//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This pass eliminates LDS uses from non-kernel functions. // // The strategy is to create a new struct with a field for each LDS variable // and allocate that struct at the same address for every kernel. Uses of the // original LDS variables are then replaced with compile time offsets from that // known address. AMDGPUMachineFunction allocates the LDS global. // // Local variables with constant annotation or non-undef initializer are passed // through unchanged for simplification or error diagnostics in later passes. // // To reduce the memory overhead variables that are only used by kernels are // excluded from this transform. The analysis to determine whether a variable // is only used by a kernel is cheap and conservative so this may allocate // a variable in every kernel when it was not strictly necessary to do so. // // A possible future refinement is to specialise the structure per-kernel, so // that fields can be elided based on more expensive analysis. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "Utils/AMDGPUBaseInfo.h" #include "Utils/AMDGPUMemoryUtils.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/MDBuilder.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/OptimizedStructLayout.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include #define DEBUG_TYPE "amdgpu-lower-module-lds" using namespace llvm; static cl::opt SuperAlignLDSGlobals( "amdgpu-super-align-lds-globals", cl::desc("Increase alignment of LDS if it is not on align boundary"), cl::init(true), cl::Hidden); namespace { class AMDGPULowerModuleLDS : public ModulePass { static void removeFromUsedList(Module &M, StringRef Name, SmallPtrSetImpl &ToRemove) { GlobalVariable *GV = M.getNamedGlobal(Name); if (!GV || ToRemove.empty()) { return; } SmallVector Init; auto *CA = cast(GV->getInitializer()); for (auto &Op : CA->operands()) { // ModuleUtils::appendToUsed only inserts Constants Constant *C = cast(Op); if (!ToRemove.contains(C->stripPointerCasts())) { Init.push_back(C); } } if (Init.size() == CA->getNumOperands()) { return; // none to remove } GV->eraseFromParent(); for (Constant *C : ToRemove) { C->removeDeadConstantUsers(); } if (!Init.empty()) { ArrayType *ATy = ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size()); GV = new llvm::GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage, ConstantArray::get(ATy, Init), Name); GV->setSection("llvm.metadata"); } } static void removeFromUsedLists(Module &M, const std::vector &LocalVars) { // The verifier rejects used lists containing an inttoptr of a constant // so remove the variables from these lists before replaceAllUsesWith SmallPtrSet LocalVarsSet; for (GlobalVariable *LocalVar : LocalVars) if (Constant *C = dyn_cast(LocalVar->stripPointerCasts())) LocalVarsSet.insert(C); removeFromUsedList(M, "llvm.used", LocalVarsSet); removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet); } static void markUsedByKernel(IRBuilder<> &Builder, Function *Func, GlobalVariable *SGV) { // The llvm.amdgcn.module.lds instance is implicitly used by all kernels // that might call a function which accesses a field within it. This is // presently approximated to 'all kernels' if there are any such functions // in the module. This implicit use is redefined as an explicit use here so // that later passes, specifically PromoteAlloca, account for the required // memory without any knowledge of this transform. // An operand bundle on llvm.donothing works because the call instruction // survives until after the last pass that needs to account for LDS. It is // better than inline asm as the latter survives until the end of codegen. A // totally robust solution would be a function with the same semantics as // llvm.donothing that takes a pointer to the instance and is lowered to a // no-op after LDS is allocated, but that is not presently necessary. LLVMContext &Ctx = Func->getContext(); Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI()); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {}); Function *Decl = Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {}); Value *UseInstance[1] = {Builder.CreateInBoundsGEP( SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))}; Builder.CreateCall(FTy, Decl, {}, {OperandBundleDefT("ExplicitUse", UseInstance)}, ""); } public: static char ID; AMDGPULowerModuleLDS() : ModulePass(ID) { initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry()); } bool runOnModule(Module &M) override { LLVMContext &Ctx = M.getContext(); CallGraph CG = CallGraph(M); bool Changed = superAlignLDSGlobals(M); // Move variables used by functions into amdgcn.module.lds std::vector ModuleScopeVariables = AMDGPU::findVariablesToLower(M, nullptr); if (!ModuleScopeVariables.empty()) { std::string VarName = "llvm.amdgcn.module.lds"; GlobalVariable *SGV; DenseMap LDSVarsToConstantGEP; std::tie(SGV, LDSVarsToConstantGEP) = createLDSVariableReplacement(M, VarName, ModuleScopeVariables); appendToCompilerUsed( M, {static_cast( ConstantExpr::getPointerBitCastOrAddrSpaceCast( cast(SGV), Type::getInt8PtrTy(Ctx)))}); removeFromUsedLists(M, ModuleScopeVariables); replaceLDSVariablesWithStruct(M, ModuleScopeVariables, SGV, LDSVarsToConstantGEP, [](Use &) { return true; }); // This ensures the variable is allocated when called functions access it. // It also lets other passes, specifically PromoteAlloca, accurately // calculate how much LDS will be used by the kernel after lowering. IRBuilder<> Builder(Ctx); for (Function &Func : M.functions()) { if (!Func.isDeclaration() && AMDGPU::isKernelCC(&Func)) { const CallGraphNode *N = CG[&Func]; const bool CalleesRequireModuleLDS = N->size() > 0; if (CalleesRequireModuleLDS) { // If a function this kernel might call requires module LDS, // annotate the kernel to let later passes know it will allocate // this structure, even if not apparent from the IR. markUsedByKernel(Builder, &Func, SGV); } else { // However if we are certain this kernel cannot call a function that // requires module LDS, annotate the kernel so the backend can elide // the allocation without repeating callgraph walks. Func.addFnAttr("amdgpu-elide-module-lds"); } } } Changed = true; } // Move variables used by kernels into per-kernel instances for (Function &F : M.functions()) { if (F.isDeclaration()) continue; // Only lower compute kernels' LDS. if (!AMDGPU::isKernel(F.getCallingConv())) continue; std::vector KernelUsedVariables = AMDGPU::findVariablesToLower(M, &F); // Replace all constant uses with instructions if they belong to the // current kernel. Unnecessary, removing will cause test churn. for (size_t I = 0; I < KernelUsedVariables.size(); I++) { GlobalVariable *GV = KernelUsedVariables[I]; for (User *U : make_early_inc_range(GV->users())) { if (ConstantExpr *C = dyn_cast(U)) AMDGPU::replaceConstantUsesInFunction(C, &F); } GV->removeDeadConstantUsers(); } if (!KernelUsedVariables.empty()) { std::string VarName = (Twine("llvm.amdgcn.kernel.") + F.getName() + ".lds").str(); GlobalVariable *SGV; DenseMap LDSVarsToConstantGEP; std::tie(SGV, LDSVarsToConstantGEP) = createLDSVariableReplacement(M, VarName, KernelUsedVariables); removeFromUsedLists(M, KernelUsedVariables); replaceLDSVariablesWithStruct( M, KernelUsedVariables, SGV, LDSVarsToConstantGEP, [&F](Use &U) { Instruction *I = dyn_cast(U.getUser()); return I && I->getFunction() == &F; }); Changed = true; } } return Changed; } private: // Increase the alignment of LDS globals if necessary to maximise the chance // that we can use aligned LDS instructions to access them. static bool superAlignLDSGlobals(Module &M) { const DataLayout &DL = M.getDataLayout(); bool Changed = false; if (!SuperAlignLDSGlobals) { return Changed; } for (auto &GV : M.globals()) { if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) { // Only changing alignment of LDS variables continue; } if (!GV.hasInitializer()) { // cuda/hip extern __shared__ variable, leave alignment alone continue; } Align Alignment = AMDGPU::getAlign(DL, &GV); TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType()); if (GVSize > 8) { // We might want to use a b96 or b128 load/store Alignment = std::max(Alignment, Align(16)); } else if (GVSize > 4) { // We might want to use a b64 load/store Alignment = std::max(Alignment, Align(8)); } else if (GVSize > 2) { // We might want to use a b32 load/store Alignment = std::max(Alignment, Align(4)); } else if (GVSize > 1) { // We might want to use a b16 load/store Alignment = std::max(Alignment, Align(2)); } if (Alignment != AMDGPU::getAlign(DL, &GV)) { Changed = true; GV.setAlignment(Alignment); } } return Changed; } std::tuple> createLDSVariableReplacement( Module &M, std::string VarName, std::vector const &LDSVarsToTransform) { // Create a struct instance containing LDSVarsToTransform and map from those // variables to ConstantExprGEP // Variables may be introduced to meet alignment requirements. No aliasing // metadata is useful for these as they have no uses. Erased before return. LLVMContext &Ctx = M.getContext(); const DataLayout &DL = M.getDataLayout(); assert(!LDSVarsToTransform.empty()); SmallVector LayoutFields; LayoutFields.reserve(LDSVarsToTransform.size()); for (GlobalVariable *GV : LDSVarsToTransform) { OptimizedStructLayoutField F(GV, DL.getTypeAllocSize(GV->getValueType()), AMDGPU::getAlign(DL, GV)); LayoutFields.emplace_back(F); } performOptimizedStructLayout(LayoutFields); std::vector LocalVars; BitVector IsPaddingField; LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large IsPaddingField.reserve(LDSVarsToTransform.size()); { uint64_t CurrentOffset = 0; for (size_t I = 0; I < LayoutFields.size(); I++) { GlobalVariable *FGV = static_cast( const_cast(LayoutFields[I].Id)); Align DataAlign = LayoutFields[I].Alignment; uint64_t DataAlignV = DataAlign.value(); if (uint64_t Rem = CurrentOffset % DataAlignV) { uint64_t Padding = DataAlignV - Rem; // Append an array of padding bytes to meet alignment requested // Note (o + (a - (o % a)) ) % a == 0 // (offset + Padding ) % align == 0 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding); LocalVars.push_back(new