//===- AMDGPUAttributor.cpp -----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file This pass uses Attributor framework to deduce AMDGPU attributes. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "GCNSubtarget.h" #include "Utils/AMDGPUBaseInfo.h" #include "llvm/Analysis/CycleAnalysis.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsR600.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Transforms/IPO/Attributor.h" #define DEBUG_TYPE "amdgpu-attributor" namespace llvm { void initializeCycleInfoWrapperPassPass(PassRegistry &); } using namespace llvm; static cl::opt KernargPreloadCount( "amdgpu-kernarg-preload-count", cl::desc("How many kernel arguments to preload onto SGPRs"), cl::init(0)); #define AMDGPU_ATTRIBUTE(Name, Str) Name##_POS, enum ImplicitArgumentPositions { #include "AMDGPUAttributes.def" LAST_ARG_POS }; #define AMDGPU_ATTRIBUTE(Name, Str) Name = 1 << Name##_POS, enum ImplicitArgumentMask { NOT_IMPLICIT_INPUT = 0, #include "AMDGPUAttributes.def" ALL_ARGUMENT_MASK = (1 << LAST_ARG_POS) - 1 }; #define AMDGPU_ATTRIBUTE(Name, Str) {Name, Str}, static constexpr std::pair ImplicitAttrs[] = { #include "AMDGPUAttributes.def" }; // We do not need to note the x workitem or workgroup id because they are always // initialized. // // TODO: We should not add the attributes if the known compile time workgroup // size is 1 for y/z. static ImplicitArgumentMask intrinsicToAttrMask(Intrinsic::ID ID, bool &NonKernelOnly, bool &NeedsImplicit, bool HasApertureRegs, bool SupportsGetDoorBellID, unsigned CodeObjectVersion) { switch (ID) { case Intrinsic::amdgcn_workitem_id_x: NonKernelOnly = true; return WORKITEM_ID_X; case Intrinsic::amdgcn_workgroup_id_x: NonKernelOnly = true; return WORKGROUP_ID_X; case Intrinsic::amdgcn_workitem_id_y: case Intrinsic::r600_read_tidig_y: return WORKITEM_ID_Y; case Intrinsic::amdgcn_workitem_id_z: case Intrinsic::r600_read_tidig_z: return WORKITEM_ID_Z; case Intrinsic::amdgcn_workgroup_id_y: case Intrinsic::r600_read_tgid_y: return WORKGROUP_ID_Y; case Intrinsic::amdgcn_workgroup_id_z: case Intrinsic::r600_read_tgid_z: return WORKGROUP_ID_Z; case Intrinsic::amdgcn_lds_kernel_id: return LDS_KERNEL_ID; case Intrinsic::amdgcn_dispatch_ptr: return DISPATCH_PTR; case Intrinsic::amdgcn_dispatch_id: return DISPATCH_ID; case Intrinsic::amdgcn_implicitarg_ptr: return IMPLICIT_ARG_PTR; // Need queue_ptr anyway. But under V5, we also need implicitarg_ptr to access // queue_ptr. case Intrinsic::amdgcn_queue_ptr: NeedsImplicit = (CodeObjectVersion >= AMDGPU::AMDHSA_COV5); return QUEUE_PTR; case Intrinsic::amdgcn_is_shared: case Intrinsic::amdgcn_is_private: if (HasApertureRegs) return NOT_IMPLICIT_INPUT; // Under V5, we need implicitarg_ptr + offsets to access private_base or // shared_base. For pre-V5, however, need to access them through queue_ptr + // offsets. return CodeObjectVersion >= AMDGPU::AMDHSA_COV5 ? IMPLICIT_ARG_PTR : QUEUE_PTR; case Intrinsic::trap: if (SupportsGetDoorBellID) // GetDoorbellID support implemented since V4. return CodeObjectVersion >= AMDGPU::AMDHSA_COV4 ? NOT_IMPLICIT_INPUT : QUEUE_PTR; NeedsImplicit = (CodeObjectVersion >= AMDGPU::AMDHSA_COV5); return QUEUE_PTR; default: return NOT_IMPLICIT_INPUT; } } static bool castRequiresQueuePtr(unsigned SrcAS) { return SrcAS == AMDGPUAS::LOCAL_ADDRESS || SrcAS == AMDGPUAS::PRIVATE_ADDRESS; } static bool isDSAddress(const Constant *C) { const GlobalValue *GV = dyn_cast(C); if (!GV) return false; unsigned AS = GV->getAddressSpace(); return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS; } /// Returns true if the function requires the implicit argument be passed /// regardless of the function