocaType() const { return SetNode ? SetNode->getAttributeType(Attribute::InAlloca) : nullptr; } Type *AttributeSet::getElementType() const { return SetNode ? SetNode->getAttributeType(Attribute::ElementType) : nullptr; } std::optional>> AttributeSet::getAllocSizeArgs() const { if (SetNode) return SetNode->getAllocSizeArgs(); return std::nullopt; } unsigned AttributeSet::getVScaleRangeMin() const { return SetNode ? SetNode->getVScaleRangeMin() : 1; } std::optional AttributeSet::getVScaleRangeMax() const { return SetNode ? SetNode->getVScaleRangeMax() : std::nullopt; } UWTableKind AttributeSet::getUWTableKind() const { return SetNode ? SetNode->getUWTableKind() : UWTableKind::None; } AllocFnKind AttributeSet::getAllocKind() const { return SetNode ? SetNode->getAllocKind() : AllocFnKind::Unknown; } MemoryEffects AttributeSet::getMemoryEffects() const { return SetNode ? SetNode->getMemoryEffects() : MemoryEffects::unknown(); } FPClassTest AttributeSet::getNoFPClass() const { return SetNode ? SetNode->getNoFPClass() : fcNone; } std::string AttributeSet::getAsString(bool InAttrGrp) const { return SetNode ? SetNode->getAsString(InAttrGrp) : ""; } bool AttributeSet::hasParentContext(LLVMContext &C) const { assert(hasAttributes() && "empty AttributeSet doesn't refer to any context"); FoldingSetNodeID ID; SetNode->Profile(ID); void *Unused; return C.pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, Unused) == SetNode; } AttributeSet::iterator AttributeSet::begin() const { return SetNode ? SetNode->begin() : nullptr; } AttributeSet::iterator AttributeSet::end() const { return SetNode ? SetNode->end() : nullptr; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void AttributeSet::dump() const { dbgs() << "AS =\n"; dbgs() << " { "; dbgs() << getAsString(true) << " }\n"; } #endif //===----------------------------------------------------------------------===// // AttributeSetNode Definition //===----------------------------------------------------------------------===// AttributeSetNode::AttributeSetNode(ArrayRef Attrs) : NumAttrs(Attrs.size()) { // There's memory after the node where we can store the entries in. llvm::copy(Attrs, getTrailingObjects()); for (const auto &I : *this) { if (I.isStringAttribute()) StringAttrs.insert({ I.getKindAsString(), I }); else AvailableAttrs.addAttribute(I.getKindAsEnum()); } } AttributeSetNode *AttributeSetNode::get(LLVMContext &C, ArrayRef Attrs) { SmallVector SortedAttrs(Attrs.begin(), Attrs.end()); llvm::sort(SortedAttrs); return getSorted(C, SortedAttrs); } AttributeSetNode *AttributeSetNode::getSorted(LLVMContext &C, ArrayRef SortedAttrs) { if (SortedAttrs.empty()) return nullptr; // Build a key to look up the existing attributes. LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; assert(llvm::is_sorted(SortedAttrs) && "Expected sorted attributes!"); for (const auto &Attr : SortedAttrs) Attr.Profile(ID); void *InsertPoint; AttributeSetNode *PA = pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!PA) { // Coallocate entries after the AttributeSetNode itself. void *Mem = ::operator new(totalSizeToAlloc(SortedAttrs.size())); PA = new (Mem) AttributeSetNode(SortedAttrs); pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint); } // Return the AttributeSetNode that we found or created. return PA; } AttributeSetNode *AttributeSetNode::get(LLVMContext &C, const AttrBuilder &B) { return getSorted(C, B.attrs()); } bool AttributeSetNode::hasAttribute(StringRef Kind) const { return StringAttrs.count(Kind); } std::optional AttributeSetNode::findEnumAttribute(Attribute::AttrKind Kind) const { // Do a quick presence check. if (!hasAttribute(Kind)) return std::nullopt; // Attributes in a set are sorted by enum value, followed by string // attributes. Binary search the one we want. const Attribute *I = std::lower_bound(begin(), end() - StringAttrs.size(), Kind, [](Attribute A, Attribute::AttrKind Kind) { return A.getKindAsEnum() < Kind; }); assert(I != end() && I->hasAttribute(Kind) && "Presence check failed?"); return *I; } Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const { if (auto A = findEnumAttribute(Kind)) return *A; return {}; } Attribute AttributeSetNode::getAttribute(StringRef Kind) const { return StringAttrs.lookup(Kind); } MaybeAlign AttributeSetNode::getAlignment() const { if (auto A = findEnumAttribute(Attribute::Alignment)) return A->getAlignment(); return std::nullopt; } MaybeAlign AttributeSetNode::getStackAlignment() const { if (auto A = findEnumAttribute(Attribute::StackAlignment)) return A->getStackAlignment(); return std::nullopt; } Type *AttributeSetNode::getAttributeType(Attribute::AttrKind Kind) const { if (auto A = findEnumAttribute(Kind)) return A->getValueAsType(); return nullptr; } uint64_t AttributeSetNode::getDereferenceableBytes() const { if (auto A = findEnumAttribute(Attribute::Dereferenceable)) return A->getDereferenceableBytes(); return 0; } uint64_t AttributeSetNode::getDereferenceableOrNullBytes() const { if (auto A = findEnumAttribute(Attribute::DereferenceableOrNull)) return A->getDereferenceableOrNullBytes(); return 0; } std::optional>> AttributeSetNode::getAllocSizeArgs() const { if (auto A = findEnumAttribute(Attribute::AllocSize)) return A->getAllocSizeArgs(); return std::nullopt; } unsigned AttributeSetNode::getVScaleRangeMin() const { if (auto A = findEnumAttribute(Attribute::VScaleRange)) return A->getVScaleRangeMin(); return 1; } std::optional AttributeSetNode::getVScaleRangeMax() const { if (auto A = findEnumAttribute(Attribute::VScaleRange)) return A->getVScaleRangeMax(); return std::nullopt; } UWTableKind AttributeSetNode::getUWTableKind() const { if (auto A = findEnumAttribute(Attribute::UWTable)) return A->getUWTableKind(); return UWTableKind::None; } AllocFnKind AttributeSetNode::getAllocKind() const { if (auto A = findEnumAttribute(Attribute::AllocKind)) return A->getAllocKind(); return AllocFnKind::Unknown; } MemoryEffects AttributeSetNode::getMemoryEffects() const { if (auto A = findEnumAttribute(Attribute::Memory)) return A->getMemoryEffects(); return MemoryEffects::unknown(); } FPClassTest AttributeSetNode::getNoFPClass() const { if (auto A = findEnumAttribute(Attribute::NoFPClass)) return A->getNoFPClass(); return fcNone; } std::string AttributeSetNode::getAsString(bool InAttrGrp) const { std::string Str; for (iterator I = begin(), E = end(); I != E; ++I) { if (I != begin()) Str += ' '; Str += I->getAsString(InAttrGrp); } return Str; } //===----------------------------------------------------------------------===// // AttributeListImpl Definition //===----------------------------------------------------------------------===// /// Map from AttributeList index to the internal array index. Adding one happens /// to work, because -1 wraps around to 0. static unsigned attrIdxToArrayIdx(unsigned Index) { return Index + 1; } AttributeListImpl::AttributeListImpl(ArrayRef Sets) : NumAttrSets(Sets.size()) { assert(!Sets.empty() && "pointless AttributeListImpl"); // There's memory after the node where we can store the entries in. llvm::copy(Sets, getTrailingObjects()); // Initialize AvailableFunctionAttrs and AvailableSomewhereAttrs // summary bitsets. for (const auto &I : Sets[attrIdxToArrayIdx(AttributeList::FunctionIndex)]) if (!I.isStringAttribute()) AvailableFunctionAttrs.addAttribute(I.getKindAsEnum()); for (const auto &Set : Sets) for (const auto &I : Set) if (!I.isStringAttribute()) AvailableSomewhereAttrs.addAttribute(I.getKindAsEnum()); } void AttributeListImpl::Profile(FoldingSetNodeID &ID) const { Profile(ID, ArrayRef(begin(), end())); } void AttributeListImpl::Profile(FoldingSetNodeID &ID, ArrayRef Sets) { for (const auto &Set : Sets) ID.AddPointer(Set.SetNode); } bool AttributeListImpl::hasAttrSomewhere(Attribute::AttrKind Kind, unsigned *Index) const { if (!AvailableSomewhereAttrs.hasAttribute(Kind)) return false; if (Index) { for (unsigned I = 0, E = NumAttrSets; I != E; ++I) { if (begin()[I].hasAttribute(Kind)) { *Index = I - 1; break; } } } return true; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void AttributeListImpl::dump() const { AttributeList(const_cast(this)).dump(); } #endif //===----------------------------------------------------------------------===// // AttributeList Construction and Mutation Methods //===----------------------------------------------------------------------===// AttributeList AttributeList::getImpl(LLVMContext &C, ArrayRef AttrSets) { assert(!AttrSets.empty() && "pointless AttributeListImpl"); LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; AttributeListImpl::Profile(ID, AttrSets); void *InsertPoint; AttributeListImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then // create a new one and insert it. if (!PA) { // Coallocate entries after the AttributeListImpl itself. void *Mem = pImpl->Alloc.Allocate( AttributeListImpl::totalSizeToAlloc(AttrSets.size()), alignof(AttributeListImpl)); PA = new (Mem) AttributeListImpl(AttrSets); pImpl->AttrsLists.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return AttributeList(PA); } AttributeList AttributeList::get(LLVMContext &C, ArrayRef> Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return {}; assert(llvm::is_sorted(Attrs, llvm::less_first()) && "Misordered Attributes list!"); assert(llvm::all_of(Attrs, [](const std::pair &Pair) { return Pair.second.isValid(); }) && "Pointless attribute!"); // Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes // list. SmallVector, 8> AttrPairVec; for (ArrayRef>::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ) { unsigned Index = I->first; SmallVector AttrVec; while (I != E && I->first == Index) { AttrVec.push_back(I->second); ++I; } AttrPairVec.emplace_back(Index, AttributeSet::get(C, AttrVec)); } return get(C, AttrPairVec); } AttributeList AttributeList::get(LLVMContext &C, ArrayRef> Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return {}; assert(llvm::is_sorted(Attrs, llvm::less_first()) && "Misordered Attributes list!"); assert(llvm::none_of(Attrs, [](const std::pair &Pair) { return !Pair.second.hasAttributes(); }) && "Pointless attribute!"); unsigned MaxIndex = Attrs.back().first; // If the MaxIndex is FunctionIndex and there are other indices in front // of it, we need to use the largest of those to get the right size. if (MaxIndex == FunctionIndex && Attrs.size() > 1) MaxIndex = Attrs[Attrs.size() - 