//===- lib/MC/MachObjectWriter.cpp - Mach-O File Writer -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Twine.h" #include "llvm/ADT/iterator_range.h" #include "llvm/BinaryFormat/MachO.h" #include "llvm/MC/MCAsmBackend.h" #include "llvm/MC/MCAsmLayout.h" #include "llvm/MC/MCAssembler.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCFixupKindInfo.h" #include "llvm/MC/MCFragment.h" #include "llvm/MC/MCMachObjectWriter.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCObjectWriter.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCSymbolMachO.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Alignment.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "mc" void MachObjectWriter::reset() { Relocations.clear(); IndirectSymBase.clear(); StringTable.clear(); LocalSymbolData.clear(); ExternalSymbolData.clear(); UndefinedSymbolData.clear(); MCObjectWriter::reset(); } bool MachObjectWriter::doesSymbolRequireExternRelocation(const MCSymbol &S) { // Undefined symbols are always extern. if (S.isUndefined()) return true; // References to weak definitions require external relocation entries; the // definition may not always be the one in the same object file. if (cast(S).isWeakDefinition()) return true; // Otherwise, we can use an internal relocation. return false; } bool MachObjectWriter:: MachSymbolData::operator<(const MachSymbolData &RHS) const { return Symbol->getName() < RHS.Symbol->getName(); } bool MachObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) { const MCFixupKindInfo &FKI = Asm.getBackend().getFixupKindInfo( (MCFixupKind) Kind); return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel; } uint64_t MachObjectWriter::getFragmentAddress(const MCFragment *Fragment, const MCAsmLayout &Layout) const { return getSectionAddress(Fragment->getParent()) + Layout.getFragmentOffset(Fragment); } uint64_t MachObjectWriter::getSymbolAddress(const MCSymbol &S, const MCAsmLayout &Layout) const { // If this is a variable, then recursively evaluate now. if (S.isVariable()) { if (const MCConstantExpr *C = dyn_cast(S.getVariableValue())) return C->getValue(); MCValue Target; if (!S.getVariableValue()->evaluateAsRelocatable(Target, &Layout, nullptr)) report_fatal_error("unable to evaluate offset for variable '" + S.getName() + "'"); // Verify that any used symbols are defined. if (Target.getSymA() && Target.getSymA()->getSymbol().isUndefined()) report_fatal_error("unable to evaluate offset to undefined symbol '" + Target.getSymA()->getSymbol().getName() + "'"); if (Target.getSymB() && Target.getSymB()->getSymbol().isUndefined()) report_fatal_error("unable to evaluate offset to undefined symbol '" + Target.getSymB()->getSymbol().getName() + "'"); uint64_t Address = Target.getConstant(); if (Target.getSymA()) Address += getSymbolAddress(Target.getSymA()->getSymbol(), Layout); if (Target.getSymB()) Address += getSymbolAddress(Target.getSymB()->getSymbol(), Layout); return Address; } return getSectionAddress(S.getFragment()->getParent()) + Layout.getSymbolOffset(S); } uint64_t MachObjectWriter::getPaddingSize(const MCSection *Sec, const MCAsmLayout &Layout) const { uint64_t EndAddr = getSectionAddress(Sec) + Layout.getSectionAddressSize(Sec); unsigned Next = Sec->getLayoutOrder() + 1; if (Next >= Layout.getSectionOrder().size()) return 0; const MCSection &NextSec = *Layout.getSectionOrder()[Next]; if (NextSec.isVirtualSection()) return 0; return offsetToAlignment(EndAddr, NextSec.getAlign()); } void MachObjectWriter::writeHeader(MachO::HeaderFileType Type, unsigned NumLoadCommands, unsigned LoadCommandsSize, bool SubsectionsViaSymbols) { uint32_t Flags = 0; if (SubsectionsViaSymbols) Flags |= MachO::MH_SUBSECTIONS_VIA_SYMBOLS; // struct mach_header (28 bytes) or // struct mach_header_64 (32 bytes) uint64_t Start = W.OS.tell(); (void) Start; W.write(is64Bit() ? MachO::MH_MAGIC_64 : MachO::MH_MAGIC); W.write(TargetObjectWriter->getCPUType()); W.write(TargetObjectWriter->getCPUSubtype()); W.write(Type); W.write(NumLoadCommands); W.write(LoadCommandsSize); W.write(Flags); if (is64Bit()) W.write(0); // reserved assert(W.OS.tell() - Start == (is64Bit() ? sizeof(MachO::mach_header_64) : sizeof(MachO::mach_header))); } void MachObjectWriter::writeWithPadding(StringRef Str, uint64_t Size) { assert(Size >= Str.size()); W.OS << Str; W.OS.write_zeros(Size - Str.size()); } /// writeSegmentLoadCommand - Write a segment load command. /// /// \param NumSections The number of sections in this segment. /// \param SectionDataSize The total size of the sections. void MachObjectWriter::writeSegmentLoadCommand( StringRef Name, unsigned NumSections, uint64_t VMAddr, uint64_t VMSize, uint64_t SectionDataStartOffset, uint64_t SectionDataSize, uint32_t MaxProt, uint32_t InitProt) { // struct segment_command (56 bytes) or // struct segment_command_64 (72 bytes) uint64_t Start = W.OS.tell(); (void) Start; unsigned SegmentLoadCommandSize = is64Bit() ? sizeof(MachO::segment_command_64): sizeof(MachO::segment_command); W.write(is64Bit() ? MachO::LC_SEGMENT_64 : MachO::LC_SEGMENT); W.write(SegmentLoadCommandSize + NumSections * (is64Bit() ? sizeof(MachO::section_64) : sizeof(MachO::section))); writeWithPadding(Name, 16); if (is64Bit()) { W.write(VMAddr); // vmaddr W.write(VMSize); // vmsize W.write(SectionDataStartOffset); // file offset W.write(SectionDataSize); // file size } else { W.write(VMAddr); // vmaddr W.write(VMSize); // vmsize W.write(SectionDataStartOffset); // file offset W.write(SectionDataSize); // file size } // maxprot W.write(MaxProt); // initprot W.write(InitProt); W.write(NumSections); W.write(0); // flags assert(W.OS.tell() - Start == SegmentLoadCommandSize); } void MachObjectWriter::writeSection(const MCAsmLayout &Layout, const MCSection &Sec, uint64_t VMAddr, uint64_t FileOffset, unsigned Flags, uint64_t RelocationsStart, unsigned NumRelocations) { uint64_t SectionSize = Layout.getSectionAddressSize(&Sec); const MCSectionMachO &Section = cast(Sec); // The offset is unused for virtual sections. if (Section.isVirtualSection()) { assert(Layout.getSectionFileSize(&Sec) == 0 && "Invalid file size!"); FileOffset = 0; } // struct section (68 bytes) or // struct section_64 (80 bytes) uint64_t Start = W.OS.tell(); (void) Start; writeWithPadding(Section.getName(), 16); writeWithPadding(Section.getSegmentName(), 16); if (is64Bit()) { W.write(VMAddr); // address W.write(SectionSize); // size } else { W.write(VMAddr); // address W.write(SectionSize); // size } W.write(FileOffset); W.write(Log2(Section.getAlign())); W.write(NumRelocations ? RelocationsStart : 0); W.write(NumRelocations); W.write(Flags); W.write(IndirectSymBase.lookup(&Sec)); // reserved1 W.write(Section.getStubSize()); // reserved2 if (is64Bit()) W.write(0); // reserved3 assert(W.OS.tell() - Start == (is64Bit() ? sizeof(MachO::section_64) : sizeof(MachO::section))); } void MachObjectWriter::writeSymtabLoadCommand(uint32_t SymbolOffset, uint32_t NumSymbols, uint32_t StringTableOffset, uint32_t StringTableSize) { // struct symtab_command (24 bytes) uint64_t Start = W.OS.tell(); (void) Start; W.write(MachO::LC_SYMTAB); W.write(sizeof(MachO::symtab_command)); W.write(SymbolOffset); W.write(NumSymbols); W.write(StringTableOffset); W.write(StringTableSize); assert(W.OS.tell() - Start == sizeof(MachO::symtab_command)); } void MachObjectWriter::writeDysymtabLoadCommand(uint32_t FirstLocalSymbol, uint32_t NumLocalSymbols, uint32_t FirstExternalSymbol, uint32_t NumExternalSymbols, uint32_t FirstUndefinedSymbol, uint32_t NumUndefinedSymbols, uint32_t IndirectSymbolOffset, uint32_t NumIndirectSymbols) { // struct dysymtab_command (80 bytes) uint64_t Start = W.OS.tell(); (void) Start; W.write(MachO::LC_DYSYMTAB); W.write(sizeof(MachO::dysymtab_command)); W.write(FirstLocalSymbol); W.write(NumLocalSymbols); W.write(FirstExternalSymbol); W.write(NumExternalSymbols); W.write(FirstUndefinedSymbol); W.write(NumUndefinedSymbols); W.write(0); // tocoff W.write(0); // ntoc W.write(0); // modtaboff W.write(0); // nmodtab W.write(0); // extrefsymoff W.write(0); // nextrefsyms W.write(IndirectSymbolOffset); W.write(NumIndirectSymbols); W.write(0); // extreloff W.write(0); // nextrel W.write(0); // locreloff W.write(0); // nlocrel assert(W.OS.tell() - Start == sizeof(MachO::dysymtab_command)); } MachObjectWriter::MachSymbolData * MachObjectWriter::findSymbolData(const MCSymbol &Sym) { for (auto *SymbolData : {&LocalSymbolData, &ExternalSymbolData, &UndefinedSymbolData}) for (MachSymbolData &Entry : *SymbolData) if (Entry.Symbol == &Sym) return &Entry; return nullptr; } const MCSymbol &MachObjectWriter::findAliasedSymbol(const MCSymbol &Sym) const { const MCSymbol *S = &Sym; while (S->isVariable()) { const MCExpr *Value = S->getVariableValue(); const auto *Ref = dyn_cast(Value); if (!Ref) return *S; S = &Ref->getSymbol(); } return *S; } void MachObjectWriter::writeNlist(MachSymbolData &MSD, const MCAsmLayout &Layout) { const MCSymbol *Symbol = MSD.Symbol; const MCSymbol &Data = *Symbol; const MCSymbol *AliasedSymbol = &findAliasedSymbol(*Symbol); uint8_t SectionIndex = MSD.SectionIndex; uint8_t Type = 0; uint64_t Address = 0; bool IsAlias = Symbol != AliasedSymbol; const MCSymbol &OrigSymbol = *Symbol; MachSymbolData *AliaseeInfo; if (IsAlias) { AliaseeInfo = findSymbolData(*AliasedSymbol); if (AliaseeInfo) SectionIndex = AliaseeInfo->SectionIndex; Symbol = AliasedSymbol; // FIXME: Should this update Data as well? } // Set the N_TYPE bits. See . // // FIXME: Are the prebound or indirect fields possible here? if (IsAlias && Symbol->isUndefined()) Type = MachO::N_INDR; else if (Symbol->isUndefined()) Type = MachO::N_UNDF; else if (Symbol->isAbsolute()) Type = MachO::N_ABS; else Type = MachO::N_SECT; // FIXME: Set STAB bits. if (Data.isPrivateExtern()) Type |= MachO::N_PEXT; // Set external bit. if (Data.isExternal() || (!IsAlias && Symbol->isUndefined())) Type |= MachO::N_EXT; // Compute the symbol address. if (IsAlias && Symbol->isUndefined()) Address = AliaseeInfo->StringIndex; else if (Symbol->isDefined()) Address = getSymbolAddress(OrigSymbol, Layout); else if (Symbol->isCommon()) { // Common symbols are encoded with the size in the address // field, and their alignment in the flags. Address = Symbol->getCommonSize(); } // struct nlist (12 bytes) W.write(MSD.StringIndex); W.OS << char(Type); W.OS << char(SectionIndex); // The Mach-O streamer uses the lowest 16-bits of the flags for the 'desc' // value. bool EncodeAsAltEntry = IsAlias && cast(OrigSymbol).isAltEntry(); W.write(cast(Symbol)->getEncodedFlags(EncodeAsAltEntry)); if (is64Bit()) W.write(Address); else W.write(Address); } void MachObjectWriter::writeLinkeditLoadCommand(uint32_t Type, uint32_t DataOffset, uint32_t DataSize) { uint64_t Start = W.OS.tell(); (void) Start; W.write(Type); W.write(sizeof(MachO::linkedit_data_command)); W.write(DataOffset); W.write(DataSize); assert(W.OS.tell() - Start == sizeof(MachO::linkedit_data_command)); } static unsigned ComputeLinkerOptionsLoadCommandSize( const std::vector &Options, bool is64Bit) { unsigned Size = sizeof(MachO::linker_option_command); for (const std::string &Option : Options) Size += Option.size() + 1; return alignTo(Size, is64Bit ? 8 : 4); } void MachObjectWriter::writeLinkerOptionsLoadCommand( const std::vector &Options) { unsigned Size = ComputeLinkerOptionsLoadCommandSize(Options, is64Bit()); uint64_t Start = W.OS.tell(); (void) Start; W.write(MachO::LC_LINKER_OPTION); W.write(Size); W.write(Options.size()); uint64_t BytesWritten = sizeof(MachO::linker_option_command); for (const std::string &Option : Options) { // Write each string, including the null byte. W.OS << Option << '\0'; BytesWritten += Option.size() + 1; } // Pad to a multiple of the pointer size. W.OS.write_zeros( offsetToAlignment(BytesWritten, is64Bit() ? Align(8) : Align(4))); assert(W.OS.tell() - Start == Size); } static bool isFixupTargetValid(const MCValue &Target) { // Target is (LHS - RHS + cst). // We don't support the form where LHS is null: -RHS + cst if (!Target.getSymA() && Target.getSymB()) return false; return true; } void MachObjectWriter::recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout, const MCFragment *Fragment, const MCFixup &Fixup, MCValue Target, uint64_t &FixedValue) { if (!isFixupTargetValid(Target)) { Asm.getContext().reportError(Fixup.getLoc(), "unsupported relocation expression"); return; } TargetObjectWriter->recordRelocation(this, Asm, Layout, Fragment, Fixup, Target, FixedValue); } void