contents. static bool funcRequiresHostcallPtr(const Function &F) { // Sanitizers require the hostcall buffer passed in the implicit arguments. return F.hasFnAttribute(Attribute::SanitizeAddress) || F.hasFnAttribute(Attribute::SanitizeThread) || F.hasFnAttribute(Attribute::SanitizeMemory) || F.hasFnAttribute(Attribute::SanitizeHWAddress) || F.hasFnAttribute(Attribute::SanitizeMemTag); } namespace { class AMDGPUInformationCache : public InformationCache { public: AMDGPUInformationCache(const Module &M, AnalysisGetter &AG, BumpPtrAllocator &Allocator, SetVector *CGSCC, TargetMachine &TM) : InformationCache(M, AG, Allocator, CGSCC), TM(TM), CodeObjectVersion(AMDGPU::getAMDHSACodeObjectVersion(M)) {} TargetMachine &TM; enum ConstantStatus { DS_GLOBAL = 1 << 0, ADDR_SPACE_CAST = 1 << 1 }; /// Check if the subtarget has aperture regs. bool hasApertureRegs(Function &F) { const GCNSubtarget &ST = TM.getSubtarget(F); return ST.hasApertureRegs(); } /// Check if the subtarget supports GetDoorbellID. bool supportsGetDoorbellID(Function &F) { const GCNSubtarget &ST = TM.getSubtarget(F); return ST.supportsGetDoorbellID(); } std::pair getFlatWorkGroupSizes(const Function &F) { const GCNSubtarget &ST = TM.getSubtarget(F); return ST.getFlatWorkGroupSizes(F); } std::pair getMaximumFlatWorkGroupRange(const Function &F) { const GCNSubtarget &ST = TM.getSubtarget(F); return {ST.getMinFlatWorkGroupSize(), ST.getMaxFlatWorkGroupSize()}; } /// Get code object version. unsigned getCodeObjectVersion() const { return CodeObjectVersion; } /// Get the effective value of "amdgpu-waves-per-eu" for the function, /// accounting for the interaction with the passed value to use for /// "amdgpu-flat-work-group-size". std::pair getWavesPerEU(const Function &F, std::pair FlatWorkGroupSize) { const GCNSubtarget &ST = TM.getSubtarget(F); return ST.getWavesPerEU(F, FlatWorkGroupSize); } std::pair getEffectiveWavesPerEU(const Function &F, std::pair WavesPerEU, std::pair FlatWorkGroupSize) { const GCNSubtarget &ST = TM.getSubtarget(F); return ST.getEffectiveWavesPerEU(WavesPerEU, FlatWorkGroupSize); } unsigned getMaxWavesPerEU(const Function &F) { const GCNSubtarget &ST = TM.getSubtarget(F); return ST.getMaxWavesPerEU(); } private: /// Check if the ConstantExpr \p CE requires the queue pointer. static bool visitConstExpr(const ConstantExpr *CE) { if (CE->getOpcode() == Instruction::AddrSpaceCast) { unsigned SrcAS = CE->getOperand(0)->getType()->getPointerAddressSpace(); return castRequiresQueuePtr(SrcAS); } return false; } /// Get the constant access bitmap for \p C. uint8_t getConstantAccess(const Constant *C, SmallPtrSetImpl &Visited) { auto It = ConstantStatus.find(C); if (It != ConstantStatus.end()) return It->second; uint8_t Result = 0; if (isDSAddress(C)) Result = DS_GLOBAL; if (const auto *CE = dyn_cast(C)) if (visitConstExpr(CE)) Result |= ADDR_SPACE_CAST; for (const Use &U : C->operands()) { const auto *OpC = dyn_cast(U); if (!OpC || !Visited.insert(OpC).second) continue; Result |= getConstantAccess(OpC, Visited); } return Result; } public: /// Returns true if \p Fn needs the queue pointer because of \p C. bool needsQueuePtr(const Constant *C, Function &Fn) { bool IsNonEntryFunc = !AMDGPU::isEntryFunctionCC(Fn.getCallingConv()); bool HasAperture = hasApertureRegs(Fn); // No need to explore the constants. if (!IsNonEntryFunc && HasAperture) return false; SmallPtrSet Visited; uint8_t Access = getConstantAccess(C, Visited); // We need to trap on DS globals in non-entry functions. if (IsNonEntryFunc && (Access & DS_GLOBAL)) return true; return !HasAperture && (Access & ADDR_SPACE_CAST); } private: /// Used to determine if the Constant needs