2].first; SmallVector AttrVec(attrIdxToArrayIdx(MaxIndex) + 1); for (const auto &Pair : Attrs) AttrVec[attrIdxToArrayIdx(Pair.first)] = Pair.second; return getImpl(C, AttrVec); } AttributeList AttributeList::get(LLVMContext &C, AttributeSet FnAttrs, AttributeSet RetAttrs, ArrayRef ArgAttrs) { // Scan from the end to find the last argument with attributes. Most // arguments don't have attributes, so it's nice if we can have fewer unique // AttributeListImpls by dropping empty attribute sets at the end of the list. unsigned NumSets = 0; for (size_t I = ArgAttrs.size(); I != 0; --I) { if (ArgAttrs[I - 1].hasAttributes()) { NumSets = I + 2; break; } } if (NumSets == 0) { // Check function and return attributes if we didn't have argument // attributes. if (RetAttrs.hasAttributes()) NumSets = 2; else if (FnAttrs.hasAttributes()) NumSets = 1; } // If all attribute sets were empty, we can use the empty attribute list. if (NumSets == 0) return {}; SmallVector AttrSets; AttrSets.reserve(NumSets); // If we have any attributes, we always have function attributes. AttrSets.push_back(FnAttrs); if (NumSets > 1) AttrSets.push_back(RetAttrs); if (NumSets > 2) { // Drop the empty argument attribute sets at the end. ArgAttrs = ArgAttrs.take_front(NumSets - 2); llvm::append_range(AttrSets, ArgAttrs); } return getImpl(C, AttrSets); } AttributeList AttributeList::get(LLVMContext &C, unsigned Index, AttributeSet Attrs) { if (!Attrs.hasAttributes()) return {}; Index = attrIdxToArrayIdx(Index); SmallVector AttrSets(Index + 1); AttrSets[Index] = Attrs; return getImpl(C, AttrSets); } AttributeList AttributeList::get(LLVMContext &C, unsigned Index, const AttrBuilder &B) { return get(C, Index, AttributeSet::get(C, B)); } AttributeList AttributeList::get(LLVMContext &C, unsigned Index, ArrayRef Kinds) { SmallVector, 8> Attrs; for (const auto K : Kinds) Attrs.emplace_back(Index, Attribute::get(C, K)); return get(C, Attrs); } AttributeList AttributeList::get(LLVMContext &C, unsigned Index, ArrayRef Kinds, ArrayRef Values) { assert(Kinds.size() == Values.size() && "Mismatched attribute values."); SmallVector, 8> Attrs; auto VI = Values.begin(); for (const auto K : Kinds) Attrs.emplace_back(Index, Attribute::get(C, K, *VI++)); return get(C, Attrs); } AttributeList AttributeList::get(LLVMContext &C, unsigned Index, ArrayRef Kinds) { SmallVector, 8> Attrs; for (const auto &K : Kinds) Attrs.emplace_back(Index, Attribute::get(C, K)); return get(C, Attrs); } AttributeList AttributeList::get(LLVMContext &C, ArrayRef Attrs) { if (Attrs.empty()) return {}; if (Attrs.size() == 1) return Attrs[0]; unsigned MaxSize = 0; for (const auto &List : Attrs) MaxSize = std::max(MaxSize, List.getNumAttrSets()); // If every list was empty, there is no point in merging the lists. if (MaxSize == 0) return {}; SmallVector NewAttrSets(MaxSize); for (unsigned I = 0; I < MaxSize; ++I) { AttrBuilder CurBuilder(C); for (const auto &List : Attrs) CurBuilder.merge(AttrBuilder(C, List.getAttributes(I - 1))); NewAttrSets[I] = AttributeSet::get(C, CurBuilder); } return getImpl(C, NewAttrSets); } AttributeList AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const { AttributeSet Attrs = getAttributes(Index); if (Attrs.hasAttribute(Kind)) return *this; // TODO: Insert at correct position and avoid sort. SmallVector NewAttrs(Attrs.begin(), Attrs.end()); NewAttrs.push_back(Attribute::get(C, Kind)); return setAttributesAtIndex(C, Index, AttributeSet::get(C, NewAttrs)); } AttributeList AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index, StringRef Kind, StringRef Value) const { AttrBuilder B(C); B.addAttribute(Kind, Value); return addAttributesAtIndex(C, Index, B); } AttributeList AttributeList::addAttributeAtIndex(LLVMContext &C, unsigned Index, Attribute A) const { AttrBuilder B(C); B.addAttribute(A); return addAttributesAtIndex(C, Index, B); } AttributeList AttributeList::setAttributesAtIndex(LLVMContext &C, unsigned Index, AttributeSet Attrs) const { Index = attrIdxToArrayIdx(Index); SmallVector AttrSets(this->begin(), this->end()); if (Index >= AttrSets.size()) AttrSets.resize(Index + 1); AttrSets[Index] = Attrs; // Remove trailing empty attribute sets. while (!AttrSets.empty() && !AttrSets.back().hasAttributes()) AttrSets.pop_back(); if (AttrSets.empty()) return {}; return AttributeList::getImpl(C, AttrSets); } AttributeList AttributeList::addAttributesAtIndex(LLVMContext &C, unsigned Index, const AttrBuilder &B) const { if (!B.hasAttributes()) return *this; if (!pImpl) return AttributeList::get(C, {{Index, AttributeSet::get(C, B)}}); AttrBuilder Merged(C, getAttributes(Index)); Merged.merge(B); return setAttributesAtIndex(C, Index, AttributeSet::get(C, Merged)); } AttributeList AttributeList::addParamAttribute(LLVMContext &C, ArrayRef ArgNos, Attribute A) const { assert(llvm::is_sorted(ArgNos)); SmallVector AttrSets(this->begin(), this->end()); unsigned MaxIndex = attrIdxToArrayIdx(ArgNos.back() + FirstArgIndex); if (MaxIndex >= AttrSets.size()) AttrSets.resize(MaxIndex + 1); for (unsigned ArgNo : ArgNos) { unsigned Index = attrIdxToArrayIdx(ArgNo + FirstArgIndex); AttrBuilder