GlobalVariable( M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy), "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false)); IsPaddingField.push_back(true); CurrentOffset += Padding; } LocalVars.push_back(FGV); IsPaddingField.push_back(false); CurrentOffset += LayoutFields[I].Size; } } std::vector LocalVarTypes; LocalVarTypes.reserve(LocalVars.size()); std::transform( LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes), [](const GlobalVariable *V) -> Type * { return V->getValueType(); }); StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t"); Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]); GlobalVariable *SGV = new GlobalVariable( M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy), VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS, false); SGV->setAlignment(StructAlign); DenseMap Map; Type *I32 = Type::getInt32Ty(Ctx); for (size_t I = 0; I < LocalVars.size(); I++) { GlobalVariable *GV = LocalVars[I]; Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)}; Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true); if (IsPaddingField[I]) { assert(GV->use_empty()); GV->eraseFromParent(); } else { Map[GV] = GEP; } } assert(Map.size() == LDSVarsToTransform.size()); return {SGV, std::move(Map)}; } template void replaceLDSVariablesWithStruct( Module &M, std::vector const &LDSVarsToTransform, GlobalVariable *SGV, DenseMap &LDSVarsToConstantGEP, PredicateTy Predicate) { LLVMContext &Ctx = M.getContext(); const DataLayout &DL = M.getDataLayout(); // Create alias.scope and their lists. Each field in the new structure // does not alias with all other fields. SmallVector AliasScopes; SmallVector NoAliasList; const size_t NumberVars = LDSVarsToTransform.size(); if (NumberVars > 1) { MDBuilder MDB(Ctx); AliasScopes.reserve(NumberVars); MDNode *Domain = MDB.createAnonymousAliasScopeDomain(); for (size_t I = 0; I < NumberVars; I++) { MDNode *Scope = MDB.createAnonymousAliasScope(Domain); AliasScopes.push_back(Scope); } NoAliasList.append(&AliasScopes[1], AliasScopes.end()); } // Replace uses of ith variable with a constantexpr to the corresponding // field of the instance that will be allocated by AMDGPUMachineFunction for (size_t I = 0; I < NumberVars; I++) { GlobalVariable *GV = LDSVarsToTransform[I]; Constant *GEP = LDSVarsToConstantGEP[GV]; GV->replaceUsesWithIf(GEP, Predicate); if (GV->use_empty()) { GV->eraseFromParent(); } APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0); GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff); uint64_t Offset = APOff.getZExtValue(); Align A = commonAlignment(SGV->getAlign().valueOrOne(), Offset); if (I) NoAliasList[I - 1] = AliasScopes[I - 1]; MDNode *NoAlias = NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList); MDNode *AliasScope = AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]}); refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias); } } void refineUsesAlignmentAndAA(Value *Ptr, Align A, const DataLayout &DL, MDNode *AliasScope, MDNode *NoAlias, unsigned MaxDepth = 5) { if (!MaxDepth || (A == 1 && !AliasScope)) return; for (User *U : Ptr->users()) { if (auto *I = dyn_cast(U)) { if (AliasScope && I->mayReadOrWriteMemory()) { MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope); AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope) : AliasScope); I->setMetadata(LLVMContext::MD_alias_scope, AS); MDNode *NA = I->getMetadata(LLVMContext::MD_noalias); NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias); I->setMetadata(LLVMContext::MD_noalias, NA); } } if (auto *LI = dyn_cast(U)) { LI->setAlignment(std::max(A, LI->getAlign())); continue; } if (auto *SI = dyn_cast(U)) { if (SI->getPointerOperand() == Ptr) SI->setAlignment(std::max(A, SI->getAlign())); continue; } if (auto *AI = dyn_cast(U)) { // None of atomicrmw operations can work on pointers, but let's // check it anyway in case it will or we will process ConstantExpr. if (AI->getPointerOperand() == Ptr) AI->setAlignment(std::max(A, AI->getAlign())); continue; } if (auto *AI = dyn_cast(U)) { if (AI->getPointerOperand() == Ptr) AI->setAlignment(std::max(A, AI->getAlign())); continue; } if (auto *GEP = dyn_cast(U)) { unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); APInt Off(BitWidth, 0); if (GEP->getPointerOperand() == Ptr) { Align GA; if (GEP->accumulateConstantOffset(DL, Off)) GA = commonAlignment(A, Off.getLimitedValue()); refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias, MaxDepth - 1); } continue; } if (auto *I = dyn_cast(U)) { if (I->getOpcode() == Instruction::BitCast || I->getOpcode() == Instruction::AddrSpaceCast) refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1); } } } }; } // namespace char AMDGPULowerModuleLDS::ID = 0; char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID; INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE, "Lower uses of LDS variables from non-kernel functions", false, false) ModulePass *llvm::createAMDGPULowerModuleLDSPass() { return new AMDGPULowerModuleLDS(); } PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M, ModuleAnalysisManager &) { return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none() : PreservedAnalyses::all(); }