the queue pointer. DenseMap ConstantStatus; const unsigned CodeObjectVersion; }; struct AAAMDAttributes : public StateWrapper, AbstractAttribute> { using Base = StateWrapper, AbstractAttribute>; AAAMDAttributes(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Create an abstract attribute view for the position \p IRP. static AAAMDAttributes &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName(). const std::string getName() const override { return "AAAMDAttributes"; } /// See AbstractAttribute::getIdAddr(). const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAAMDAttributes. static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; const char AAAMDAttributes::ID = 0; struct AAUniformWorkGroupSize : public StateWrapper { using Base = StateWrapper; AAUniformWorkGroupSize(const IRPosition &IRP, Attributor &A) : Base(IRP) {} /// Create an abstract attribute view for the position \p IRP. static AAUniformWorkGroupSize &createForPosition(const IRPosition &IRP, Attributor &A); /// See AbstractAttribute::getName(). const std::string getName() const override { return "AAUniformWorkGroupSize"; } /// See AbstractAttribute::getIdAddr(). const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAAMDAttributes. static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; const char AAUniformWorkGroupSize::ID = 0; struct AAUniformWorkGroupSizeFunction : public AAUniformWorkGroupSize { AAUniformWorkGroupSizeFunction(const IRPosition &IRP, Attributor &A) : AAUniformWorkGroupSize(IRP, A) {} void initialize(Attributor &A) override { Function *F = getAssociatedFunction(); CallingConv::ID CC = F->getCallingConv(); if (CC != CallingConv::AMDGPU_KERNEL) return; bool InitialValue = false; if (F->hasFnAttribute("uniform-work-group-size")) InitialValue = F->getFnAttribute("uniform-work-group-size") .getValueAsString() .equals("true"); if (InitialValue) indicateOptimisticFixpoint(); else indicatePessimisticFixpoint(); } ChangeStatus updateImpl(Attributor &A) override { ChangeStatus Change = ChangeStatus::UNCHANGED; auto CheckCallSite = [&](AbstractCallSite CS) { Function *Caller = CS.getInstruction()->getFunction(); LLVM_DEBUG(dbgs() << "[AAUniformWorkGroupSize] Call " << Caller->getName() << "->" << getAssociatedFunction()->getName() << "\n"); const auto *CallerInfo = A.getAAFor( *this, IRPosition::function(*Caller), DepClassTy::REQUIRED); if (!CallerInfo) return false; Change = Change | clampStateAndIndicateChange(this->getState(), CallerInfo->getState()); return true; }; bool AllCallSitesKnown = true; if (!A.checkForAllCallSites(CheckCallSite, *this, true, AllCallSitesKnown)) return indicatePessimisticFixpoint(); return Change; } ChangeStatus manifest(Attributor &A) override { SmallVector AttrList; LLVMContext &Ctx = getAssociatedFunction()->getContext(); AttrList.push_back(Attribute::get(Ctx, "uniform-work-group-size", getAssumed() ? "true" : "false")); return A.manifestAttrs(getIRPosition(), AttrList, /* ForceReplace */ true); } bool isValidState() const override { // This state is always valid, even when the state is false. return true; } const std::string getAsStr(Attributor *) const override { return "AMDWorkGroupSize[" + std::to_string(getAssumed()) + "]"; } /// See AbstractAttribute::trackStatistics() void trackStatistics() const override {} }; AAUniformWorkGroupSize & AAUniformWorkGroupSize::createForPosition(const IRPosition &IRP, Attributor &A) { if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION) return *new (A.Allocator) AAUniformWorkGroupSizeFunction(IRP, A); llvm_unreachable( "AAUniformWorkGroupSize is only valid for function position"); } struct AAAMDAttributesFunction : public