B(C, AttrSets[Index]); B.addAttribute(A); AttrSets[Index] = AttributeSet::get(C, B); } return getImpl(C, AttrSets); } AttributeList AttributeList::removeAttributeAtIndex(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const { AttributeSet Attrs = getAttributes(Index); AttributeSet NewAttrs = Attrs.removeAttribute(C, Kind); if (Attrs == NewAttrs) return *this; return setAttributesAtIndex(C, Index, NewAttrs); } AttributeList AttributeList::removeAttributeAtIndex(LLVMContext &C, unsigned Index, StringRef Kind) const { AttributeSet Attrs = getAttributes(Index); AttributeSet NewAttrs = Attrs.removeAttribute(C, Kind); if (Attrs == NewAttrs) return *this; return setAttributesAtIndex(C, Index, NewAttrs); } AttributeList AttributeList::removeAttributesAtIndex( LLVMContext &C, unsigned Index, const AttributeMask &AttrsToRemove) const { AttributeSet Attrs = getAttributes(Index); AttributeSet NewAttrs = Attrs.removeAttributes(C, AttrsToRemove); // If nothing was removed, return the original list. if (Attrs == NewAttrs) return *this; return setAttributesAtIndex(C, Index, NewAttrs); } AttributeList AttributeList::removeAttributesAtIndex(LLVMContext &C, unsigned WithoutIndex) const { if (!pImpl) return {}; if (attrIdxToArrayIdx(WithoutIndex) >= getNumAttrSets()) return *this; return setAttributesAtIndex(C, WithoutIndex, AttributeSet()); } AttributeList AttributeList::addDereferenceableRetAttr(LLVMContext &C, uint64_t Bytes) const { AttrBuilder B(C); B.addDereferenceableAttr(Bytes); return addRetAttributes(C, B); } AttributeList AttributeList::addDereferenceableParamAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const { AttrBuilder B(C); B.addDereferenceableAttr(Bytes); return addParamAttributes(C, Index, B); } AttributeList AttributeList::addDereferenceableOrNullParamAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const { AttrBuilder B(C); B.addDereferenceableOrNullAttr(Bytes); return addParamAttributes(C, Index, B); } AttributeList AttributeList::addAllocSizeParamAttr( LLVMContext &C, unsigned Index, unsigned ElemSizeArg, const std::optional &NumElemsArg) { AttrBuilder B(C); B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); return addParamAttributes(C, Index, B); } //===----------------------------------------------------------------------===// // AttributeList Accessor Methods //===----------------------------------------------------------------------===// AttributeSet AttributeList::getParamAttrs(unsigned ArgNo) const { return getAttributes(ArgNo + FirstArgIndex); } AttributeSet AttributeList::getRetAttrs() const { return getAttributes(ReturnIndex); } AttributeSet AttributeList::getFnAttrs() const { return getAttributes(FunctionIndex); } bool AttributeList::hasAttributeAtIndex(unsigned Index, Attribute::AttrKind Kind) const { return getAttributes(Index).hasAttribute(Kind); } bool AttributeList::hasAttributeAtIndex(unsigned Index, StringRef Kind) const { return getAttributes(Index).hasAttribute(Kind); } bool AttributeList::hasAttributesAtIndex(unsigned Index) const { return getAttributes(Index).hasAttributes(); } bool AttributeList::hasFnAttr(Attribute::AttrKind Kind) const { return pImpl && pImpl->hasFnAttribute(Kind); } bool AttributeList::hasFnAttr(StringRef Kind) const { return hasAttributeAtIndex(AttributeList::FunctionIndex, Kind); } bool AttributeList::hasAttrSomewhere(Attribute::AttrKind Attr, unsigned *Index) const { return pImpl && pImpl->hasAttrSomewhere(Attr, Index); } Attribute AttributeList::getAttributeAtIndex(unsigned Index, Attribute::AttrKind Kind) const { return getAttributes(Index).getAttribute(Kind); } Attribute AttributeList::getAttributeAtIndex(unsigned Index, StringRef Kind) const { return getAttributes(Index).getAttribute(Kind); } MaybeAlign AttributeList::getRetAlignment() const { return getAttributes(ReturnIndex).getAlignment(); } MaybeAlign AttributeList::getParamAlignment(unsigned ArgNo) const { return getAttributes(ArgNo + FirstArgIndex).getAlignment(); } MaybeAlign AttributeList::getParamStackAlignment(unsigned ArgNo) const { return getAttributes(ArgNo + FirstArgIndex).getStackAlignment(); } Type *AttributeList::getParamByValType(unsigned Index) const { return getAttributes(Index+FirstArgIndex).getByValType(); } Type *AttributeList::getParamStructRetType(unsigned Index) const { return getAttributes(Index + FirstArgIndex).getStructRetType(); } Type *AttributeList::getParamByRefType(unsigned Index) const { return getAttributes(Index + FirstArgIndex).getByRefType(); } Type *AttributeList::getParamPreallocatedType(unsigned Index) const { return getAttributes(Index + FirstArgIndex).getPreallocatedType(); } Type *AttributeList::getParamInAllocaType(unsigned Index) const { return getAttributes(Index + FirstArgIndex).getInAllocaType(); } Type *AttributeList::getParamElementType(unsigned Index) const { return getAttributes(Index + FirstArgIndex).getElementType(); } MaybeAlign AttributeList::getFnStackAlignment() const { return getFnAttrs().getStackAlignment(); } MaybeAlign AttributeList::getRetStackAlignment() const { return getRetAttrs().getStackAlignment(); } uint64_t AttributeList::getRetDereferenceableBytes() const { return getRetAttrs().getDereferenceableBytes(); } uint64_t