MachObjectWriter::bindIndirectSymbols(MCAssembler &Asm) { // This is the point where 'as' creates actual symbols for indirect symbols // (in the following two passes). It would be easier for us to do this sooner // when we see the attribute, but that makes getting the order in the symbol // table much more complicated than it is worth. // // FIXME: Revisit this when the dust settles. // Report errors for use of .indirect_symbol not in a symbol pointer section // or stub section. for (IndirectSymbolData &ISD : llvm::make_range(Asm.indirect_symbol_begin(), Asm.indirect_symbol_end())) { const MCSectionMachO &Section = cast(*ISD.Section); if (Section.getType() != MachO::S_NON_LAZY_SYMBOL_POINTERS && Section.getType() != MachO::S_LAZY_SYMBOL_POINTERS && Section.getType() != MachO::S_THREAD_LOCAL_VARIABLE_POINTERS && Section.getType() != MachO::S_SYMBOL_STUBS) { MCSymbol &Symbol = *ISD.Symbol; report_fatal_error("indirect symbol '" + Symbol.getName() + "' not in a symbol pointer or stub section"); } } // Bind non-lazy symbol pointers first. unsigned IndirectIndex = 0; for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) { const MCSectionMachO &Section = cast(*it->Section); if (Section.getType() != MachO::S_NON_LAZY_SYMBOL_POINTERS && Section.getType() != MachO::S_THREAD_LOCAL_VARIABLE_POINTERS) continue; // Initialize the section indirect symbol base, if necessary. IndirectSymBase.insert(std::make_pair(it->Section, IndirectIndex)); Asm.registerSymbol(*it->Symbol); } // Then lazy symbol pointers and symbol stubs. IndirectIndex = 0; for (MCAssembler::indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it, ++IndirectIndex) { const MCSectionMachO &Section = cast(*it->Section); if (Section.getType() != MachO::S_LAZY_SYMBOL_POINTERS && Section.getType() != MachO::S_SYMBOL_STUBS) continue; // Initialize the section indirect symbol base, if necessary. IndirectSymBase.insert(std::make_pair(it->Section, IndirectIndex)); // Set the symbol type to undefined lazy, but only on construction. // // FIXME: Do not hardcode. bool Created; Asm.registerSymbol(*it->Symbol, &Created); if (Created) cast(it->Symbol)->setReferenceTypeUndefinedLazy(true); } } /// computeSymbolTable - Compute the symbol table data void MachObjectWriter::computeSymbolTable( MCAssembler &Asm, std::vector &LocalSymbolData, std::vector &ExternalSymbolData, std::vector &UndefinedSymbolData) { // Build section lookup table. DenseMap SectionIndexMap; unsigned Index = 1; for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it, ++Index) SectionIndexMap[&*it] = Index; assert(Index <= 256 && "Too many sections!"); // Build the string table. for (const MCSymbol &Symbol : Asm.symbols()) { if (!Asm.isSymbolLinkerVisible(Symbol)) continue; StringTable.add(Symbol.getName()); } StringTable.finalize(); // Build the symbol arrays but only for non-local symbols. // // The particular order that we collect and then sort the symbols is chosen to // match 'as'. Even though it doesn't matter for correctness, this is // important for letting us diff .o files. for (const MCSymbol &Symbol : Asm.symbols()) { // Ignore non-linker visible symbols. if (!Asm.isSymbolLinkerVisible(Symbol)) continue; if (!Symbol.isExternal() && !Symbol.isUndefined()) continue; MachSymbolData MSD; MSD.Symbol = &Symbol; MSD.StringIndex = StringTable.getOffset(Symbol.getName()); if (Symbol.isUndefined()) { MSD.SectionIndex = 0; UndefinedSymbolData.push_back(MSD); } else if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; ExternalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); ExternalSymbolData.push_back(MSD); } } // Now add the data for local symbols. for (const MCSymbol &Symbol : Asm.symbols()) { // Ignore non-linker visible symbols. if (!Asm.isSymbolLinkerVisible(Symbol)) continue; if (Symbol.isExternal() || Symbol.isUndefined()) continue; MachSymbolData MSD; MSD.Symbol = &Symbol; MSD.StringIndex = StringTable.getOffset(Symbol.getName()); if (Symbol.isAbsolute()) { MSD.SectionIndex = 0; LocalSymbolData.push_back(MSD); } else { MSD.SectionIndex = SectionIndexMap.lookup(&Symbol.getSection()); assert(MSD.SectionIndex && "Invalid section index!"); LocalSymbolData.push_back(MSD); } } // External and undefined symbols are required to be in lexicographic order. llvm::sort(ExternalSymbolData); llvm::sort(UndefinedSymbolData); // Set the symbol indices. Index = 0; for (auto *SymbolData : {&LocalSymbolData, &ExternalSymbolData, &UndefinedSymbolData}) for (MachSymbolData &Entry : *SymbolData) Entry.Symbol->setIndex(Index++); for (const MCSection &Section : Asm) { for (RelAndSymbol &Rel : Relocations[&Section]) { if (!Rel.Sym) continue; // Set the Index and the IsExtern bit. unsigned Index = Rel.Sym->getIndex(); assert(isInt<24>(Index)); if (W.Endian == support::little) Rel.MRE.r_word1 = (Rel.MRE.r_word1 & (~0U << 24)) | Index | (1 << 27); else Rel.MRE.r_word1 = (Rel.MRE.r_word1 & 0xff) | Index << 8 | (1 << 4); } } } void MachObjectWriter::computeSectionAddresses(const MCAssembler &Asm, const MCAsmLayout &Layout) { uint64_t StartAddress = 0; for (const MCSection *Sec : Layout.getSectionOrder()) { StartAddress = alignTo(StartAddress, Sec->getAlign()); SectionAddress[Sec] = StartAddress; StartAddress += Layout.getSectionAddressSize(Sec); // Explicitly pad the section to match the alignment requirements of the // following one. This is for 'gas' compatibility, it shouldn't /// strictly be necessary. StartAddress += getPaddingSize(Sec, Layout); } } void MachObjectWriter::executePostLayoutBinding(MCAssembler &Asm, const MCAsmLayout &Layout) { computeSectionAddresses(Asm, Layout); // Create symbol data for any indirect symbols. bindIndirectSymbols(Asm); } bool MachObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( const MCAssembler &Asm, const MCSymbol &A, const MCSymbol &B, bool InSet) const { // FIXME: We don't handle things like // foo = . // creating atoms. if (A.isVariable() || B.isVariable()) return false; return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, A, B, InSet); } bool MachObjectWriter::isSymbolRefDifferenceFullyResolvedImpl( const MCAssembler &Asm, const MCSymbol &SymA, const MCFragment &FB, bool InSet, bool IsPCRel) const { if (InSet) return true; // The effective address is // addr(atom(A)) + offset(A) // - addr(atom(B)) - offset(B) // and the offsets are not relocatable, so the fixup is fully resolved when // addr(atom(A)) - addr(atom(B)) == 0. const MCSymbol &SA = findAliasedSymbol(SymA); const MCSection &SecA = SA.getSection(); const MCSection &SecB = *FB.getParent(); if (IsPCRel) { // The simple (Darwin, except on x86_64) way of dealing with this was to // assume that any reference to a temporary symbol *must* be a temporary // symbol in the same atom, unless the sections differ. Therefore, any PCrel // relocation to a temporary symbol (in the same section) is fully // resolved. This also works in conjunction with absolutized .set, which // requires the compiler to use .set to absolutize the differences between // symbols which the compiler knows to be assembly time constants, so we // don't need to worry about considering symbol differences fully resolved. // // If the file isn't using sub-sections-via-symbols, we can make the // same assumptions about any symbol that we normally make about // assembler locals. bool hasReliableSymbolDifference = isX86_64(); if (!hasReliableSymbolDifference) { if (!SA.isInSection() || &SecA != &SecB || (!SA.isTemporary() && FB.getAtom() != SA.getFragment()->getAtom() && Asm.getSubsectionsViaSymbols())) return false; return true; } // For Darwin x86_64, there is one special case when the reference IsPCRel. // If the fragment with the reference does not have a base symbol but meets // the simple way of dealing with this, in that it is a temporary symbol in // the same atom then it is assumed to be fully resolved. This is needed so // a relocation entry is not created and so the static linker does not // mess up the reference later. else if(!FB.getAtom() && SA.isTemporary() && SA.isInSection() && &SecA == &SecB){ return true; } } // If they are not in the same section, we can't compute the diff. if (&SecA != &SecB) return false; const MCFragment *FA = SA.getFragment(); // Bail if the symbol has