AAAMDAttributes { AAAMDAttributesFunction(const IRPosition &IRP, Attributor &A) : AAAMDAttributes(IRP, A) {} void initialize(Attributor &A) override { Function *F = getAssociatedFunction(); // If the function requires the implicit arg pointer due to sanitizers, // assume it's needed even if explicitly marked as not requiring it. const bool NeedsHostcall = funcRequiresHostcallPtr(*F); if (NeedsHostcall) { removeAssumedBits(IMPLICIT_ARG_PTR); removeAssumedBits(HOSTCALL_PTR); } for (auto Attr : ImplicitAttrs) { if (NeedsHostcall && (Attr.first == IMPLICIT_ARG_PTR || Attr.first == HOSTCALL_PTR)) continue; if (F->hasFnAttribute(Attr.second)) addKnownBits(Attr.first); } if (F->isDeclaration()) return; // Ignore functions with graphics calling conventions, these are currently // not allowed to have kernel arguments. if (AMDGPU::isGraphics(F->getCallingConv())) { indicatePessimisticFixpoint(); return; } } ChangeStatus updateImpl(Attributor &A) override { Function *F = getAssociatedFunction(); // The current assumed state used to determine a change. auto OrigAssumed = getAssumed(); // Check for Intrinsics and propagate attributes. const AACallEdges *AAEdges = A.getAAFor( *this, this->getIRPosition(), DepClassTy::REQUIRED); if (!AAEdges || AAEdges->hasNonAsmUnknownCallee()) return indicatePessimisticFixpoint(); bool IsNonEntryFunc = !AMDGPU::isEntryFunctionCC(F->getCallingConv()); bool NeedsImplicit = false; auto &InfoCache = static_cast(A.getInfoCache()); bool HasApertureRegs = InfoCache.hasApertureRegs(*F); bool SupportsGetDoorbellID = InfoCache.supportsGetDoorbellID(*F); unsigned COV = InfoCache.getCodeObjectVersion(); for (Function *Callee : AAEdges->getOptimisticEdges()) { Intrinsic::ID IID = Callee->getIntrinsicID(); if (IID == Intrinsic::not_intrinsic) { const AAAMDAttributes *AAAMD = A.getAAFor( *this, IRPosition::function(*Callee), DepClassTy::REQUIRED); if (!AAAMD) return indicatePessimisticFixpoint(); *this &= *AAAMD; continue; } bool NonKernelOnly = false; ImplicitArgumentMask AttrMask = intrinsicToAttrMask(IID, NonKernelOnly, NeedsImplicit, HasApertureRegs, SupportsGetDoorbellID, COV); if (AttrMask != NOT_IMPLICIT_INPUT) { if ((IsNonEntryFunc || !NonKernelOnly)) removeAssumedBits(AttrMask); } } // Need implicitarg_ptr to acess queue_ptr, private_base, and shared_base. if (NeedsImplicit) removeAssumedBits(IMPLICIT_ARG_PTR); if (isAssumed(QUEUE_PTR) && checkForQueuePtr(A)) { // Under V5, we need implicitarg_ptr + offsets to access private_base or // shared_base. We do not actually need queue_ptr. if (COV >= 5) removeAssumedBits(IMPLICIT_ARG_PTR); else removeAssumedBits(QUEUE_PTR); } if (funcRetrievesMultigridSyncArg(A, COV)) { assert(!isAssumed(IMPLICIT_ARG_PTR) && "multigrid_sync_arg needs implicitarg_ptr"); removeAssumedBits(MULTIGRID_SYNC_ARG); } if (funcRetrievesHostcallPtr(A, COV)) { assert(!isAssumed(IMPLICIT_ARG_PTR) && "hostcall needs implicitarg_ptr"); removeAssumedBits(HOSTCALL_PTR); } if (funcRetrievesHeapPtr(A, COV)) { assert(!isAssumed(IMPLICIT_ARG_PTR) && "heap_ptr needs implicitarg_ptr"); removeAssumedBits(HEAP_PTR); } if (isAssumed(QUEUE_PTR) && funcRetrievesQueuePtr(A, COV)) { assert(!isAssumed(IMPLICIT_ARG_PTR) && "queue_ptr needs implicitarg_ptr"); removeAssumedBits(QUEUE_PTR); } if (isAssumed(LDS_KERNEL_ID) && funcRetrievesLDSKernelId(A)) { removeAssumedBits(LDS_KERNEL_ID); } if (isAssumed(DEFAULT_QUEUE) && funcRetrievesDefaultQueue(A, COV)) removeAssumedBits(DEFAULT_QUEUE); if (isAssumed(COMPLETION_ACTION) && funcRetrievesCompletionAction(A, COV)) removeAssumedBits(COMPLETION_ACTION); return getAssumed() != OrigAssumed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED; } ChangeStatus