AttributeList::getParamDereferenceableBytes(unsigned Index) const { return getParamAttrs(Index).getDereferenceableBytes(); } uint64_t AttributeList::getRetDereferenceableOrNullBytes() const { return getRetAttrs().getDereferenceableOrNullBytes(); } uint64_t AttributeList::getParamDereferenceableOrNullBytes(unsigned Index) const { return getParamAttrs(Index).getDereferenceableOrNullBytes(); } FPClassTest AttributeList::getRetNoFPClass() const { return getRetAttrs().getNoFPClass(); } FPClassTest AttributeList::getParamNoFPClass(unsigned Index) const { return getParamAttrs(Index).getNoFPClass(); } UWTableKind AttributeList::getUWTableKind() const { return getFnAttrs().getUWTableKind(); } AllocFnKind AttributeList::getAllocKind() const { return getFnAttrs().getAllocKind(); } MemoryEffects AttributeList::getMemoryEffects() const { return getFnAttrs().getMemoryEffects(); } std::string AttributeList::getAsString(unsigned Index, bool InAttrGrp) const { return getAttributes(Index).getAsString(InAttrGrp); } AttributeSet AttributeList::getAttributes(unsigned Index) const { Index = attrIdxToArrayIdx(Index); if (!pImpl || Index >= getNumAttrSets()) return {}; return pImpl->begin()[Index]; } bool AttributeList::hasParentContext(LLVMContext &C) const { assert(!isEmpty() && "an empty attribute list has no parent context"); FoldingSetNodeID ID; pImpl->Profile(ID); void *Unused; return C.pImpl->AttrsLists.FindNodeOrInsertPos(ID, Unused) == pImpl; } AttributeList::iterator AttributeList::begin() const { return pImpl ? pImpl->begin() : nullptr; } AttributeList::iterator AttributeList::end() const { return pImpl ? pImpl->end() : nullptr; } //===----------------------------------------------------------------------===// // AttributeList Introspection Methods //===----------------------------------------------------------------------===// unsigned AttributeList::getNumAttrSets() const { return pImpl ? pImpl->NumAttrSets : 0; } void AttributeList::print(raw_ostream &O) const { O << "AttributeList[\n"; for (unsigned i : indexes()) { if (!getAttributes(i).hasAttributes()) continue; O << " { "; switch (i) { case AttrIndex::ReturnIndex: O << "return"; break; case AttrIndex::FunctionIndex: O << "function"; break; default: O << "arg(" << i - AttrIndex::FirstArgIndex << ")"; } O << " => " << getAsString(i) << " }\n"; } O << "]\n"; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void AttributeList::dump() const { print(dbgs()); } #endif //===----------------------------------------------------------------------===// // AttrBuilder Method Implementations //===----------------------------------------------------------------------===// AttrBuilder::AttrBuilder(LLVMContext &Ctx, AttributeSet AS) : Ctx(Ctx) { append_range(Attrs, AS); assert(is_sorted(Attrs) && "AttributeSet should be sorted"); } void AttrBuilder::clear() { Attrs.clear(); } /// Attribute comparator that only compares attribute keys. Enum attributes are /// sorted before string attributes. struct AttributeComparator { bool operator()(Attribute A0, Attribute A1) const { bool A0IsString = A0.isStringAttribute(); bool A1IsString = A1.isStringAttribute(); if (A0IsString) { if (A1IsString) return A0.getKindAsString() < A1.getKindAsString(); else return false; } if (A1IsString) return true; return A0.getKindAsEnum() < A1.getKindAsEnum(); } bool operator()(Attribute A0, Attribute::AttrKind Kind) const { if (A0.isStringAttribute()) return false; return A0.getKindAsEnum() < Kind; } bool operator()(Attribute A0, StringRef Kind) const { if (A0.isStringAttribute()) return A0.getKindAsString() < Kind; return true; } }; template static void addAttributeImpl(SmallVectorImpl &Attrs, K Kind, Attribute Attr) { auto It = lower_bound(Attrs, Kind, AttributeComparator()); if (It != Attrs.end() && It->hasAttribute(Kind)) std::swap(*It, Attr); else Attrs.insert(It, Attr); } AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) { if (Attr.isStringAttribute()) addAttributeImpl(Attrs, Attr.getKindAsString(), Attr); else addAttributeImpl(Attrs, Attr.getKindAsEnum(), Attr); return *this; } AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Kind) { addAttributeImpl(Attrs, Kind, Attribute::get(Ctx, Kind)); return *this; } AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) { addAttributeImpl(Attrs, A, Attribute::get(Ctx, A, V)); return *this; } AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) { assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!"); auto It = lower_bound(Attrs, Val, AttributeComparator()); if (It != Attrs.end() && It->hasAttribute(Val)) Attrs.erase(It); return *this; } AttrBuilder &AttrBuilder::removeAttribute(StringRef A) { auto It = lower_bound(Attrs, A, AttributeComparator()); if (It != Attrs.end() && It->hasAttribute(A)) Attrs.erase(It); return *this; } std::optional AttrBuilder::getRawIntAttr(Attribute::AttrKind Kind) const { assert(Attribute::isIntAttrKind(Kind) && "Not an int attribute"); Attribute A = getAttribute(Kind); if (A.isValid()) return A.getValueAsInt(); return std::nullopt; } AttrBuilder &AttrBuilder::addRawIntAttr(Attribute::AttrKind Kind, uint64_t Value) { return addAttribute(Attribute::get(Ctx, Kind, Value)); } std::optional>> AttrBuilder::getAllocSizeArgs() const { Attribute A = getAttribute(Attribute::AllocSize); if (A.isValid()) return A.getAllocSizeArgs(); return std::nullopt; } AttrBuilder &AttrBuilder::addAlignmentAttr(MaybeAlign Align) { if (!Align) return *this; assert(*Align <= llvm::Value::MaximumAlignment && "Alignment too large."); return addRawIntAttr(Attribute::Alignment, Align->value()); } AttrBuilder &AttrBuilder::addStackAlignmentAttr(MaybeAlign Align) { // Default alignment, allow the target to define how to align it. if (!Align) return *this; assert(*Align <= 0x100 && "Alignment too large."); return addRawIntAttr(Attribute::StackAlignment, Align->value()); } AttrBuilder &AttrBuilder::addDereferenceableAttr(uint64_t Bytes) { if (Bytes == 0) return *this; return addRawIntAttr(Attribute::Dereferenceable, Bytes); } AttrBuilder &AttrBuilder::addDereferenceableOrNullAttr(uint64_t Bytes) { if (Bytes == 0) return *this; return addRawIntAttr(Attribute::DereferenceableOrNull, Bytes); } AttrBuilder & AttrBuilder::addAllocSizeAttr(unsigned ElemSize, const std::optional &NumElems) { return addAllocSizeAttrFromRawRepr(packAllocSizeArgs(ElemSize, NumElems)); } AttrBuilder &AttrBuilder::addAllocSizeAttrFromRawRepr(uint64_t RawArgs) { // (0, 0) is our "not present" value, so we need to check for it here. assert(RawArgs && "Invalid allocsize arguments -- given allocsize(0, 0)"); return addRawIntAttr(Attribute::AllocSize, RawArgs); } AttrBuilder &AttrBuilder::addVScaleRangeAttr(unsigned MinValue, std::optional MaxValue) { return addVScaleRangeAttrFromRawRepr(packVScaleRangeArgs(MinValue, MaxValue)); } AttrBuilder &AttrBuilder::addVScaleRangeAttrFromRawRepr(uint64_t RawArgs) { // (0, 0) is not present hence ignore this case if (RawArgs == 0) return *this; return addRawIntAttr(Attribute::VScaleRange, RawArgs); } AttrBuilder &AttrBuilder::addUWTableAttr(UWTableKind Kind) { if (Kind == UWTableKind::None) return *this; return addRawIntAttr(Attribute::UWTable, uint64_t(Kind)); } AttrBuilder &AttrBuilder::addMemoryAttr(MemoryEffects ME) { return addRawIntAttr(Attribute::Memory, ME.toIntValue()); } AttrBuilder &AttrBuilder::addNoFPClassAttr(FPClassTest Mask) { if (Mask == fcNone) return *this; return addRawIntAttr(Attribute::NoFPClass, Mask); } AttrBuilder &AttrBuilder::addAllocKindAttr(AllocFnKind Kind) { return addRawIntAttr(Attribute::AllocKind, static_cast(Kind)); } Type *AttrBuilder::getTypeAttr(Attribute::AttrKind Kind) const { assert(Attribute::isTypeAttrKind(Kind) && "Not a type attribute"); Attribute A = getAttribute(Kind); return A.isValid() ? A.getValueAsType() : nullptr; } AttrBuilder &AttrBuilder::addTypeAttr(Attribute::AttrKind Kind, Type *Ty) { return addAttribute(Attribute::get(Ctx, Kind, Ty)); } AttrBuilder &AttrBuilder::addByValAttr(Type *Ty) { return addTypeAttr(Attribute::ByVal, Ty); } AttrBuilder &AttrBuilder::addStructRetAttr(Type *Ty) { return addTypeAttr(Attribute::StructRet, Ty); } AttrBuilder &AttrBuilder::addByRefAttr(Type *Ty) { return addTypeAttr(Attribute::ByRef, Ty); } AttrBuilder &AttrBuilder::addPreallocatedAttr(Type *Ty) { return addTypeAttr(Attribute::Preallocated, Ty); } AttrBuilder &AttrBuilder::addInAllocaAttr(Type *Ty) { return addTypeAttr(Attribute::InAlloca, Ty); } AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) { // TODO: Could make this O(n) as we're merging two sorted lists. for (const auto &I : B.attrs()) addAttribute(I); return *this; } AttrBuilder &AttrBuilder::remove(const AttributeMask &AM) { erase_if(Attrs, [&](Attribute A) { return AM.contains(A); }); return *this; } bool AttrBuilder::overlaps(const AttributeMask &AM) const { return any_of(Attrs, [&](Attribute A) { return AM.contains(A); }); } Attribute AttrBuilder::getAttribute(Attribute::AttrKind A) const { assert((unsigned)A < Attribute::EndAttrKinds && "Attribute out of range!"); auto It = lower_bound(Attrs, A, AttributeComparator()); if (It != Attrs.end() && It->hasAttribute(A)) return *It; return {}; } Attribute AttrBuilder::getAttribute(StringRef A) const { auto It = lower_bound(Attrs, A, AttributeComparator()); if (It != Attrs.end() && It->hasAttribute(A)) return *It; return {}; } bool AttrBuilder::contains(Attribute::AttrKind A) const { return getAttribute(A).isValid(); } bool AttrBuilder::contains(StringRef A) const { return getAttribute(A).isValid(); } bool AttrBuilder::operator==(const AttrBuilder &B) const { return Attrs == B.Attrs; } //===----------------------------------------------------------------------===// // AttributeFuncs Function Defintions //===----------------------------------------------------------------------===// /// Returns true if this is a type legal for the 'nofpclass' attribute. This /// follows the same type rules as FPMathOperator. /// /// TODO: Consider relaxing to any FP type struct fields. bool AttributeFuncs::isNoFPClassCompatibleType(Type *Ty) { while (ArrayType *ArrTy = dyn_cast(Ty)) Ty = ArrTy->getElementType(); return Ty->isFPOrFPVectorTy(); } /// Which attributes cannot be applied to a type. AttributeMask AttributeFuncs::typeIncompatible(Type *Ty, AttributeSafetyKind ASK) { AttributeMask Incompatible; if (!Ty->isIntegerTy()) { // Attributes that only apply