no fragment. if (!FA) return false; // If the atoms are the same, they are guaranteed to have the same address. if (FA->getAtom() == FB.getAtom()) return true; // Otherwise, we can't prove this is fully resolved. return false; } static MachO::LoadCommandType getLCFromMCVM(MCVersionMinType Type) { switch (Type) { case MCVM_OSXVersionMin: return MachO::LC_VERSION_MIN_MACOSX; case MCVM_IOSVersionMin: return MachO::LC_VERSION_MIN_IPHONEOS; case MCVM_TvOSVersionMin: return MachO::LC_VERSION_MIN_TVOS; case MCVM_WatchOSVersionMin: return MachO::LC_VERSION_MIN_WATCHOS; } llvm_unreachable("Invalid mc version min type"); } void MachObjectWriter::populateAddrSigSection(MCAssembler &Asm) { MCSection *AddrSigSection = Asm.getContext().getObjectFileInfo()->getAddrSigSection(); unsigned Log2Size = is64Bit() ? 3 : 2; for (const MCSymbol *S : getAddrsigSyms()) { if (!S->isRegistered()) continue; MachO::any_relocation_info MRE; MRE.r_word0 = 0; MRE.r_word1 = (Log2Size << 25) | (MachO::GENERIC_RELOC_VANILLA << 28); addRelocation(S, AddrSigSection, MRE); } } uint64_t MachObjectWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) { uint64_t StartOffset = W.OS.tell(); populateAddrSigSection(Asm); // Compute symbol table information and bind symbol indices. computeSymbolTable(Asm, LocalSymbolData, ExternalSymbolData, UndefinedSymbolData); if (!Asm.CGProfile.empty()) { MCSection *CGProfileSection = Asm.getContext().getMachOSection( "__LLVM", "__cg_profile", 0, SectionKind::getMetadata()); MCDataFragment *Frag = dyn_cast_or_null( &*CGProfileSection->getFragmentList().begin()); assert(Frag && "call graph profile section not reserved"); Frag->getContents().clear(); raw_svector_ostream OS(Frag->getContents()); for (const MCAssembler::CGProfileEntry &CGPE : Asm.CGProfile) { uint32_t FromIndex = CGPE.From->getSymbol().getIndex(); uint32_t ToIndex = CGPE.To->getSymbol().getIndex(); support::endian::write(OS, FromIndex, W.Endian); support::endian::write(OS, ToIndex, W.Endian); support::endian::write(OS, CGPE.Count, W.Endian); } } unsigned NumSections = Asm.size(); const MCAssembler::VersionInfoType &VersionInfo = Layout.getAssembler().getVersionInfo(); // The section data starts after the header, the segment load command (and // section headers) and the symbol table. unsigned NumLoadCommands = 1; uint64_t LoadCommandsSize = is64Bit() ? sizeof(MachO::segment_command_64) + NumSections * sizeof(MachO::section_64): sizeof(MachO::segment_command) + NumSections * sizeof(MachO::section); // Add the deployment target version info load command size, if used. if (VersionInfo.Major != 0) { ++NumLoadCommands; if (VersionInfo.EmitBuildVersion) LoadCommandsSize += sizeof(MachO::build_version_command); else LoadCommandsSize += sizeof(MachO::version_min_command); } const MCAssembler::VersionInfoType &TargetVariantVersionInfo = Layout.getAssembler().getDarwinTargetVariantVersionInfo(); // Add the target variant version info load command size, if used. if (TargetVariantVersionInfo.Major != 0) { ++NumLoadCommands; assert(TargetVariantVersionInfo.EmitBuildVersion && "target variant should use build version"); LoadCommandsSize += sizeof(MachO::build_version_command); } // Add the data-in-code load command size, if used. unsigned NumDataRegions = Asm.getDataRegions().size(); if (NumDataRegions) { ++NumLoadCommands; LoadCommandsSize += sizeof(MachO::linkedit_data_command); } // Add the loh load command size, if used. uint64_t LOHRawSize = Asm.getLOHContainer().getEmitSize(*this, Layout); uint64_t LOHSize = alignTo(LOHRawSize, is64Bit() ? 