manifest(Attributor &A) override { SmallVector AttrList; LLVMContext &Ctx = getAssociatedFunction()->getContext(); for (auto Attr : ImplicitAttrs) { if (isKnown(Attr.first)) AttrList.push_back(Attribute::get(Ctx, Attr.second)); } return A.manifestAttrs(getIRPosition(), AttrList, /* ForceReplace */ true); } const std::string getAsStr(Attributor *) const override { std::string Str; raw_string_ostream OS(Str); OS << "AMDInfo["; for (auto Attr : ImplicitAttrs) if (isAssumed(Attr.first)) OS << ' ' << Attr.second; OS << " ]"; return OS.str(); } /// See AbstractAttribute::trackStatistics() void trackStatistics() const override {} private: bool checkForQueuePtr(Attributor &A) { Function *F = getAssociatedFunction(); bool IsNonEntryFunc = !AMDGPU::isEntryFunctionCC(F->getCallingConv()); auto &InfoCache = static_cast(A.getInfoCache()); bool NeedsQueuePtr = false; auto CheckAddrSpaceCasts = [&](Instruction &I) { unsigned SrcAS = static_cast(I).getSrcAddressSpace(); if (castRequiresQueuePtr(SrcAS)) { NeedsQueuePtr = true; return false; } return true; }; bool HasApertureRegs = InfoCache.hasApertureRegs(*F); // `checkForAllInstructions` is much more cheaper than going through all // instructions, try it first. // The queue pointer is not needed if aperture regs is present. if (!HasApertureRegs) { bool UsedAssumedInformation = false; A.checkForAllInstructions(CheckAddrSpaceCasts, *this, {Instruction::AddrSpaceCast}, UsedAssumedInformation); } // If we found that we need the queue pointer, nothing else to do. if (NeedsQueuePtr) return true; if (!IsNonEntryFunc && HasApertureRegs) return false; for (BasicBlock &BB : *F) { for (Instruction &I : BB) { for (const Use &U : I.operands()) { if (const auto *C = dyn_cast(U)) { if (InfoCache.needsQueuePtr(C, *F)) return true; } } } } return false; } bool funcRetrievesMultigridSyncArg(Attributor &A, unsigned COV) { auto Pos = llvm::AMDGPU::getMultigridSyncArgImplicitArgPosition(COV); AA::RangeTy Range(Pos, 8); return funcRetrievesImplicitKernelArg(A, Range); } bool funcRetrievesHostcallPtr(Attributor &A, unsigned COV) { auto Pos = llvm::AMDGPU::getHostcallImplicitArgPosition(COV); AA::RangeTy Range(Pos, 8); return funcRetrievesImplicitKernelArg(A, Range); } bool funcRetrievesDefaultQueue(Attributor &A, unsigned COV) { auto Pos = llvm::AMDGPU::getDefaultQueueImplicitArgPosition(COV); AA::RangeTy Range(Pos, 8); return funcRetrievesImplicitKernelArg(A, Range); } bool funcRetrievesCompletionAction(Attributor &A, unsigned COV) { auto Pos = llvm::AMDGPU::getCompletionActionImplicitArgPosition(COV); AA::RangeTy Range(Pos, 8); return funcRetrievesImplicitKernelArg(A, Range); } bool funcRetrievesHeapPtr(Attributor &A, unsigned COV) { if (COV < 5) return false; AA::RangeTy Range(AMDGPU::ImplicitArg::HEAP_PTR_OFFSET, 8); return funcRetrievesImplicitKernelArg(A, Range); } bool funcRetrievesQueuePtr(Attributor &A, unsigned COV) { if (COV < 5) return false; AA::RangeTy Range(AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET, 8); return funcRetrievesImplicitKernelArg(A, Range); } bool funcRetrievesImplicitKernelArg(Attributor &A, AA::RangeTy Range) { // Check if this is a call to the implicitarg_ptr builtin and it // is used to retrieve the hostcall pointer. The implicit arg for // hostcall is not used only if every use of the implicitarg_ptr // is a load that clearly does not retrieve any byte of the // hostcall pointer. We check this by tracing all the uses of the // initial call to the implicitarg_ptr intrinsic. auto DoesNotLeadToKernelArgLoc = [&](Instruction &I) { auto &Call = cast(I); if (Call.getIntrinsicID() != Intrinsic::amdgcn_implicitarg_ptr) return true; const auto *PointerInfoAA = A.getAAFor( *this, IRPosition::callsite_returned(Call), DepClassTy::REQUIRED); if (!PointerInfoAA) return false; return PointerInfoAA->forallInterferingAccesses( Range, [](const AAPointerInfo::Access &Acc, bool IsExact) { return Acc.getRemoteInst()->isDroppable(); }); }; bool UsedAssumedInformation = false; return !A.checkForAllCallLikeInstructions(DoesNotLeadToKernelArgLoc, *this, UsedAssumedInformation); } bool funcRetrievesLDSKernelId(Attributor &A) { auto DoesNotRetrieve = [&](Instruction &I) { auto &Call = cast(I); return Call.getIntrinsicID() != Intrinsic::amdgcn_lds_kernel_id; }; bool UsedAssumedInformation = false; return !A.checkForAllCallLikeInstructions(DoesNotRetrieve, *this, UsedAssumedInformation); } }; AAAMDAttributes &AAAMDAttributes::createForPosition(const IRPosition &IRP, Attributor &A) { if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION) return *new (A.Allocator) AAAMDAttributesFunction(IRP, A); llvm_unreachable("AAAMDAttributes is only valid for function position"); } /// Base class to derive different size ranges. struct AAAMDSizeRangeAttribute : public StateWrapper { using Base = StateWrapper; StringRef AttrName; AAAMDSizeRangeAttribute(const IRPosition &IRP, Attributor &A, StringRef AttrName) : Base(IRP, 32), AttrName(AttrName) {} /// See AbstractAttribute::trackStatistics() void trackStatistics() const override {} template ChangeStatus updateImplImpl(Attributor &A) { ChangeStatus Change = ChangeStatus::UNCHANGED; auto CheckCallSite = [&](AbstractCallSite CS) { Function *Caller = CS.getInstruction()->getFunction(); LLVM_DEBUG(dbgs() << '[' << getName() << "] Call " << Caller->getName() << "->" << getAssociatedFunction()->getName() << '\n'); const auto *CallerInfo = A.getAAFor( *this, IRPosition::function(*Caller), DepClassTy::REQUIRED); if (!CallerInfo) return false; Change |= clampStateAndIndicateChange(this->getState(), CallerInfo->getState()); return true; }; bool AllCallSitesKnown = true; if (!A.checkForAllCallSites(CheckCallSite, *this, true, AllCallSitesKnown)) return indicatePessimisticFixpoint(); return Change; } ChangeStatus emitAttributeIfNotDefault(Attributor &A, unsigned Min, unsigned Max) { // Don't add the attribute if it's the implied default. if (getAssumed().getLower() == Min && getAssumed().getUpper() - 1 == Max) return ChangeStatus::UNCHANGED; Function *F = getAssociatedFunction(); LLVMContext &Ctx = F->getContext(); SmallString<10> Buffer; raw_svector_ostream OS(Buffer); OS << getAssumed().getLower() << ',' << getAssumed().getUpper() - 1; return A.manifestAttrs(getIRPosition(), {Attribute::get(Ctx, AttrName, OS.str())}, /* ForceReplace */ true); } const std::string getAsStr(Attributor *) const override { std::string Str; raw_string_ostream OS(Str); OS << getName() << '['; OS << getAssumed().getLower() << ',' << getAssumed().getUpper() - 1; OS << ']'; return OS.str(); } }; /// Propagate amdgpu-flat-work-group-size attribute. struct AAAMDFlatWorkGroupSize : public AAAMDSizeRangeAttribute { AAAMDFlatWorkGroupSize(const IRPosition &IRP, Attributor &A) : AAAMDSizeRangeAttribute(IRP, A, "amdgpu-flat-work-group-size") {} void initialize(Attributor &A) override { Function *F = getAssociatedFunction(); auto &InfoCache = static_cast(A.getInfoCache()); unsigned MinGroupSize, MaxGroupSize; std::tie(MinGroupSize, MaxGroupSize) = InfoCache.getFlatWorkGroupSizes(*F); intersectKnown( ConstantRange(APInt(32, MinGroupSize), APInt(32, MaxGroupSize + 1))); if (AMDGPU::isEntryFunctionCC(F->getCallingConv())) indicatePessimisticFixpoint(); } ChangeStatus updateImpl(Attributor &A) override { return updateImplImpl(A); } /// Create an abstract attribute