to integers. if (ASK & ASK_SAFE_TO_DROP) Incompatible.addAttribute(Attribute::AllocAlign); if (ASK & ASK_UNSAFE_TO_DROP) Incompatible.addAttribute(Attribute::SExt).addAttribute(Attribute::ZExt); } if (!Ty->isPointerTy()) { // Attributes that only apply to pointers. if (ASK & ASK_SAFE_TO_DROP) Incompatible.addAttribute(Attribute::NoAlias) .addAttribute(Attribute::NoCapture) .addAttribute(Attribute::NonNull) .addAttribute(Attribute::ReadNone) .addAttribute(Attribute::ReadOnly) .addAttribute(Attribute::Dereferenceable) .addAttribute(Attribute::DereferenceableOrNull) .addAttribute(Attribute::Writable) .addAttribute(Attribute::DeadOnUnwind); if (ASK & ASK_UNSAFE_TO_DROP) Incompatible.addAttribute(Attribute::Nest) .addAttribute(Attribute::SwiftError) .addAttribute(Attribute::Preallocated) .addAttribute(Attribute::InAlloca) .addAttribute(Attribute::ByVal) .addAttribute(Attribute::StructRet) .addAttribute(Attribute::ByRef) .addAttribute(Attribute::ElementType) .addAttribute(Attribute::AllocatedPointer); } // Attributes that only apply to pointers or vectors of pointers. if (!Ty->isPtrOrPtrVectorTy()) { if (ASK & ASK_SAFE_TO_DROP) Incompatible.addAttribute(Attribute::Alignment); } if (ASK & ASK_SAFE_TO_DROP) { if (!isNoFPClassCompatibleType(Ty)) Incompatible.addAttribute(Attribute::NoFPClass); } // Some attributes can apply to all "values" but there are no `void` values. if (Ty->isVoidTy()) { if (ASK & ASK_SAFE_TO_DROP) Incompatible.addAttribute(Attribute::NoUndef); } return Incompatible; } AttributeMask AttributeFuncs::getUBImplyingAttributes() { AttributeMask AM; AM.addAttribute(Attribute::NoUndef); AM.addAttribute(Attribute::Dereferenceable); AM.addAttribute(Attribute::DereferenceableOrNull); return AM; } /// Callees with dynamic denormal modes are compatible with any caller mode. static bool denormModeCompatible(DenormalMode CallerMode, DenormalMode CalleeMode) { if (CallerMode == CalleeMode || CalleeMode == DenormalMode::getDynamic()) return true; // If they don't exactly match, it's OK if the mismatched component is // dynamic. if (CalleeMode.Input == CallerMode.Input && CalleeMode.Output == DenormalMode::Dynamic) return true; if (CalleeMode.Output == CallerMode.Output && CalleeMode.Input == DenormalMode::Dynamic) return true; return false; } static bool checkDenormMode(const Function &Caller, const Function &Callee) { DenormalMode CallerMode = Caller.getDenormalModeRaw(); DenormalMode CalleeMode = Callee.getDenormalModeRaw(); if (denormModeCompatible(CallerMode, CalleeMode)) { DenormalMode CallerModeF32 = Caller.getDenormalModeF32Raw(); DenormalMode CalleeModeF32 = Callee.getDenormalModeF32Raw(); if (CallerModeF32 == DenormalMode::getInvalid()) CallerModeF32 = CallerMode; if (CalleeModeF32 == DenormalMode::getInvalid()) CalleeModeF32 = CalleeMode; return denormModeCompatible(CallerModeF32, CalleeModeF32); } return false; } template static bool isEqual(const Function &Caller, const Function &Callee) { return Caller.getFnAttribute(AttrClass::getKind()) == Callee.getFnAttribute(AttrClass::getKind()); } static bool isEqual(const Function &Caller, const Function &Callee, const StringRef &AttrName) { return Caller.getFnAttribute(AttrName) == Callee.getFnAttribute(AttrName); } /// Compute the logical AND of the attributes of the caller and the /// callee. /// /// This function sets the caller's attribute to false if the callee's attribute /// is false. template static void setAND(Function &Caller, const Function &Callee) { if (AttrClass::isSet(Caller, AttrClass::getKind()) && !AttrClass::isSet(Callee, AttrClass::getKind())) AttrClass::set(Caller, AttrClass::getKind(), false); } /// Compute the logical OR of the attributes of the caller and the /// callee. /// /// This function sets the caller's attribute to true if the callee's attribute /// is true. template static void setOR(Function &Caller, const Function &Callee) { if (!AttrClass::isSet(Caller, AttrClass::getKind()) && AttrClass::isSet(Callee, AttrClass::getKind())) AttrClass::set(Caller, AttrClass::getKind(), true); } /// If the inlined function had a higher stack protection level than the /// calling function, then bump up the caller's stack protection level. static void adjustCallerSSPLevel(Function &Caller, const Function &Callee) { // If the calling function has *no* stack protection level (e.g. it was built // with Clang's -fno-stack-protector or no_stack_protector attribute), don't // change it as that could change the program's semantics. if (!Caller.hasStackProtectorFnAttr()) return; // If upgrading the SSP attribute, clear out the old SSP Attributes first. // Having multiple SSP attributes doesn't actually hurt, but it adds useless // clutter to the IR. AttributeMask OldSSPAttr; OldSSPAttr.addAttribute(Attribute::StackProtect) .addAttribute(Attribute::StackProtectStrong) .addAttribute(Attribute::StackProtectReq); if (Callee.hasFnAttribute(Attribute::StackProtectReq)) { Caller.removeFnAttrs(OldSSPAttr); Caller.addFnAttr(Attribute::StackProtectReq); } else if (Callee.hasFnAttribute(Attribute::StackProtectStrong) && !Caller.hasFnAttribute(Attribute::StackProtectReq)) { Caller.removeFnAttrs(OldSSPAttr); Caller.addFnAttr(Attribute::StackProtectStrong); } else