8 : 4); if (LOHSize) { ++NumLoadCommands; LoadCommandsSize += sizeof(MachO::linkedit_data_command); } // Add the symbol table load command sizes, if used. unsigned NumSymbols = LocalSymbolData.size() + ExternalSymbolData.size() + UndefinedSymbolData.size(); if (NumSymbols) { NumLoadCommands += 2; LoadCommandsSize += (sizeof(MachO::symtab_command) + sizeof(MachO::dysymtab_command)); } // Add the linker option load commands sizes. for (const auto &Option : Asm.getLinkerOptions()) { ++NumLoadCommands; LoadCommandsSize += ComputeLinkerOptionsLoadCommandSize(Option, is64Bit()); } // Compute the total size of the section data, as well as its file size and vm // size. uint64_t SectionDataStart = (is64Bit() ? sizeof(MachO::mach_header_64) : sizeof(MachO::mach_header)) + LoadCommandsSize; uint64_t SectionDataSize = 0; uint64_t SectionDataFileSize = 0; uint64_t VMSize = 0; for (const MCSection &Sec : Asm) { uint64_t Address = getSectionAddress(&Sec); uint64_t Size = Layout.getSectionAddressSize(&Sec); uint64_t FileSize = Layout.getSectionFileSize(&Sec); FileSize += getPaddingSize(&Sec, Layout); VMSize = std::max(VMSize, Address + Size); if (Sec.isVirtualSection()) continue; SectionDataSize = std::max(SectionDataSize, Address + Size); SectionDataFileSize = std::max(SectionDataFileSize, Address + FileSize); } // The section data is padded to pointer size bytes. // // FIXME: Is this machine dependent? unsigned SectionDataPadding = offsetToAlignment(SectionDataFileSize, is64Bit() ? Align(8) : Align(4)); SectionDataFileSize += SectionDataPadding; // Write the prolog, starting with the header and load command... writeHeader(MachO::MH_OBJECT, NumLoadCommands, LoadCommandsSize, Asm.getSubsectionsViaSymbols()); uint32_t Prot = MachO::VM_PROT_READ | MachO::VM_PROT_WRITE | MachO::VM_PROT_EXECUTE; writeSegmentLoadCommand("", NumSections, 0, VMSize, SectionDataStart, SectionDataSize, Prot, Prot); // ... and then the section headers. uint64_t RelocTableEnd = SectionDataStart + SectionDataFileSize; for (const MCSection &Section : Asm) { const auto &Sec = cast(Section); std::vector &Relocs = Relocations[&Sec]; unsigned NumRelocs = Relocs.size(); uint64_t SectionStart = SectionDataStart + getSectionAddress(&Sec); unsigned Flags = Sec.getTypeAndAttributes(); if (Sec.hasInstructions()) Flags |= MachO::S_ATTR_SOME_INSTRUCTIONS; writeSection(Layout, Sec, getSectionAddress(&Sec), SectionStart, Flags, RelocTableEnd, NumRelocs); RelocTableEnd += NumRelocs * sizeof(MachO::any_relocation_info); } // Write out the deployment target information, if it's available. auto EmitDeploymentTargetVersion = [&](const MCAssembler::VersionInfoType &VersionInfo) { auto EncodeVersion = [](VersionTuple V) -> uint32_t { assert(!V.empty() && "empty version"); unsigned Update = V.getSubminor().value_or(0); unsigned Minor = V.getMinor().value_or(0); assert(Update < 256 && "unencodable update target version"); assert(Minor < 256 && "unencodable minor target version"); assert(V.getMajor() < 65536 && "unencodable major target version"); return Update | (Minor << 8) | (V.getMajor() << 16); }; uint32_t EncodedVersion = EncodeVersion(VersionTuple( VersionInfo.Major, VersionInfo.Minor, VersionInfo.Update)); uint32_t SDKVersion = !VersionInfo.SDKVersion.empty() ? EncodeVersion(VersionInfo.SDKVersion) : 0; if (VersionInfo.EmitBuildVersion) { // FIXME: Currently empty tools. Add clang version in the future. W.write(MachO::LC_BUILD_VERSION); W.write(sizeof(MachO::build_version_command)); W.write(VersionInfo.TypeOrPlatform.Platform); W.write(EncodedVersion); W.write(SDKVersion); W.write(0); // Empty tools list. } else { MachO::LoadCommandType LCType = getLCFromMCVM(VersionInfo.TypeOrPlatform.Type); W.write(LCType); W.write(sizeof(MachO::version_min_command)); W.write(EncodedVersion); W.write(SDKVersion); } }; if (VersionInfo.Major != 0) EmitDeploymentTargetVersion(VersionInfo); if (TargetVariantVersionInfo.Major != 0) EmitDeploymentTargetVersion(TargetVariantVersionInfo); // Write the data-in-code load command, if used. uint64_t DataInCodeTableEnd = RelocTableEnd + NumDataRegions * 8; if (NumDataRegions) { uint64_t DataRegionsOffset = RelocTableEnd; uint64_t DataRegionsSize = NumDataRegions * 8; writeLinkeditLoadCommand(MachO::LC_DATA_IN_CODE, DataRegionsOffset, DataRegionsSize); } // Write the loh load command, if used. uint64_t LOHTableEnd = DataInCodeTableEnd + LOHSize; if (LOHSize) writeLinkeditLoadCommand(MachO::LC_LINKER_OPTIMIZATION_HINT, DataInCodeTableEnd, LOHSize); // Write the symbol table load command, if used. if (NumSymbols) { unsigned FirstLocalSymbol = 0; unsigned NumLocalSymbols = LocalSymbolData.size(); unsigned FirstExternalSymbol = FirstLocalSymbol + NumLocalSymbols; unsigned NumExternalSymbols = ExternalSymbolData.size(); unsigned FirstUndefinedSymbol = FirstExternalSymbol + NumExternalSymbols; unsigned NumUndefinedSymbols = UndefinedSymbolData.size(); unsigned NumIndirectSymbols = Asm.indirect_symbol_size(); unsigned NumSymTabSymbols = NumLocalSymbols + NumExternalSymbols + NumUndefinedSymbols; uint64_t IndirectSymbolSize = NumIndirectSymbols * 4; uint64_t IndirectSymbolOffset = 0; // If used, the indirect symbols are written after the section data. if (NumIndirectSymbols) IndirectSymbolOffset = LOHTableEnd; // The symbol table is written after the indirect symbol data. uint64_t SymbolTableOffset = LOHTableEnd + IndirectSymbolSize; // The string table is written after symbol table. uint64_t StringTableOffset = SymbolTableOffset + NumSymTabSymbols * (is64Bit() ? sizeof(MachO::nlist_64) : sizeof(MachO::nlist)); writeSymtabLoadCommand(SymbolTableOffset, NumSymTabSymbols, StringTableOffset, StringTable.getSize()); writeDysymtabLoadCommand(FirstLocalSymbol, NumLocalSymbols, FirstExternalSymbol, NumExternalSymbols, FirstUndefinedSymbol, NumUndefinedSymbols, IndirectSymbolOffset, NumIndirectSymbols); } // Write the linker options load commands. for (const auto &Option : Asm.getLinkerOptions()) writeLinkerOptionsLoadCommand(Option); // Write the actual section data. for (const MCSection &Sec : Asm) { Asm.writeSectionData(W.OS, &Sec, Layout); uint64_t Pad = getPaddingSize(&Sec, Layout); W.OS.write_zeros(Pad); } // Write the extra padding. W.OS.write_zeros(SectionDataPadding); // Write the relocation entries. for (const MCSection &Sec : Asm) { // Write the section relocation entries, in reverse order to match 'as' // (approximately, the exact algorithm is more complicated than this). std::vector &Relocs = Relocations[&Sec]; for (const RelAndSymbol &Rel : llvm::reverse(Relocs)) { W.write(Rel.MRE.r_word0); W.write(Rel.MRE.r_word1); } } // Write out the data-in-code region payload, if there is one. for (MCAssembler::const_data_region_iterator it = Asm.data_region_begin(), ie = Asm.data_region_end(); it != ie; ++it) { const DataRegionData *Data = &(*it); uint64_t Start = getSymbolAddress(*Data->Start, Layout); uint64_t End; if (Data->End) End = getSymbolAddress(*Data->End, Layout); else report_fatal_error("Data region not terminated"); LLVM_DEBUG(dbgs() << "data in code region-- kind: " << Data->Kind << " start: " << Start << "(" << Data->Start->getName() << ")" << " end: " << End << "(" << Data->End->getName() << ")" << " size: " << End - Start << "\n"); W.write(Start); W.write(End - Start); W.write(Data->Kind); } // Write out the loh commands, if there is one. if (LOHSize) { #ifndef NDEBUG unsigned Start = W.OS.tell(); #endif Asm.getLOHContainer().emit(*this, Layout); // Pad to a multiple of the pointer size. W.OS.write_zeros( offsetToAlignment(LOHRawSize, is64Bit() ? Align(8) : Align(4))); assert(W.OS.tell() - Start == LOHSize); } // Write the symbol table data, if used. if (NumSymbols) { // Write the indirect symbol entries. for (MCAssembler::const_indirect_symbol_iterator it = Asm.indirect_symbol_begin(), ie = Asm.indirect_symbol_end(); it != ie; ++it) { // Indirect symbols in the non-lazy symbol pointer section have some // special handling. const MCSectionMachO &Section = static_cast(*it->Section); if (Section.getType() == MachO::S_NON_LAZY_SYMBOL_POINTERS) { // If this symbol is defined and internal, mark it as such. if (it->Symbol->isDefined() && !it->Symbol->isExternal()) { uint32_t Flags = MachO::INDIRECT_SYMBOL_LOCAL; if (it->Symbol->isAbsolute()) Flags |= MachO::INDIRECT_SYMBOL_ABS; W.write(Flags); continue; } } W.write(it->Symbol->getIndex()); } // FIXME: Check that offsets match computed ones. // Write the symbol table entries. for (auto *SymbolData : {&LocalSymbolData, &ExternalSymbolData, &UndefinedSymbolData}) for (MachSymbolData &Entry : *SymbolData) writeNlist(Entry, Layout); // Write the string table. StringTable.write(W.OS); } return W.OS.tell() - StartOffset; } std::unique_ptr llvm::createMachObjectWriter(std::unique_ptr MOTW, raw_pwrite_stream &OS, bool IsLittleEndian) { return std::make_unique(std::move(MOTW), OS, IsLittleEndian); }