view for the position \p IRP. static AAAMDFlatWorkGroupSize &createForPosition(const IRPosition &IRP, Attributor &A); ChangeStatus manifest(Attributor &A) override { Function *F = getAssociatedFunction(); auto &InfoCache = static_cast(A.getInfoCache()); unsigned Min, Max; std::tie(Min, Max) = InfoCache.getMaximumFlatWorkGroupRange(*F); return emitAttributeIfNotDefault(A, Min, Max); } /// See AbstractAttribute::getName() const std::string getName() const override { return "AAAMDFlatWorkGroupSize"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAAMDFlatWorkGroupSize static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; const char AAAMDFlatWorkGroupSize::ID = 0; AAAMDFlatWorkGroupSize & AAAMDFlatWorkGroupSize::createForPosition(const IRPosition &IRP, Attributor &A) { if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION) return *new (A.Allocator) AAAMDFlatWorkGroupSize(IRP, A); llvm_unreachable( "AAAMDFlatWorkGroupSize is only valid for function position"); } /// Propagate amdgpu-waves-per-eu attribute. struct AAAMDWavesPerEU : public AAAMDSizeRangeAttribute { AAAMDWavesPerEU(const IRPosition &IRP, Attributor &A) : AAAMDSizeRangeAttribute(IRP, A, "amdgpu-waves-per-eu") {} bool isValidState() const override { return !Assumed.isEmptySet() && IntegerRangeState::isValidState(); } void initialize(Attributor &A) override { Function *F = getAssociatedFunction(); auto &InfoCache = static_cast(A.getInfoCache()); if (const auto *AssumedGroupSize = A.getAAFor( *this, IRPosition::function(*F), DepClassTy::REQUIRED)) { unsigned Min, Max; std::tie(Min, Max) = InfoCache.getWavesPerEU( *F, {AssumedGroupSize->getAssumed().getLower().getZExtValue(), AssumedGroupSize->getAssumed().getUpper().getZExtValue() - 1}); ConstantRange Range(APInt(32, Min), APInt(32, Max + 1)); intersectKnown(Range); } if (AMDGPU::isEntryFunctionCC(F->getCallingConv())) indicatePessimisticFixpoint(); } ChangeStatus updateImpl(Attributor &A) override { auto &InfoCache = static_cast(A.getInfoCache()); ChangeStatus Change = ChangeStatus::UNCHANGED; auto CheckCallSite = [&](AbstractCallSite CS) { Function *Caller = CS.getInstruction()->getFunction(); Function *Func = getAssociatedFunction(); LLVM_DEBUG(dbgs() << '[' << getName() << "] Call " << Caller->getName() << "->" << Func->getName() << '\n'); const auto *CallerInfo = A.getAAFor( *this, IRPosition::function(*Caller), DepClassTy::REQUIRED); const auto *AssumedGroupSize = A.getAAFor( *this, IRPosition::function(*Func), DepClassTy::REQUIRED); if (!CallerInfo || !AssumedGroupSize) return false; unsigned Min, Max; std::tie(Min, Max) = InfoCache.getEffectiveWavesPerEU( *Caller, {CallerInfo->getAssumed().getLower().getZExtValue(), CallerInfo->getAssumed().getUpper().getZExtValue() - 1}, {AssumedGroupSize->getAssumed().getLower().getZExtValue(), AssumedGroupSize->getAssumed().getUpper().getZExtValue() - 1}); ConstantRange CallerRange(APInt(32, Min), APInt(32, Max + 1)); IntegerRangeState CallerRangeState(CallerRange); Change |= clampStateAndIndicateChange(this->getState(), CallerRangeState); return true; }; bool AllCallSitesKnown = true; if (!A.checkForAllCallSites(CheckCallSite, *this, true, AllCallSitesKnown)) return indicatePessimisticFixpoint(); return Change; } /// Create an abstract attribute view for the position \p IRP. static AAAMDWavesPerEU &createForPosition(const IRPosition &IRP, Attributor &A); ChangeStatus manifest(Attributor &A) override { Function *F = getAssociatedFunction(); auto &InfoCache = static_cast(A.getInfoCache()); unsigned Max = InfoCache.getMaxWavesPerEU(*F); return emitAttributeIfNotDefault(A, 1, Max); } /// See AbstractAttribute::getName() const std::string