if (Callee.hasFnAttribute(Attribute::StackProtect) && !Caller.hasFnAttribute(Attribute::StackProtectReq) && !Caller.hasFnAttribute(Attribute::StackProtectStrong)) Caller.addFnAttr(Attribute::StackProtect); } /// If the inlined function required stack probes, then ensure that /// the calling function has those too. static void adjustCallerStackProbes(Function &Caller, const Function &Callee) { if (!Caller.hasFnAttribute("probe-stack") && Callee.hasFnAttribute("probe-stack")) { Caller.addFnAttr(Callee.getFnAttribute("probe-stack")); } } /// If the inlined function defines the size of guard region /// on the stack, then ensure that the calling function defines a guard region /// that is no larger. static void adjustCallerStackProbeSize(Function &Caller, const Function &Callee) { Attribute CalleeAttr = Callee.getFnAttribute("stack-probe-size"); if (CalleeAttr.isValid()) { Attribute CallerAttr = Caller.getFnAttribute("stack-probe-size"); if (CallerAttr.isValid()) { uint64_t CallerStackProbeSize, CalleeStackProbeSize; CallerAttr.getValueAsString().getAsInteger(0, CallerStackProbeSize); CalleeAttr.getValueAsString().getAsInteger(0, CalleeStackProbeSize); if (CallerStackProbeSize > CalleeStackProbeSize) { Caller.addFnAttr(CalleeAttr); } } else { Caller.addFnAttr(CalleeAttr); } } } /// If the inlined function defines a min legal vector width, then ensure /// the calling function has the same or larger min legal vector width. If the /// caller has the attribute, but the callee doesn't, we need to remove the /// attribute from the caller since we can't make any guarantees about the /// caller's requirements. /// This function is called after the inlining decision has been made so we have /// to merge the attribute this way. Heuristics that would use /// min-legal-vector-width to determine inline compatibility would need to be /// handled as part of inline cost analysis. static void adjustMinLegalVectorWidth(Function &Caller, const Function &Callee) { Attribute CallerAttr = Caller.getFnAttribute("min-legal-vector-width"); if (CallerAttr.isValid()) { Attribute CalleeAttr = Callee.getFnAttribute("min-legal-vector-width"); if (CalleeAttr.isValid()) { uint64_t CallerVectorWidth, CalleeVectorWidth; CallerAttr.getValueAsString().getAsInteger(0, CallerVectorWidth); CalleeAttr.getValueAsString().getAsInteger(0, CalleeVectorWidth); if (CallerVectorWidth < CalleeVectorWidth) Caller.addFnAttr(CalleeAttr); } else { // If the callee doesn't have the attribute then we don't know anything // and must drop the attribute from the caller. Caller.removeFnAttr("min-legal-vector-width"); } } } /// If the inlined function has null_pointer_is_valid attribute, /// set this attribute in the caller post inlining. static void adjustNullPointerValidAttr(Function &Caller, const Function &Callee) { if (Callee.nullPointerIsDefined() && !Caller.nullPointerIsDefined()) { Caller.addFnAttr(Attribute::NullPointerIsValid); } } struct EnumAttr { static bool isSet(const Function &Fn, Attribute::AttrKind Kind) { return Fn.hasFnAttribute(Kind); } static void set(Function &Fn, Attribute::AttrKind Kind, bool Val) { if (Val) Fn.addFnAttr(Kind); else Fn.removeFnAttr(Kind); } }; struct StrBoolAttr { static bool isSet(const Function &Fn, StringRef Kind) { auto A = Fn.getFnAttribute(Kind); return A.getValueAsString().equals("true"); } static void set(Function &Fn, StringRef Kind, bool Val) { Fn.addFnAttr(Kind, Val ? "true" : "false"); } }; #define GET_ATTR_NAMES #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ struct ENUM_NAME##Attr : EnumAttr { \ static enum Attribute::AttrKind getKind() { \ return llvm::Attribute::ENUM_NAME; \ } \ }; #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \ struct ENUM_NAME##Attr : StrBoolAttr { \ static StringRef getKind() { return #DISPLAY_NAME; } \ }; #include "llvm/IR/Attributes.inc" #define GET_ATTR_COMPAT_FUNC #include "llvm/IR/Attributes.inc" bool AttributeFuncs::areInlineCompatible(const Function &Caller, const Function &Callee) { return hasCompatibleFnAttrs(Caller, Callee); } bool AttributeFuncs::areOutlineCompatible(const Function &A, const Function &B) { return hasCompatibleFnAttrs(A, B); } void AttributeFuncs::mergeAttributesForInlining(Function &Caller, const Function &Callee) { mergeFnAttrs(Caller, Callee); } void AttributeFuncs::mergeAttributesForOutlining(Function &Base, const Function &ToMerge) { // We merge functions so that they meet the most general case. // For example, if the NoNansFPMathAttr is set in one function, but not in // the other, in the merged function we can say that the NoNansFPMathAttr // is not set. // However if we have the SpeculativeLoadHardeningAttr set true in one // function, but not the other, we make sure that the function retains // that aspect in the merged function. mergeFnAttrs(Base, ToMerge); } void AttributeFuncs::updateMinLegalVectorWidthAttr(Function &Fn, uint64_t Width) { Attribute Attr = Fn.getFnAttribute("min-legal-vector-width"); if (Attr.isValid()) { uint64_t OldWidth; Attr.getValueAsString().getAsInteger(0, OldWidth); if (Width > OldWidth) Fn.addFnAttr("min-legal-vector-width", llvm::utostr(Width)); } }