getName() const override { return "AAAMDWavesPerEU"; } /// See AbstractAttribute::getIdAddr() const char *getIdAddr() const override { return &ID; } /// This function should return true if the type of the \p AA is /// AAAMDWavesPerEU static bool classof(const AbstractAttribute *AA) { return (AA->getIdAddr() == &ID); } /// Unique ID (due to the unique address) static const char ID; }; const char AAAMDWavesPerEU::ID = 0; AAAMDWavesPerEU &AAAMDWavesPerEU::createForPosition(const IRPosition &IRP, Attributor &A) { if (IRP.getPositionKind() == IRPosition::IRP_FUNCTION) return *new (A.Allocator) AAAMDWavesPerEU(IRP, A); llvm_unreachable("AAAMDWavesPerEU is only valid for function position"); } static void addPreloadKernArgHint(Function &F, TargetMachine &TM) { const GCNSubtarget &ST = TM.getSubtarget(F); for (unsigned I = 0; I < F.arg_size() && I < std::min(KernargPreloadCount.getValue(), ST.getMaxNumUserSGPRs()); ++I) { Argument &Arg = *F.getArg(I); // Check for incompatible attributes. if (Arg.hasByRefAttr() || Arg.hasNestAttr()) break; Arg.addAttr(Attribute::InReg); } } static bool runImpl(Module &M, AnalysisGetter &AG, TargetMachine &TM) { SetVector Functions; for (Function &F : M) { if (!F.isIntrinsic()) Functions.insert(&F); } CallGraphUpdater CGUpdater; BumpPtrAllocator Allocator; AMDGPUInformationCache InfoCache(M, AG, Allocator, nullptr, TM); DenseSet Allowed( {&AAAMDAttributes::ID, &AAUniformWorkGroupSize::ID, &AAPotentialValues::ID, &AAAMDFlatWorkGroupSize::ID, &AAAMDWavesPerEU::ID, &AACallEdges::ID, &AAPointerInfo::ID, &AAPotentialConstantValues::ID, &AAUnderlyingObjects::ID}); AttributorConfig AC(CGUpdater); AC.Allowed = &Allowed; AC.IsModulePass = true; AC.DefaultInitializeLiveInternals = false; AC.IPOAmendableCB = [](const Function &F) { return F.getCallingConv() == CallingConv::AMDGPU_KERNEL; }; Attributor A(Functions, InfoCache, AC); for (Function &F : M) { if (!F.isIntrinsic()) { A.getOrCreateAAFor(IRPosition::function(F)); A.getOrCreateAAFor(IRPosition::function(F)); CallingConv::ID CC = F.getCallingConv(); if (!AMDGPU::isEntryFunctionCC(CC)) { A.getOrCreateAAFor(IRPosition::function(F)); A.getOrCreateAAFor(IRPosition::function(F)); } else if (CC == CallingConv::AMDGPU_KERNEL) { addPreloadKernArgHint(F, TM); } } } ChangeStatus Change = A.run(); return Change == ChangeStatus::CHANGED; } class AMDGPUAttributorLegacy : public ModulePass { public: AMDGPUAttributorLegacy() : ModulePass(ID) {} /// doInitialization - Virtual method overridden by subclasses to do /// any necessary initialization before any pass is run. bool doInitialization(Module &) override { auto *TPC = getAnalysisIfAvailable(); if (!TPC) report_fatal_error("TargetMachine is required"); TM = &TPC->getTM(); return false; } bool runOnModule(Module &M) override { AnalysisGetter AG(this); return runImpl(M, AG, *TM); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); } StringRef getPassName() const override { return "AMDGPU Attributor"; } TargetMachine *TM; static char ID; }; } // namespace PreservedAnalyses llvm::AMDGPUAttributorPass::run(Module &M, ModuleAnalysisManager &AM) { FunctionAnalysisManager &FAM = AM.getResult(M).getManager(); AnalysisGetter AG(FAM); // TODO: Probably preserves CFG return runImpl(M, AG, TM) ? PreservedAnalyses::none() : PreservedAnalyses::all(); } char AMDGPUAttributorLegacy::ID = 0; Pass *llvm::createAMDGPUAttributorLegacyPass() { return new AMDGPUAttributorLegacy(); } INITIALIZE_PASS_BEGIN(AMDGPUAttributorLegacy, DEBUG_TYPE, "AMDGPU Attributor", false, false) INITIALIZE_PASS_DEPENDENCY(CycleInfoWrapperPass); INITIALIZE_PASS_END(AMDGPUAttributorLegacy, DEBUG_TYPE, "AMDGPU Attributor", false, false)